Содержание

(PDF) Ошибки формального применения закона электромагнитной индукции Фарадея

11

Ошибки формального применения закона электромагнитной индукции Фарадея

УДК 537.851

Ошибки формального применения закона электромагнитной

индукции Фарадея

Искандер Рахимович Мубаракшин

Марийский государственный университет (МарГУ)

424001, г. ЙошкарОла, пл. Ленина, д. 1; email: [email protected]

В задачах на электромагнитную индукцию для упрощения нередко полагают магнитное

поле сосредоточенным в конечной области, чтобы вне этой области полем и магнитным

потоком можно было пренебречь. Тогда для любого контура, расположенного в области

с пренебрежимо малым магнитным потоком и содержащего область магнитного поля,

охватываемый магнитный поток будет одинаков независимо от размеров контура. В

случае переменного магнитного поля для всех указанных контуров формальное

применение закона электромагнитной индукции дает ЭДС индукции одинаковой

величины, которая легко находится. Но такого типа ЭДС не может быть ЭДС индукции,

поскольку соответствующее электрическое поле не является вихревым и, следова

тельно, источником такого поля не может быть переменное магнитное поле. Это резуль

тат ошибочного применения закона электромагнитной индукции. Разобран пример с

электрическим полем вне соленоида, внутри которого магнитное поле линейно меняется

со временем.

Ключевые слова: электромагнитная индукция, вихревое электрическое поле.

Введение

Закон электромагнитной индукции (ЭМИ) Фарадея общеизвестен dt

−=

ε

.

При изменении магнитного потока в контуре наводится ЭДС индукции и, если контур

проводящий, то возникает индукционный ток R

I

ε

=. Если цепь разветвленная, то

применяя закон ЭМИ к каждому контуру и законы Кирхгофа, можно рассчитать токи

во всех участках цепи.

Теоретически все просто и понятно. Но при составлении задач на тему ЭМИ

часто используют упрощающие предположения, чтобы сделать задачу доступной на

школьном (олимпиадном) уровне. Такие предположения могут сделать задачу неодно

значной и даже противоречивой. Соответственно решения, основанные на таких пред

положениях, приводят к неверным, а иногда даже парадоксальным результатам. Примеры

таких задач и упрощающих предположений рассматривались в работах [1, 2].

Как правило, ЭДС индукции в упомянутых выше задачах используется как

интегральная величина, связанная с тем или иным контуром. С полевой точки зрения

ЭДС индукции – это циркуляция, интеграл по контуру, вектора напряженности вих

ревого электрического поля ∫

=ldE

ε

. При рассмотрении ЭМИ это полезно всегда

иметь ввиду как при анализе постановки задачи и корректности используемых допуще

Физическое образование в вузах. Т. 23, № 1, 2017

Закон Фарадея и его вывод из закона сохранения энергии

| на главную | доп. материалы | физика как наука и предмет | электричество и электромагнетизм |

Организационные, контрольно-распорядительные и инженерно-технические услуги
в сфере жилой, коммерческой и иной недвижимости. Московский регион. Официально.

Обобщая результаты своих многочисленных опытов, Фарадей пришел к количественному закону электромагнитной индукции. Он показал, что всякий раз, когда происходит изменение сцепленного с контуром потока магнитной индукции, в контуре возникает индукционный ток; возникновение индукционного тока указывает на наличие в цепи электродвижущей силы, называемой электродвижущей силой электромагнитной индукции. Значение индукционного тока, а следовательно, и э.д.с. электро­магнитной индукции определяются только скоростью изменения магнитного потока, т. е.

 

Теперь необходимо выяснить знак . В § 120 было показано, что знак магнитного потока зависит от выбора положительной нормали к контуру. В свою очередь, положительное направление нормали определяется правилом правого винта. Следовательно, выбирая положительное направление нормали, мы определяем как знак потока магнитной индукции, так и направление тока и э.д.с. в контуре. Пользуясь этими представлениями и выводами, можно соответственно прийти к формулировке закона электромагнитной индукции Фарадея: какова бы ни была причина изменения потока магнитной индукции, охватываемого замкнутым проводящим контуром, возникающая в контуре э. д. с.

                                                   (123.2)

Знак минус показывает, что увеличение потока  вызывает э. д. с. т. е. поле индукционного тока направлено навстречу потоку; уменьшение потока  вызывает т.е. направления потока и поля индукционного тока совпадают. Знак минус в формуле (123.2) определяется правилом Ленца — общим правилом для нахождения направления индукционного тока, выведенного в 1833 г.

Правило Ленца: индукционный ток в контуре имеет всегда такое направление, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызва­вшему этот индукционный ток.

Закон Фарадея (см. (123.2)) может быть непосредственно получен из закона со­хранения энергии, как это впервые сделал Г. Гельмгольц. Рассмотрим проводник с током I, который помещен в однородное магнитное поле, перпендикулярное плоско­сти контура, и может свободно перемещаться (см. рис. 177). Под действием силы Ампера F, направление которой показано на рисунке, проводник перемещается на отрезок dx. Таким образом, сила Ампера производит работу (см. (121.1)) d

A=IdФ, где dФ — пересеченный проводником магнитный поток.

Согласно закону сохранения энергии, работа источника тока за время dt () будет складываться из работы на джоулеву теплоту (I2Rdt) и работы по перемещению проводника в магнитном поле (IdФ):

где R — полное сопротивление контура. Тогда

=  есть не что иное, как закон Фарадея (см. (123.2)).

Закон Фарадея можно сформулировать еще таким образом: э.д.с.  электромагнитной индукции в контуре численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную этим контуром. Этот закон является универсальным: э. д. с. не зависит от способа изменения магнитного потока. Э.д.с. электромагнитной индукции выражается в вольтах. Действительно, учитывая, что единицей магнитного потока является вебер (Вб), получим

Какова природа э.д.с. электромагнитной индукции? Если проводник (подвижная перемычка контура на рис. 177) движется в постоянном магнитном поле, то сила Лоренца, действующая на заряды внутри проводника, движущиеся вместе с проводником, будет направлена противоположно току, т. е. она будет создавать в проводнике индукционный ток противоположного направления (за направление электрического тока принимается движение положительных зарядов). Таким образом, возбуждение э.д.с. индукции при движения контура в постоянном магнитном поле объясняется действием силы Лоренца, возникающей при движении проводника.

Согласно закону Фарадея, возникновение э.д.с. электромагнитной индукции воз­можно и в случае неподвижного контура, находящегося в переменном магнитном поле.

Однако сила Лоренца на неподвижные заряды не действует, поэтому в данном случае ею нельзя объяснить возникновение э.д.с. индукции. Максвелл для объяснения э.д.с. индукции в неподвижных проводниках предположил, что всякое переменное магнитное поле возбуждает в окружающем пространстве электрическое поле, которое и является причиной возникновения индукционного тока в проводнике. Циркуляция вектора ЕB этого поля по любому неподвижному контуру L проводника представляет собой э. д. с. электромагнитной индукции:

                                                          (123.3)


Формула закона электромагнитной индукции

Это основной закон, который используют при вычислениях, которые связаны с электромагнитной индукцией.

Формула данного закона выглядит следующим образом:

   

где – электродвижущая сила (ЭДС) индукции, которая возникает в проводнике, если он находится в переменном магнитном поле.

Если проводящим телом является, например, замкнутый контур, то в нем течет электрический ток, который называют током индукции. – магнитный поток, через поверхность, ограниченную этим контуром. Формула (1) означает то, что ЭДС индукции равна по модулю и противоположна по знаку скорости изменения магнитного потока через некоторую поверхность.

Магнитный поток, который пронизывает контур, может изменяться из-за разных причин, например, перемещения контура, его деформации, изменения самого магнитного поля. Полная производная в формуле закона электромагнитной индукции охватывает весь спектр действия этих причин.

Следует учесть, что из конца вектора нормали к контуру обход контура должен проходить против часовой стрелки.

Знак минус в законе индукции отражает правило Ленца.

В виде (1), закон электромагнитной индукции записывается в международной системе единиц (СИ).

Если изменение магнитного потока происходит равномерно, то формулу закона электромагнитной индукции можно записать как:

   

Формулу закона для электромагнитной индукции, если контур состоит из N витков, соединенных последовательно, записывают в виде:

   

где – потокосцепление.

Результаты применения основного закона электромагнитной индукции

Формулы ЭДС индукции для частных случаев

ЭДС индукции в прямом проводнике, имеющем длину l, движущемся в магнитном поле и пересекающем линии магнитной индукции, если скорость его движения () перпендикулярна вектору магнитной индукции (), равна:

   

Разность потенциалов (U), возникающая на концах проводника длиной l, движущегося в однородном магнитном поле со скоростью v равна:

   

где – угол между направлением вектора скорости и направлением вектора магнитной индукции.

Если в однородном магнитном поле вращается плоский контур со скоростью , при этом ось вращения находится в плоскости витка и составляет угол в 900 с направлением вектора внешнего магнитного поля, то в контуре появляется ЭДС индукции равная:

   

где S – площадь, которую ограничивает виток; – мгновенное значение угла между и вектором нормали к плоскости рамки; – поток самоиндукции витка.

Если в рамке, вращающейся со скоростью в однородном магнитном поле, имеется N витков, то

   

в формуле (6) самоиндукцией витков пренебрегли.

Пусть проводник находится в покое, при этом изменяется во времени само магнитное поле, тогда ЭДС индукции можно найти как:

   

Примеры решения задач по теме «Закон электромагнитной индукции»

Закон электромагнитной индукции., калькулятор онлайн, конвертер

Законы электромагнитной индукции

Сущность электромагнитной индукции определяется замкнутым контуром с электропроводностью, площадь которого пропускает через себя изменяющийся магнитный поток. В этот момент под влиянием магнитного потока появляется электродвижущая сила Еi и в контуре начинает течь электрический ток.

Закон Фарадея для электромагнитной индукции заключается в прямой зависимости ЭДС и скорости, составляющих пропорцию. Данная скорость представляет собой время, в течение которого магнитный поток подвергается изменениям.

Данный закон выражается формулой Еi = – ∆Ф/∆t, в которой Еi – значение электродвижущей силы, возникающей в контуре, а ∆Ф/∆t является скоростью изменения магнитного потока. В этой формуле не совсем понятным остается знак «минус», но ему тоже имеется свое объяснение. В соответствии с правилом русского ученого Ленца, изучавшего открытия Фарадея, этот знак отображает направление ЭДС, возникающей в контуре. То есть, направление индукционного тока происходит таким образом, что создаваемый им магнитный поток на площади, ограниченной контуром, препятствует изменениям, вызванным этим током.

Открытия Фарадея были доработаны Максвеллом, у которого теория электромагнитного поля получила новые направления. В результате, появился закон Фарадея и Максвелла, выраженный в следующих формулах:

  • Edl = -∆Ф/∆t – отображает электродвижущую силу.
  • Hdl = -∆N/∆t – отображает магнитодвижущую силу.

В этих формулах Е соответствует напряженности электрического поля на определенном участке dl, Н является напряженностью магнитного поля на этом же участке, N – поток электрической индукции, t – период времени.

Оба уравнения отличаются симметричностью, позволяющей сделать вывод, что магнитные и электрические явления связаны между собой. С физической точки зрения эти формулы определяют следующее:

  • Изменениям в электрическом поле всегда сопутствует образование магнитного поля.
  • Изменения в магнитном поле всегда происходят одновременно с образованием электрического поля.

Изменяющийся магнитный поток, проходящий сквозь замкнутую конфигурацию проводящего контура, приводит к возникновению в этом контуре электрического тока. Это основная формулировка закона Фарадея. Если изготовить проволочную рамку и поместить ее внутри вращающегося магнита, то в самой рамке появится электричество.

Это и будет индукционный ток, в полном соответствии с теорией и законом Майкла Фарадея. Изменения магнитного потока, проходящего через контур, могут быть произвольными. Следовательно, формула ∆Ф/∆t бывает не только линейной, а в определенных условиях принимает любую конфигурацию. Если изменения происходят линейно, то ЭДС электромагнитной индукции, возникающей в контуре, будет постоянной. Временной интервал t становится каким угодно, а отношение ∆Ф/∆t не будет зависеть от его продолжительности.

Если же изменения магнитного потока принимают более сложную форму, то ЭДС индукции уже не будет постоянной, а будет зависеть от данного промежутка времени. В этом случае временной интервал рассматривается в качестве бесконечно малой величины и тогда соотношение ∆Ф/∆t с точки зрения математики станет производной от изменяющегося магнитного потока.

Существует еще один вариант, трактующий закон электромагнитной индукции Фарадея. Его краткая формулировка объясняет, что действие переменного магнитного поля вызывает появление вихревого электрического поля. Этот же закон можно трактовать как одну из характеристик электромагнитного поля: вектор напряженности поля может циркулировать по любому из контуров со скоростью, равной скорости изменения магнитного потока, проходящего через тот или иной контур.

Закон электромагнитной индукции формула

Закон Фарадея для электролиза

Индукция магнитного поля

Закон полного тока

Клетка Фарадея

Закон Ома для полной цепи

История

Электромагнитная индукция была обнаружена независимо друг от друга Майклом Фарадеем и Джозефом Генри в 1831 году, однако Фарадей первым опубликовал результаты своих экспериментов.

В первой экспериментальной демонстрации электромагнитной индукции (август 1831) Фарадей обмотал двумя проводами противоположные стороны железного тора (конструкция похожа на современный трансформатор). Основываясь на своей оценке недавно обнаруженного свойства электромагнита, он ожидал, что при включении тока в одном проводе особого рода волна пройдёт сквозь тор и вызовет некоторое электрическое влияние на его противоположной стороне. Он подключил один провод к гальванометру и смотрел на него, когда другой провод подключал к батарее. В самом деле, он увидел кратковременный всплеск тока (который он назвал «волной электричества»), когда подключал провод к батарее, и другой такой же всплеск, когда отключал его. В течение двух месяцев Фарадей нашёл несколько других проявлений электромагнитной индукции. Например, он увидел всплески тока, когда быстро вставлял магнит в катушку и вытаскивал его обратно, он генерировал постоянный ток во вращающемся вблизи магнита медном диске со скользящим электрическим проводом («диск Фарадея»).

Диск Фарадея

Фарадей объяснил электромагнитную индукцию с использованием концепции так называемых силовых линий. Однако, большинство учёных того времени отклонили его теоретические идеи, в основном потому, что они не были сформулированы математически. Исключение составил Максвелл, который использовал идеи Фарадея в качестве основы для своей количественной электромагнитной теории. В работах Максвелла аспект изменения во времени электромагнитной индукции выражен в виде дифференциальных уравнений. Оливер Хевисайд назвал это законом Фарадея, хотя он несколько отличается по форме от первоначального варианта закона Фарадея и не учитывает индуцирование ЭДС при движении. Версия Хевисайда является формой признанной сегодня группы уравнений, известных как уравнения Максвелла.

Эмилий Христианович Ленц сформулировал в 1834 году закон (правило Ленца), который описывает «поток через цепь» и даёт направление индуцированной ЭДС и тока в результате электромагнитной индукции.

Эксперимент Фарадея, показывающий индукцию между витками провода: жидкостная батарея (справа) даёт ток, который протекает через небольшую катушку (A), создавая магнитное поле. Когда катушки неподвижны, ток не индуцируется. Но когда маленькая катушка вставляется или извлекается из большой катушки (B), магнитный поток через катушку изменяется, вызывая ток, который регистрируется гальванометром (G).

История развития

После доказательства закона электромагнитной индукции английским ученым М. Фарадеем над открытием работали российские ученые Э. Ленц и Б. Якоби. Благодаря их трудам, сегодня разработанный принцип положен в основу функционирования многих приборов и механизмов.

Основными агрегатами, в которых применяется закон электромагнитной индукции Фарадея, являются двигатель, трансформатор и множество иных приборов.

Индукцией электромагнитно именуется индуцирование в замкнутой проводящей системе электрического тока. Такое явление становится возможным при физическом передвижении через проводниковую систему магнитного поля. Механическое действие влечет за собой появление электричества. Его принято называть индукционным. До открытия закона Фарадея человечество не знало об иных способах создания электричества, кроме гальваники.

Если сквозь проводник пропустить магнитное поле, в нем будет возникать ЭДС индукции. Ее еще именуют электродвижущей силой. При помощи этого открытия удается представить в количественном выражении показатель.

Электрический генератор

Рис. 8. Электрический генератор на основе диска Фарадея. Диск вращается с угловой скоростью ω, при этом проводник, расположенный вдоль радиуса, движется в статическом магнитном поле B. Магнитная сила Лоренца v × B создаёт ток вдоль проводника по направлению к ободу, затем цепь замыкается через нижнюю щётку и ось поддержки диска. Таким образом, вследствие механического движения генерируется ток.

Явление возникновения ЭДС, порождённой по закону индукции Фарадея из-за относительного движения контура и магнитного поля, лежит в основе работы электрических генераторов. Если постоянный магнит перемещается относительно проводника или наоборот, проводник перемещается относительно магнита, то возникает электродвижущая сила. Если проводник подключён к электрической нагрузке, то через неё будет течь ток, и следовательно, механическая энергия движения будет превращаться в электрическую энергию. Например, дисковый генератор построен по тому же принципу, как изображено на рис. 4. Другой реализацией этой идеи является диск Фарадея, показанный в упрощённом виде на рис. 8

Обратите внимание, что и анализ рис. 5, и прямое применение закона силы Лоренца показывают, что твёрдый проводящий диск работает одинаковым образом.

В примере диска Фарадея диск вращается в однородном магнитном поле, перпендикулярном диску, в результате чего возникает ток в радиальном плече благодаря силе Лоренца. Интересно понять, как получается, что чтобы управлять этим током, необходима механическая работа. Когда генерируемый ток течёт через проводящий обод, по закону Ампера этот ток создаёт магнитное поле (на рис. 8 оно подписано «индуцированное B» — Induced B). Обод, таким образом, становится электромагнитом, который сопротивляется вращению диска (пример правила Ленца). В дальней части рисунка обратный ток течёт от вращающегося плеча через дальнюю сторону обода к нижней щётке. Поле В, создаваемое этим обратным током, противоположно приложенному полю, вызывая сокращение потока через дальнюю сторону цепи, в противовес увеличению потока, вызванного вращением. На ближней стороне рисунка обратный ток течёт от вращающегося плеча через ближнюю сторону обода к нижней щётке. Индуцированное поле B увеличивает поток по эту сторону цепи, в противовес снижению потока, вызванного вращением. Таким образом, обе стороны цепи генерируют ЭДС, препятствующую вращению. Энергия, необходимая для поддержания движения диска в противовес этой реактивной силе, в точности равна вырабатываемой электрической энергии (плюс энергия на компенсацию потерь из-за трения, из-за выделения тепла Джоуля и прочее). Такое поведение является общим для всех генераторов преобразования механической энергии в электрическую.

Хотя закон Фарадея описывает работу любых электрических генераторов, детальный механизм в разных случаях может отличаться. Когда магнит вращается вокруг неподвижного проводника, меняющееся магнитное поле создаёт электрическое поле, как описано в уравнении Максвелла-Фарадея, и это электрическое поле толкает заряды через проводник. Этот случай называется индуцированной ЭДС. С другой стороны, когда магнит неподвижен, а проводник вращается, на движущиеся заряды воздействует магнитная сила (как описывается законом Лоренца), и эта магнитная сила толкает заряды через проводник. Этот случай называется двигательной ЭДС.

Математический вид

Законы Фарадея можно записать в виде следующей формулы:

m = (QF)(Mz),{\displaystyle m\ =\ \left({Q \over F}\right)\left({M \over z}\right),}

где:

  • m{\displaystyle m} — масса осаждённого на электроде вещества,
  • Q{\displaystyle Q} — полный электрический заряд, прошедший через вещество
  • F=96485,33(83){\displaystyle F=96\,485,33(83)} Кл·моль−1 — постоянная Фарадея,
  • M{\displaystyle M}— молярная масса вещества (Например, молярная масса воды h3O{\displaystyle {\ce {h3O}}} = 18 г/моль),
  • z{\displaystyle z} — валентное число ионов вещества (число электронов на один ион).

Заметим, что Mz{\displaystyle M/z} — это эквивалентная масса осаждённого вещества.

Для первого закона Фарадея M,F{\displaystyle M,\,F} и z{\displaystyle z} являются константами, так что, чем больше величина Q{\displaystyle Q}, тем больше будет величина m{\displaystyle m}.

Для второго закона Фарадея Q,F{\displaystyle Q,\,F} и z{\displaystyle z} являются константами, так что чем больше величина Mz{\displaystyle M/z} (эквивалентная масса), тем больше будет величина m{\displaystyle m}.

В простейшем случае используется постоянный ток и полный электрический заряд (прошедший через систему) за время электролиза равен: Q=It{\displaystyle Q=It} , что приводит к выражению:

m = (ItF)(Mz),{\displaystyle m\ =\ \left({It \over F}\right)\left({M \over z}\right),} где размерность тока I{\displaystyle I} ампер-час (ампер-секунда и др.) определяет размерность времени электролиза t{\displaystyle t}.

и тогда

n = (ItF)(1z),{\displaystyle n\ =\ \left({It \over F}\right)\left({1 \over z}\right),}

где:

  • n{\displaystyle n} — выделенное количество вещества («количество молей»): n=mM{\displaystyle n=m/M},
  • t{\displaystyle t} — время действия постоянного тока.

В более сложном случае переменного электрического тока полный заряд Q{\displaystyle Q} тока I(τ){\displaystyle I(\tau )} суммируется за время τ{\displaystyle \tau }:

Q=∫tI(τ) dτ. {t}I(\tau )\ d\tau .}

Здесь t{\displaystyle t} — полное время электролиза, τ{\displaystyle \tau } переменная времени, ток I{\displaystyle I} является функцией от времени τ{\displaystyle \tau }.

История развития

После доказательства закона электромагнитной индукции английским ученым М. Фарадеем над открытием работали российские ученые Э. Ленц и Б. Якоби. Благодаря их трудам, сегодня разработанный принцип положен в основу функционирования многих приборов и механизмов.

Индукцией электромагнитно именуется индуцирование в замкнутой проводящей системе электрического тока. Такое явление становится возможным при физическом передвижении через проводниковую систему магнитного поля. Механическое действие влечет за собой появление электричества. Его принято называть индукционным. До открытия закона Фарадея человечество не знало об иных способах создания электричества, кроме гальваники.

Если сквозь проводник пропустить магнитное поле, в нем будет возникать ЭДС индукции. Ее еще именуют электродвижущей силой. При помощи этого открытия удается представить в количественном выражении показатель.

При изменении магнитного потока через замкнутый проводящий контур, в контуре возникает электрический ток. То есть, если мы скрутим из проволоки рамку и поместим ее в изменяющееся магнитное поле (возьмем магнит, и будем крутить его вокруг рамки), по рамке потечет ток!

Рамка в поле

Этот ток Фарадей назвал индукционным, а само явление окрестил электромагнитной индукцией.

А откуда в формуле минус, спросите Вы. Для объяснения знака минус в этой формуле есть специальное правило Ленца. Оно гласит, что знак минус, в данном случае, указывает на то, как направлена возникающая ЭДС. Дело в том, что создаваемое индукционным током магнитное поле направлено так, что препятствует изменению магнитного потока, который вызвал индукционный ток.

Правило правой руки

Опытное доказательство

Проводя свои исследования, английский ученый установил, что индукционный ток получается одним из двух способов. В первом опыте он появляется при движении рамки в магнитном поле, создаваемом неподвижной катушкой. Второй способ предполагает неподвижное положение рамки. В этом эксперименте изменяется только поле катушки при ее движении или изменении силы тока в ней.

Опыты Фарадея привели исследователя к выводу, что при генерировании индукционного тока провоцируется увеличением или уменьшением магнитного потока в системе. Также опыты Фарадея позволили утверждать, что значение электричества, полученного опытным путем, не зависит от методологии, которой был изменен поток магнитной индукции. На показатель влияет только скорость такого изменения.

Закон Фарадея как два различных явления

Некоторые физики отмечают, что закон Фарадея в одном уравнении описывает два разных явления: двигательную ЭДС, генерируемую действием магнитной силы на движущийся провод, и трансформаторную ЭДС, генерируемую действием электрической силы вследствие изменения магнитного поля

Джеймс Клерк Максвелл обратил внимание на этот факт в своей работе О физических силовых линиях в 1861 году. Во второй половине части II этого труда Максвелл даёт отдельное физическое объяснение для каждого из этих двух явлений

Ссылка на эти два аспекта электромагнитной индукции имеется в некоторых современных учебниках. Как пишет Ричард Фейнман:

Отражение этой очевидной дихотомии было одним из основных путей, которые привели Эйнштейна к разработке специальной теории относительности:

Паразитная индукция и тепловые потери

В любом металлическом объекте, движущемся по отношению к статическому магнитному полю, будут возникать индукционные токи, как и в любом неподвижном металлическом предмете по отношению к движущемуся магнитному полю. Эти энергетические потоки в сердечниках трансформаторов нежелательны, из-за них в слое металла течёт электрический ток, который нагревает металл.

В соответствии с правилом Ленца вихревые токи протекают внутри проводника по таким путям и направлениям, чтобы своим действием возможно сильнее противится причине, которая их вызывает. Вследствие этого при движении в магнитном поле на хорошие проводники действует тормозящая сила, вызываемая взаимодействием вихревых токов с магнитным полем. Этот эффект используется в ряде приборов для демпфирования колебаний их подвижных частей.

Есть ряд методов, используемых для борьбы с этими нежелательными индуктивными эффектами.

  • Электромагниты в электрических двигателях, генераторах и трансформаторах не делают из сплошного металла, а используют тонкие листы жести, называемые «ламинатами». Эти тонкие пластины уменьшают паразитные вихревые токи, как будет описано ниже.
  • Катушки индуктивности в электронике обычно используют магнитные сердечники, чтобы минимизировать паразитный ток. Их делают из смеси металлического порошка со связующим наполнителем, и они имеют различную форму. Связующий материал предотвращает прохождение паразитных токов через порошковый металл.

Расслоение электромагнита


Вихревые токи возникают, когда сплошная масса металла вращается в магнитном поле, так как внешняя часть металла пересекает больше силовых линий, чем внутренняя, следовательно, индуцированная электродвижущая сила неравномерна и стремится создать токи между точками с наибольшим и наименьшим потенциалами. Вихревые токи потребляют значительное количество энергии, и часто приводят к вредному повышению температуры.

На этом примере показаны всего пять ламинатов или пластин для демонстрации расщепление вихревых токов. На практике число пластин или перфорация составляет от 40 до 66 на дюйм, что приводит к снижению потерь на вихревых токах примерно до одного процента. Хотя пластины могут быть отделены друг от друга изоляцией, но поскольку возникающие напряжения чрезвычайно низки, то естественной ржавчины или оксидного покрытия пластин достаточно, чтобы предотвратить ток через пластины.

Это ротор от двигателя постоянного тока диаметром примерно 20 мм, используемого в проигрывателях компакт-дисков

Обратите внимание, для снижения паразитных индуктивных потерь сделано расслоение полюса электромагнита на части.

Паразитные потери в катушках индуктивности


На этой иллюстрации сплошной медный стержень катушки индуктивности во вращающемся якоре просто проходит под кончиком полюса N магнита

Обратите внимание на неравномерное распределение силовых линий через стержень. Магнитное поле имеет большую концентрацию и, следовательно, сильнее на левом краю медного стержня (a, b), тогда как слабее по правому краю (c, d)

Поскольку два края стержня будут двигаться с одинаковой скоростью, это различие в напряженности поля через стержень создаст вихри тока внутри медного стержня.

Это одна из причин, по которой устройства с высоким напряжением, как правило, более эффективны, чем низковольтные устройства. Высоковольтные устройства имеют множество небольших витков провода в двигателях, генераторах и трансформаторах. Эти многочисленные небольшие витки провода в электромагните разбивают вихревые потоки, а в пределах больших, толстых катушек индуктивности низкого напряжения образуется вихревые токи большей величины.

Примечания

  1. , с. 208.
  2. Michael Faraday, by L. Pearce Williams, p. 182-3
  3. Michael Faraday, by L. Pearce Williams, p. 191-5
  4. Michael Faraday, by L. Pearce Williams, p. 510
  5. Maxwell, James Clerk (1904), A Treatise on Electricity and Magnetism, Vol. II, Third Edition. Oxford University Press, pp. 178-9 and 189.
  6. В-поле наведенного тока ведет к снижению магнитного потока, в то время как движение цикла имеет тенденцию к увеличению (так как В (х) возрастает по мере цикла движений). Эти противоположные действия — пример принципа Ле Шателье в форме закона Ленца.
  7. K. Simonyi, Theoretische Elektrotechnik, 5th edition, VEB Deutscher Verlag der Wissenschaften, Berlin 1973, equation 20, page 47
  8. В этом примере предполагается, что скорости движения намного меньше скорости света, поэтому корректировкой поля, связанной с преобразованиями Лоренца, можно пренебречь.
  9. Единственным способом определения этого является измерение x от xC в движущемся контуре, скажем ξ = x — xC (t). Тогда за время t движущийся наблюдатель увидит поле B (ξ, t), тогда как неподвижный наблюдатель увидит в той же точке поле B [ ξ + xC (t) ] = B (ξ + xC0 + v t) при xC0 = xC (t = 0).
  10. Images and reference text are from the public domain book: Hawkins Electrical Guide, Volume 1, Chapter 19: Theory of the Armature, pp. 272—273, Copyright 1917 by Theo. Audel & Co., Printed in the United States
  11. Images and reference text are from the public domain book: Hawkins Electrical Guide, Volume 1, Chapter 19: Theory of the Armature, pp. 270—271, Copyright 1917 by Theo. Audel & Co., Printed in the United States

Электродинамика

Первые работы применяются в физике, конкретно в описании работы электрических машин и аппаратов (трансформаторов, двигателей и пр.). Закон Фарадея гласит:

Для контура индуцированная ЭДС прямо пропорциональна величине скорости магнитного потока, который перемещается через этот контур со знаком минус.

Это можно сказать простыми словами: чем быстрее магнитный поток движется через контур, тем больше на его выводах генерируется ЭДС.

Формула выглядит следующим образом:

Здесь dФ – магнитный поток, а dt – единица времени. Известно, что первая производная по времени – это скорость. Т.е скорость перемещения магнитного потока в данном конкретном случае. Кстати перемещаться может, как и источник магнитного поля (катушка с током – электромагнит, или постоянный магнит), так и контур.

Здесь же поток можно выразить по такой формуле:

B – магнитное поле, а dS – площадь поверхности.

Если рассматривать катушку с плотнонамотанными витками, при этом в количестве витков N, то закон Фарадея выглядит следующим образом:

Магнитный поток в формуле на один виток, измеряется в Веберах. Ток, протекающий в контуре, называется индукционным.

Электромагнитная индукция – явление протекания тока в замкнутом контуре под воздействием внешнего магнитного поля.

В формулах выше вы могли заметить знаки модуля, без них она имеет слегка иной вид, такой как было сказано в первой формулировке, со знаком минус.

Знак минус объясняет правило Ленца. Ток, возникающий в контуре, создает магнитное поле, оно направлено противоположно. Это является следствием закона сохранения энергии.

Направление индукционного тока можно определить по правилу правой руки или буравчика, мы его рассматривали на нашем сайте подробно.

Как уже было сказано, благодаря явлению электромагнитной индукции работают электрические машины трансформаторы, генераторы и двигатели. На иллюстрации показано протекание тока в обмотке якоря под воздействием магнитного поля статора. В случае с генератором, при вращении его ротора внешними силами в обмотках ротора возникает ЭДС, ток порождает магнитное поле направленное противоположно (тот самый знак минус в формуле). Чем больше ток, потребляемый нагрузкой генератора, тем больше это магнитное поле, и тем больше затрудняется его вращение.

И наоборот — при протекании тока в роторе возникает поле, которое взаимодействует с полем статора и ротор начинает вращаться. При нагрузке на вал ток в статоре и в роторе повышается, при этом нужно обеспечить переключение обмоток, но это уже другая тема, связанная с устройством электрических машин.

В основе работы трансформатора источником движущегося магнитного потока является переменное магнитное поле, возникающее в следствие протекания в первичной обмотке переменного тока.

Если вы желаете более подробно изучить вопрос, рекомендуем просмотреть видео, на котором легко и доступно рассказывается Закон Фарадея для электромагнитной индукции:

Работа Э. Ленца

Направленность индукционного тока предоставляет возможность определить правило Ленца. Краткая формулировка звучит достаточно просто. Появляющийся при изменении показателей поля проводникового контура ток, препятствует благодаря своему магнитному полю такому изменению.

Если магнит выводится из системы, магнитный поток в ней уменьшится. Чтобы установить направление тока, выкручивается буравчик. Вращения будет направлено в обратную сторону перемещения по циферблату часовой стрелки.

Формулировки Ленца приобретают большое значение для системы с контуром замкнутого типа и отсутствующим сопротивлением. Его принято именовать идеальным контуром. По правилу Ленца, в нем невозможно увеличить или уменьшить магнитный поток.

НАЧАЛА ФИЗИКИ


Майкл Фарадей (1791–1867) – великий английский физик. Автор ряда фундаментальных и прикладных открытий, в том числе закона электромагнитной индукции, законов электролиза (законы Фарадея), явления вращения плоскости поляризации света в магнитном поле (эффект Фарадея). В 1821 г. впервые осуществил вращение магнита вокруг проводника с током и проводника с током вокруг магнита, создав первую лабораторную модель электродвигателя. 29 августа 1831 г. Фарадей открыл явление электромагнитной индукции — возникновение электрического поля при изменении магнитного поля. В последующем Фарадей всесторонне исследовал это явление, которое без преувеличения можно назвать краеугольным камнем современной электродинамики и ее практического приложения – электротехники. В 1835 г. открыл так называемые экстратоки, которые возникают при замыкании и размыкании электрической цепи, и установил их направление.

Однако главной заслугой Фарадея является разработка концепции электромагнитного поля (сам этот термин впервые употребил Фарадей). Если до него господствовало представление о прямом и мгновенном взаимодействии зарядов и токов через пустое пространство, то Фарадей последовательно развивал идею о том, что существует материальный переносчик этого взаимодействия — электромагнитное поле. Концепция поля является фундаментом современной физики. При этом Фарадей категорически не любил формулы – физику он понимал «на пальцах», видя за проводимыми им экспериментами взаимосвязи причин и явлений. Именно этот взгляд и позволил ему сформулировать концепцию электромагнитного поля (да и сам термин – поле – впервые употребил Фарадей).

Фарадей прославился не только многочисленными открытиями. Он был блестящим популяризатором науки. С 1826 г. и почти до самой кончины он читал научно-популярные публичные лекции. Одна из них – «История свечи с точки зрения химии» — стала самой известной научно-популярной лекцией в истории науки. Позже она была издана отдельной книгой и переведена на многие языки (в том числе и русский).

ЭДС (29.2) называют ЭДС индукции. С законом электромагнитной индукции можно связать определенное правило знаков, т.е. и поток и ЭДС считать алгебраическими величинами (тогда в формуле (29.2) должен быть знак «минус»). В этом случае закон (29.2) автоматически даст направление ЭДС (направление индукционного тока). Можно, однако, считать все величины в законе (29.2) положительными, а направление индукционного тока определять независимо из правила Ленца.

446/597

Границы применимости основного закона электромагнитной индукции. Закон электромагнитной индукции фарадея для начинающих

Что может быть лучше, чем вечером понедельника почитать про основы электродинамики . Правильно, можно найти множество вещей, которые будут лучше. Тем не менее, мы все равно предлагаем Вам прочесть эту статью. Времени занимает не много, а полезная информация останется в подсознании. Например, на экзамене, в условиях стресса, можно будет успешно извлечь из недр памяти закон Фарадея. Так как законов Фарадея несколько, уточним, что здесь мы говорим о законе индукции Фарадея.

Электродинамика – раздел физики, изучающий электромагнитное поле во всех его проявлениях.

Это и взаимодействие электрического и магнитного полей, электрический ток, электро-магнитное излучение, влияние поля на заряженные тела.

Здесь мы не ставим целью рассмотреть всю электродинамику. Упаси Боже! Рассмотрим лучше один из основных ее законов, который называется законом электромагнитной индукции Фарадея .

История и определение

Фарадей, параллельно с Генри, открыл явление электромагнитной индукции в 1831 году. Правда, успел опубликовать результаты раньше. Закон Фарадея повсеместно используется в технике, в электродвигателях, трансформаторах, генераторах и дросселях. В чем суть закона Фарадея для электромагнитной индукции, если говорить просто? А вот в чем!

При изменении магнитного потока через замкнутый проводящий контур, в контуре возникает электрический ток. То есть, если мы скрутим из проволоки рамку и поместим ее в изменяющееся магнитное поле (возьмем магнит, и будем крутить его вокруг рамки), по рамке потечет ток!

Этот ток Фарадей назвал индукционным, а само явление окрестил электромагнитной индукцией.

Электромагнитная индукция – возникновение в замкнутом контуре электрического тока при изменении магнитного потока, проходящего через контур.

Формулировка основного закона электродинамики – закона электромагнитной индукции Фарадея, выглядит и звучит следующим образом:

ЭДС , возникающая в контуре, пропорциональна скорости изменения магнитного потока Ф через контур.

А откуда в формуле минус, спросите Вы. Для объяснения знака минус в этой формуле есть специальное правило Ленца . Оно гласит, что знак минус, в данном случае, указывает на то, как направлена возникающая ЭДС. Дело в том, что создаваемое индукционным током магнитное поле направлено так, что препятствует изменению магнитного потока, который вызвал индукционный ток.

Примеры решения задач

Вот вроде бы и все. Значение закона Фарадея фундаментально, ведь на использовании данного закона построена основа почти всей электрической промышленности. Чтобы понимание пришло быстрее, рассмотрим пример решения задачи на закон Фарадея.

И помните, друзья! Если задача засела, как кость в горле, и нет больше сил ее терпеть — обратитесь к нашим авторам! Теперь вы знаете . Мы быстро предоставим подробное решение и разъясним все вопросы!

В результате многочисленных опытов Фарадей установил основной количественный закон электромагнитной индукции. Он показал, что всякий раз, когда происходит изменение сцепленного с контуром потока магнитной индукции, в контуре возникает индукционный ток. Возникновение индукционного тока указывает на наличие в цепи электродвижущей силы, называемой электродвижущей силой электромагнитной индукции. Фарадей установил, что значение ЭДС электромагнитной индукции E i пропорционально скорости изменения магнитного потока:

E i = -К , (27.1)

где К – коэффициент пропорциональности, зависящий только от выбора единиц измерения.

В системе единиц СИ коэффициент К = 1, т.е.

E i = — . (27.2)

Эта формула и представляет собой закон электромагнитной индукции Фарадея. Знак минус в этой формуле соответствует правилу (закону) Ленца.

Закон Фарадея можно сформулировать еще таким образом: ЭДС электромагнитной индукции E i в контуре численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную этим контуром. Этот закон является универсальным: ЭДС E i не зависит от способа изменения магнитного потока.

Знак минус в (27.2) показывает, что увеличение потока ( > 0) вызывает ЭДС E i 0 т. е. направления магнитного потока индукционного тока и потока, вызвавшего его, совпадают. Знак минус в формуле (27.2) является математическим выражением правила Ленца — общего правила для нахождения направления индукционного тока (а значит и знака и ЭДС индукции), выведенного в 1833 г. Правило Ленца: индукционный ток всегда направлен так, чтобы противодействовать причине, его вызывающей. Иначе говоря, индукционный ток создает магнитный поток, препятствующий изменению магнитного потока, вызывающего ЭДС индукции.

ЭДС индукции выражается в вольтах (В). Действительно, учитывая, что единицей магнитного потока является вебер (Вб), получим:

Если замкнутый контур, в котором индуцируется ЭДС индукции, состоит из N витков, то E i будет равна сумме ЭДС, индуцируемых в каждом из витков. И если магнитный поток, охватываемый каждым витком, одинаков и равен Ф, то суммарный поток сквозь поверхность N витков, равен (NФ) – полный магнитный поток (потокосцепление). В этом случае ЭДС индукции равна:

E i = -N× , (27.3)

Формула (27.2) выражает закон электромагнитной индукции в общей форме. Она применима как к неподвижным контурам, так и к движущимся проводникам в магнитном поле. Входящая в нее производная от магнитного потока по времени в общем случае состоит из двух частей, одна из которых обусловлена изменением магнитной индукции во времени, а другая – движением контура относительно магнитного поля (или его деформацией). Рассмотрим некоторые примеры применения этого закона.

Пример 1. Прямолинейный проводник длиной l движется параллельно самому себе в однородном магнитном поле (рисунок 38). Этот проводник может входить в состав замкнутой цепи, остальные части которой неподвижны. Найдем ЭДС, возникающую в проводнике.

Если мгновенное значение скорости проводника есть v , то за время dt он опишет площадь dS = l×v ×dt и за это время пересечет все линии магнитной индукции, проходящие через dS. Поэтому изменение магнитного потока через контур, в состав которого входит движущийся проводник, будет dФ = B n ×l×v ×dt. Здесь B n — составляющая магнитной индукции, перпендикулярная к dS. Подставляя это в формулу (27.2) получаем величину ЭДС:

E i = B n ×l×v . (27.4)

Направление индукционного тока и знак ЭДС определяются правилом Ленца: индукционный ток в контуре всегда имеет такое направление, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызвавшего этот индукционный ток. В некоторых случаях возможно определение направления индукционного тока (полярности ЭДС индукции) согласно другой формулировке правила Ленца: индукционный ток в движущемся проводнике направлен таким образом, что возникающая при этом сила Ампера противоположна вектору скорости (тормозит движение).

Разберем численный пример. Вертикальный проводник (автомобильная антенна) длиной l = 2 м движется с востока на запад в магнитном поле Земли со скоростью v = 72 км/час = 20 м/с. Вычислим напряжение между концами проводника. Так как проводник разомкнут, то тока в нем не будет и напряжение на концах будет равно ЭДС индукции. Учитывая, что горизонтальная составляющая магнитной индукции поля Земли (т.е. составляющая, перпендикулярная к направлению движения) для средних широт равна 2×10 -5 Тл, по формуле (27.4) находим

U = B n ×l×v = 2×10 -5 ×2×20 = 0,8×10 -3 В,

т.е. около 1 мВ. Магнитное поле Земли направлено с юга на север. Поэтому мы находим, что ЭДС направлена сверху вниз. Это значит, что нижний конец провода будет иметь более высокий потенциал (зарядится положительно), а верхний – более низкий (зарядится отрицательно).

Пример 2. В магнитном поле находится замкнутый проволочный контур, пронизываемый магнитным потоком Ф. Предположим, что этот поток уменьшается до нуля, и вычислим полную величину заряда, прошедшего по цепи. Мгновенное значение ЭДС в процессе исчезновения магнитного потока выражается формулой (27.2). Следовательно, согласно закону Ома мгновенное значение силы тока есть

где R – полное сопротивление цепи.

Величина прошедшего заряда равна

q = = — = . (27.6)

Полученное соотношение выражает закон электромагнитной индукции в форме, найденной Фарадеем, который из своих опытов заключил, что величина заряда, прошедшего по цепи, пропорциональна полному числу линий магнитной индукции, пересеченных проводником (т.е. изменению магнитного потока Ф 1 -Ф 2), и обратно пропорциональна сопротивлению цепи R. Соотношение (27.6) позволяет дать определение единицы магнитного потока в системе СИ: вебер – магнитный поток, при убывании которого до нуля в сцепленном с ним контуре сопротивлением 1 Ом проходит заряд 1 Кл.

Согласно закону Фарадея, возникновение ЭДС электромагнитной индукции возможно и в случае неподвижного контура, находящегося в переменном магнитном поле. Однако сила Лоренца на неподвижные заряды не действует, поэтому в данном случае она не может быть причиной возникновения ЭДС индукции. Максвелл для объяснения ЭДС индукции в неподвижных проводниках предположил, что всякое переменное магнитное поле возбуждает в окружающем пространстве вихревое электрическое поле, которое и является причиной возникновения индукционного тока в проводнике. Циркуляция вектора напряженности этого поля по любому неподвижному контуру L проводника представляет собой ЭДС электромагнитной индукции:

E i = = — . (27.7)

Линии напряженности вихревого электрического поля представляют собой замкнутые кривые, поэтому при перемещении заряда в вихревом электрическом поле по замкнутому контуру совершается отличная от нуля работа. В этом заключается отличие вихревого электрического поля от электростатического, линии напряженности которого начинаются и заканчиваются на зарядах.

Эмпирически М. Фарадей показал, что сила тока индукции в проводящем контуре прямо пропорциональна скорости изменения количества линий магнитной индукции, которые проходят через поверхность ограниченную рассматриваемым контуром. Современную формулировку закона электромагнитной индукции, используя понятие магнитный поток, дал Максвелл. Магнитный поток (Ф) сквозь поверхность S — это величина, равная:

где модуль вектора магнитной индукции; — угол между вектором магнитной индукции и нормалью к плоскости контура. Магнитный поток трактуют как величину, которая пропорциональна количеству линий магнитной индукции, проходящих сквозь рассматриваемую поверхность площади S.

Появление тока индукции говорит о том, что в проводнике возникает определенная электродвижущая сила (ЭДС). Причиной появления ЭДС индукции является изменение магнитного потока. В системе международных единиц (СИ) закон электромагнитной индукции записывают так:

где — скорость изменения магнитного потока сквозь площадь, которую ограничивает контур.

Знак магнитного потока зависит от выбора положительной нормали к плоскости контура. При этом направление нормали определяют при помощи правила правого винта, связывая его с положительным направлением тока в контуре. Так, произвольно назначают положительное направление нормали, определяют положительное направление тока и ЭДС индукции в контуре. Знак минус в основном законе электромагнитной индукции соответствует правилу Ленца.

На рис.1 изображен замкнутый контур. Допустим, что положительным является направление обхода контура против часовой стрелки, тогда нормаль к контуру () составляет правый винт в направлением обхода контура. Если вектор магнитной индукции внешнего поля сонаправлен с нормалью и его модуль увеличивается со временем, тогда получим:

Title=»Rendered by QuickLaTeX.com»>

При этом ток индукции создаст магнитный поток (Ф’), который будет меньше нуля. Линии магнитной индукции магнитного поля индукционного тока () изображены на рис. 1 пунктиром. Ток индукции будет направлен по часовой стрелке. ЭДС индукции будет меньше нуля.

Формула (2) — это запись закона электромагнитной индукции в наиболее общей форме. Ее можно применять к неподвижным контурам и движущимся в магнитном поле проводникам. Производная, которая входит в выражение (2) в общем случае состоит из двух частей: одна зависит от изменения магнитного потока во времени, другая связывается с движением (деформаций) проводника в магнитном поле.

В том случае, если магнитный поток изменяется за равные промежутки времени на одну и ту же величину, то закон электромагнитной индукции записывают как:

Если в переменном магнитном поле рассматривается контур, состоящий из N витков, то закон электромагнитной индукции примет вид:

где величину называют потокосцеплением.

Примеры решения задач

ПРИМЕР 1

Задание Какова скорость изменения магнитного потока в соленоиде, который имеет N=1000 витков, если в нем возбуждается ЭДС индукции равная 200 В?
Решение Основой для решения данной задачи служит закон электромагнитной индукции в виде:

где — скорость изменения магнитного потока в соленоиде. Следовательно, искомую величину найдем как:

Проведем вычисления:

Ответ

ПРИМЕР 2

Задание Квадратная проводящая рамка находится в магнитном поле, которое изменяется по закону: (где и постоянные величины). Нормаль к рамке составляет угол с направлением вектора магнитной индукции поля. Стона рамки b. Получите выражение для мгновенного значения ЭДС индукции ().
Решение Сделаем рисунок.

За основу решения задачи примем основной закон электромагнитной индукции в виде:

Для описания процессов в физике и химии есть целый ряд законов и соотношений, полученных экспериментальным и расчетным путем. Ни единого исследования нельзя провести без предварительной оценки процессов по теоретическим соотношениям. Законы Фарадея применяются и в физике, и в химии, а в этой статье мы постараемся кратко и понятно рассказать о всех знаменитых открытиях этого великого ученого.

История открытия

Закон Фарадея в электродинамике был открыт двумя ученными: Майклом Фарадеем и Джозефом Генри, но Фарадей опубликовал результаты своих работ раньше – в 1831 году.

В своих демонстрационных экспериментах в августе 1831 г. он использовал железный тор, на противоположные концы которого был намотан провод (по одному проводу на стороны). На концы одного первого провода он подал питание от гальванической батареи, а на выводы второго подключил гальванометр. Конструкция была похожа на современный трансформатор. Периодически включая и выключая напряжение на первом проводе, он наблюдал всплески на гальванометре.

Гальванометр — это высокочувствительный прибор для измерения силы токов малой величины.

Таким образом было изображено влияние магнитного поля, образовавшегося в результате протекания тока в первом проводе, на состояние второго проводника. Это воздействие передавалось от первого ко второму через сердечник – металлический тор. В результате исследований было обнаружено и влияние постоянного магнита, который двигается в катушке, на её обмотку.

Тогда Фарадей объяснял явление электромагнитной индукции с точки зрения силовых линий. Еще одной была установка для генерирования постоянного тока: медный диск вращался вблизи магнита, а скользящий по нему провод был токосъёмником. Это изобретение так и называется — диск Фарадея.

Ученные того периода не признали идеи Фарадея, но Максвелл взял исследования для основы своей магнитной теории. В 1836 г. Майкл Фарадей установил соотношения для электрохимических процессов, которые назвали Законами электролиза Фарадея. Первый описывает соотношения выделенной на электроде массы вещества и протекающего тока, а второй соотношения массы вещества в растворе и выделенного на электроде, для определенного количества электричества.

Электродинамика

Первые работы применяются в физике, конкретно в описании работы электрических машин и аппаратов (трансформаторов, двигателей и пр.). Закон Фарадея гласит:

Для контура индуцированная ЭДС прямо пропорциональна величине скорости магнитного потока, который перемещается через этот контур со знаком минус.

Это можно сказать простыми словами: чем быстрее магнитный поток движется через контур, тем больше на его выводах генерируется ЭДС.

Формула выглядит следующим образом:

Здесь dФ – магнитный поток, а dt – единица времени. Известно, что первая производная по времени – это скорость. Т.е скорость перемещения магнитного потока в данном конкретном случае. Кстати перемещаться может, как и источник магнитного поля (катушка с током – электромагнит, или постоянный магнит), так и контур.

Здесь же поток можно выразить по такой формуле:

B – магнитное поле, а dS – площадь поверхности.

Если рассматривать катушку с плотнонамотанными витками, при этом в количестве витков N, то закон Фарадея выглядит следующим образом:

Магнитный поток в формуле на один виток, измеряется в Веберах. Ток, протекающий в контуре, называется индукционным.

Электромагнитная индукция – явление протекания тока в замкнутом контуре под воздействием внешнего магнитного поля.

В формулах выше вы могли заметить знаки модуля, без них она имеет слегка иной вид, такой как было сказано в первой формулировке, со знаком минус.

Знак минус объясняет правило Ленца. Ток, возникающий в контуре, создает магнитное поле, оно направлено противоположно. Это является следствием закона сохранения энергии.

Направление индукционного тока можно определить по правилу правой руки или , мы его рассматривали на нашем сайте подробно.

Как уже было сказано, благодаря явлению электромагнитной индукции работают электрические машины трансформаторы, генераторы и двигатели. На иллюстрации показано протекание тока в обмотке якоря под воздействием магнитного поля статора. В случае с генератором, при вращении его ротора внешними силами в обмотках ротора возникает ЭДС, ток порождает магнитное поле направленное противоположно (тот самый знак минус в формуле). Чем больше ток, потребляемый нагрузкой генератора, тем больше это магнитное поле, и тем больше затрудняется его вращение.

И наоборот — при протекании тока в роторе возникает поле, которое взаимодействует с полем статора и ротор начинает вращаться. При нагрузке на вал ток в статоре и в роторе повышается, при этом нужно обеспечить переключение обмоток, но это уже другая тема, связанная с устройством электрических машин.

В основе работы трансформатора источником движущегося магнитного потока является переменное магнитное поле, возникающее в следствие протекания в первичной обмотке переменного тока.

Если вы желаете более подробно изучить вопрос, рекомендуем просмотреть видео, на котором легко и доступно рассказывается Закон Фарадея для электромагнитной индукции:

Электролиз

Кроме исследований ЭДС и электромагнитной индукции ученный сделал большие открытия и в других дисциплинах, в том числе химии.

При протекании тока через электролит ионы (положительные и отрицательные) начинают устремляться к электродам. Отрицательные движутся к аноду, положительные к катоду. При этом на одном из электродов выделяется определенная масса вещества, которое содержится в электролите.

Фарадей проводил эксперименты, пропуская разный ток через электролит и измеряя массу вещества отложившегося на электродах, вывел закономерности.

m – масса вещества, q – заряд, а k – зависит от состава электролита.

А заряд можно выразить через ток за промежуток времени:

I=q/t , тогда q = i*t

Теперь можно определить массу вещества, которое выделится, зная ток и время, которое он протекал. Это называется Первый закон электролиза Фарадея.

Второй закон:

Масса химического элемента, который осядет на электроде, прямо пропорциональна эквивалентной массе элемента (молярной массе разделенной на число, которое зависит от химической реакции, в которой участвует вещество).

С учетом вышесказанного эти законы объединяются в формулу:

m – масса вещества, которое выделилось в граммах, n – количество переносимых электронов в электродном процессе, F=986485 Кл/моль – число Фарадея, t – время в секундах, M молярная масса вещества г/моль.

В реальности же из-за разных причин, масса выделяемого вещества меньше чем расчетная (при расчетах с учетом протекающего тока). Отношение теоретической и реальной масс называют выходом по току:

B т = 100% * m расч /m теор

Законы Фарадея внесли существенный вклад в развитие современной науки, благодаря его работам мы имеем электродвигатели и генераторы электроэнергии (а также работам его последователей). Работа ЭДС и явления электромагнитной индукции подарили нам большую часть современного электрооборудования, в том числе и громкоговорители и микрофоны, без которых невозможно прослушивание записей и голосовая связь. Процессы электролиза применяются в гальваническом методе покрытия материалов, что несет как декоративную ценность, так и практическую.

Похожие материалы:

Нравится(0 ) Не нравится(0 )

Явление электромагнитной индукции было открыто Майклом Фарадеем в 1831 г. Он опытным путем установил, что при изменении магнитного по­ля внутри замкнутого контура в нем возникает элек­трический ток, который называютиндукционным током. Опыты Фарадея можно воспроизвести сле­дующим образом: при внесении или вынесении маг­нита в катушку, замкнутую на гальванометр, в ка­тушке возникает индукционный ток (рис. 24). Если рядом расположить две катушки (например, на об­щем сердечнике или одну катушку внутри другой) и одну катушку через ключ соединить с источником тока, то при замыкании или размыкании ключа в цепи первой катушки во второй катушке появится индукционный ток (рис. 25). Объяснение этого явле­ния было дано Максвеллом. Любое переменное маг­нитное поле всегда порождает переменное электриче­ское поле.

Для количественной характеристики процесса изменения магнитного поля через замкнутый контур вводится физическая величина под названием маг­нитный поток.Магнитным потоком через замкну­тый контур площадью S называют физическую вели­чину, равную произведению модуля вектора магнит­ной индукции В на площадь контура S и на косинус угла а между направлением вектора магнитной ин­дукции и нормалью к площади контура. Ф = BS cos α (рис. 26).

Опытным путем был установлен основной за­кон электромагнитной индукции:ЭДС индукции в замкнутом контуре равна по величине скорости из-менения магнитного потока через контур. ξ = ΔФ/t..

Если рассматривать катушку, содержащую п витков, то формула основного закона электромагнитной ин­дукции будет выглядеть так: ξ = n ΔФ/t.

Единица измерения магнитного потока Ф — вебер (Вб): 1В6 =1Β c.

Из основного закона ΔФ =ξ t следует смысл размерности: 1 вебер — это величина такого магнит­ного потока, который, уменьшаясь до нуля за одну секунду, через замкнутый контур наводит в нем ЭДС индукции 1 В.

Классической демонстрацией основного закона электромагнитной индукции является первый опыт Фарадея: чем быстрее перемещать магнит через вит­ки катушки, тем больше возникает индукционный ток в ней, а значит, и ЭДС индукции.

Зависимость направления индукционного тока от характера изменения магнитного поля через замкнутый контур в 1833 г. опытным путем устано­вил русский ученый Ленц. Он сформулировал прави­ло, носящее его имя. Индукционный ток имеет та­кое направление, при котором его магнитное поле стремится скомпенсировать изменение внешнего магнитного потока через контур. Ленцем был скон­струирован прибор, представляющий собой два алю­миниевых кольца, сплошное и разрезанное, укреп­ленные на алюминиевой перекладине и имеющие возможность вращаться вокруг оси, как коромысло. (рис. 27). При внесении магнита в сплошное кольцо оно начинало «убегать» от магнита, поворачивая со­ответственно коромысло. При вынесении магнита из кольца кольцо стремилось «догнать» магнит. При движении магнита внутри разрезанного кольца ни­какого эффекта не происходило. Ленц объяснял опыт тем, что магнитное поле индукционного тока стре­милось компенсировать изменение внешнего магнит­ного потока.

Закон электромагнитной индукции в понятном изложении | Инженерные знания

Прежде, чем разобраться с законом электромагнитной индукции или, как его ещё называют, законом Фарадея, давайте перечислим все основные понятия. Их обязательно нужно уяснить, прежде, чем сделать следующий шаг.

Майкл Фарадей

Майкл Фарадей

Начнем с того, что электромагнитной индукцией называется явление возникновения электродвижущей силы (читай для простоты понимания как электрического тока) в замкнутом контуре при изменении магнитного потока через этот контур.

Электромагнитная индукция

Электромагнитная индукция

Магнитным потоком для простоты можно назвать количество линий магнитной индукции (правильнее говорить векторов магнитной индукции) которые пронизывают этот контур. Изменением магнитного потока можно считать или изменение напряженности магнитного поля, или перемещение самого замкнутого контура в этом магнитном поле. Опять-таки, для простоты это можно назвать емкой, но размытой фразой «изменение магнитного поля».

Магнитный поток

Магнитный поток

Про электромагнитную индукцию мы уже подробно рассказали в этой статье и очень советуем её прочитать.

Самым простым примером проявления электромагнитной индукции в жизни является случай, когда вас бьет током от движущегося велосипеда под линией электропередач. В случае, если рама является замкнутой — это яркий пример электромагнитной индукции. Но бывает ведь ещё и сила Лоренца.

Описывая явление электромагнитной индукции, Фарадей обнаружил ряд закономерностей.

Первая из них заключалась в том, что при увеличении «мощности» магнитного поля (правильнее говорить количества линий магнитной индукции, пронизывающих замкнутый контур и соответственно — магнитного потока), индукционный ток в контуре увеличивался.

Следующая выявила влияние количества витков в контуре или катушке на величину индукционного тока. Чем больше было витков, тем больше было значение индукционного тока.

И наконец, чем быстрее перемещалось магнитное поле (опять помним, что правильно — магнитный поток) относительно контура (чем быстрее двигали магнит относительно катушки), тем быстрее нарастало значение индукционного тока.

Эти обстоятельства легли в основу закона, который в результате всех опытов сформулировал Фарадей. Он так и был назван — закон электромагнитной индукции или закон Фарадея.

В учебнике он формулируется так:

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром.

Если вчитаться в формулировку закона, то вопросов уже и не останется, потому что все понятия разобраны ранее. Правильно будет сказать, что физический смысл скорости изменения магнитного потока через контур – это электродвижущая сила индукции.

Закон электромагнитной индукции

Закон электромагнитной индукции

ЭДС индукции — это напряжение, существующее в цепи (такое приравнивание не совсем корректно и вот почему, но тем не менее допустимо). Скорость изменения потока мы уже обсудили.

Остаётся момент со знаком. Почему ЭДС индукции противоположна по знаку изменению магнитного поля?

Дело в том, что любая физическая система всегда старается вернуться к равновесию. Также и тут. Индукционный ток в замкнутом контуре имеет такое направление, чтобы магнитный поток поля уменьшал бы те изменения поля, которые вызвали появление индукционного тока. Прочитайте формулировку пару раз. Вчитайтесь в неё и поймете о чем речь. Скажем так, сама система пытается нивелировать или уменьшить наблюдаемый эффект. Тут уже логично было бы рассказать про правило Ленца, которое определяет этот знак.

Кстати, стоит отметить, что для нас интересно любое изменение магнитного поля. Фарадей, прежде, чем начать эксперименты с катушкой и постоянным магнитом, использовал для экспериментов две катушки с током, которые по правилу, установленному Эрстедом, генерируют магнитное поле вокруг себя. Если катушки перемещать друг относительно друга или менять характеристики тока в одной из них (скажем, подключать и отключать от цепи), то наблюдается эффект появления тока индукции в одной из катушек, которая подсоединена к Гальванометру.

Для катушки с N-витков

Для катушки с N-витков

Есть и ещё одно обстоятельство. Если в замкнутом контуре имеется некоторое количество витков N, то мы всю эту радость должны умножить на количество витков.

Вот, собственно, и всё.

Эксперимент по закону индукции Фарадея — EX-5541 — Продукты

Краткое описание продукта

В катушке, качающейся в магнитном поле, индуцируется напряжение. Исследуются закон Фарадея и закон Ленца, и энергия, рассеиваемая в нагрузочном резисторе, сравнивается с потерей энергии маятника катушки.

Жесткий маятник с катушкой на конце качается через подковообразный магнит. Резистивная нагрузка подключается к катушке, а наведенное напряжение регистрируется с помощью датчика напряжения.Угол измеряется с помощью датчика вращательного движения, который также действует как ось маятника. Наведенное напряжение отображается в зависимости от времени и угла. Мощность, рассеиваемая на резисторе, рассчитывается по напряжению, а энергия, преобразованная в тепловую энергию, определяется путем нахождения площади под кривой зависимости мощности от времени. Эта энергия сравнивается с потерей энергии, определяемой по амплитуде и скорости маятника.

Закон Фарадея используется для оценки магнитного поля магнита по максимальному индуцированному напряжению.Кроме того, направление индуцированного напряжения, когда катушка входит и выходит из магнитного поля, исследуется и анализируется с использованием закона Ленца.

PASCO Advantage: PASCO Capstone™ рассчитывает энергию и мощность, используя данные о напряжении и угле. Наведенное напряжение и расчеты отображаются в режиме реального времени, когда катушка проходит через магнит.

Концепции

  • Магнитный поток
  • Закон индукции Фарадея
  • Закон Ленца
  • Сохранение энергии
  • Электроэнергия

Что 0 Включено 15

Требуется программное обеспечение

Для этого продукта требуется программное обеспечение PASCO для сбора и анализа данных.Мы рекомендуем следующие варианты. Для получения дополнительной информации о том, какое программное обеспечение подходит для вашего класса, см. раздел Сравнение программного обеспечения: SPARKvue и Capstone »

Требуется интерфейс

Для подключения этого продукта к вашему компьютеру или устройству требуется интерфейс PASCO. Мы рекомендуем следующие варианты. Разбивку функций, возможностей и дополнительных опций см. в нашем Руководстве по сравнению интерфейсов »

23.2 Закон индукции Фарадея: Закон Ленца — College Physics

Закон Фарадея и Ленца

Опыты Фарадея показали, что ЭДС , вызванная изменением магнитного потока, зависит лишь от нескольких факторов.Во-первых, ЭДС прямо пропорциональна изменению потока ΔΦΔΦ величиной 12{ΔΦ}{}. Во-вторых, ЭДС наибольшая, когда изменение во времени ΔtΔt размер 12{Δt} {} наименьшее, то есть ЭДС обратно пропорциональна ΔtΔt размер 12{Δt} {}. Наконец, если катушка имеет NN витков, будет произведена ЭДС размера NN в 12{N} {} раз больше, чем для одиночной катушки, так что ЭДС прямо пропорциональна размеру NN 12{N} {}. Уравнение для ЭДС, индуцированной изменением магнитного потока, имеет вид

ЭДС=-NΔΦΔt.ЭДС=-NΔΦΔt. размер 12 {«ЭДС» = — N { {ΔΦ} над {Δt} } } {}

23,2

Это соотношение известно как закон индукции Фарадея. Единицами ЭДС, как обычно, являются вольты.

Знак минус в законе индукции Фарадея очень важен. Минус означает, что ЭДС создает ток I и магнитное поле B, которые противодействуют изменению потока ΔΦΔΦ величиной 12{ΔΦ} {} — это известно как закон Ленца . Направление (заданное знаком минус) ЭДС настолько важно, что его называют законом Ленца по имени русского Генриха Ленца (1804–1865), который, подобно Фарадею и Генри, , независимо исследовал аспекты индукции.Фарадей знал об этом направлении, но Ленц сформулировал его так ясно, что ему приписывают его открытие. (См. рис. 23.7.)

Фигура 23,7 (а) Когда этот стержневой магнит вталкивается в катушку, напряженность магнитного поля в катушке увеличивается. Ток, наведенный в катушке, создает другое поле в направлении, противоположном направлению стержневого магнита, чтобы противостоять увеличению. Это один из аспектов закона Ленца — индукция препятствует любому изменению потока . (b) и (c) — две другие ситуации.Убедитесь сами, что указанное направление индуцированного BcoilBcoil size 12{B rSub { size 8{«coil»} } } {} действительно противостоит изменению потока и что показанное направление тока соответствует RHR-2.

Стратегия решения проблем для закона Ленца

Чтобы использовать закон Ленца для определения направлений индуцированных магнитных полей, токов и ЭДС:

  1. Сделайте набросок ситуации для визуализации и записи направлений.
  2. Определите направление магнитного поля B.
  3. Определите, увеличивается или уменьшается поток.
  4. Теперь определите направление индуцированного магнитного поля B. Оно противодействует изменению потока путем добавления или вычитания исходного поля.
  5. Используйте RHR-2 для определения направления индуцированного тока I, который отвечает за индуцированное магнитное поле B.
  6. Направление (или полярность) ЭДС индукции теперь будет управлять током в этом направлении и может быть представлено как ток, выходящий из положительной клеммы ЭДС и возвращающийся к ее отрицательной клемме.

Для практики примените эти шаги к ситуациям, показанным на рис. 23.7, и к другим ситуациям, которые являются частью следующего текстового материала.

Применение электромагнитной индукции

Закон индукции Фарадея имеет множество применений, которые мы рассмотрим в этой и других главах. На этом этапе давайте упомянем несколько, которые связаны с хранением данных и магнитными полями. Очень важное применение связано с аудио- и видеозаписями на кассетах .Пластиковая лента, покрытая оксидом железа, проходит мимо записывающей головки. Эта записывающая головка представляет собой круглое железное кольцо, на которое намотана катушка проволоки — электромагнит (рис. 23.8). Сигнал в виде переменного входного тока от микрофона или камеры поступает на записывающую головку. Эти сигналы (которые зависят от амплитуды и частоты сигнала) создают переменные магнитные поля на записывающей головке. Когда лента движется мимо записывающей головки, ориентация магнитного поля молекул оксида железа на ленте изменяется, что приводит к записи сигнала.В режиме воспроизведения намагниченная лента проходит мимо другой головки, аналогичной по устройству записывающей головке. Различная ориентация магнитного поля молекул оксида железа на ленте индуцирует ЭДС в катушке провода в головке воспроизведения. Затем этот сигнал отправляется на громкоговоритель или видеоплеер.

Фигура 23,8 Головки записи и воспроизведения, используемые с аудио- и видеомагнитофонами. (кредит: Стив Юрветсон)

Аналогичные принципы применимы и к жестким дискам компьютеров, но с гораздо большей скоростью.Здесь записи на вращающемся диске с покрытием. Считывающие головки исторически заставляли работать по принципу индукции. Однако входная информация передается в цифровой, а не в аналоговой форме — на вращающемся жестком диске записывается последовательность нулей или единиц. Сегодня большинство устройств считывания с жестких дисков не работают по принципу индукции, а используют технику, известную как гигантское магнитосопротивление . (Открытие того, что слабые изменения магнитного поля в тонкой пленке железа и хрома могут вызвать гораздо большие изменения электрического сопротивления, было одним из первых крупных успехов нанотехнологии.) Еще одно применение индукции можно найти на магнитной полосе на обратной стороне вашей личной кредитной карты, используемой в продуктовом магазине или банкомате. Это работает по тому же принципу, что и упомянутая в последнем абзаце аудио- или видеокассета, в которой голова считывает личную информацию с вашей карты.

Еще одним применением электромагнитной индукции является передача электрических сигналов через барьер. Рассмотрим кохлеарный имплант , показанный ниже. Звук улавливается микрофоном снаружи черепа и используется для создания переменного магнитного поля.Ток индуцируется в приемнике, закрепленном в кости под кожей, и передается на электроды во внутреннем ухе. Электромагнитная индукция может использоваться и в других случаях, когда электрические сигналы необходимо передавать через различные среды.

Фигура 23,9 Электромагнитная индукция используется для передачи электрических токов через среды. Устройство на голове ребенка индуцирует электрический ток в приемнике, закрепленном в кости под кожей. (кредит: Бьорн Кнетч)

Еще одной современной областью исследований, в которой электромагнитная индукция успешно реализуется (и имеет значительный потенциал), является транскраниальное магнитное моделирование.Множество расстройств, включая депрессию и галлюцинации, можно отнести к нерегулярной локальной электрической активности в головном мозге. В транскраниальной магнитной стимуляции быстро меняющееся и очень локализованное магнитное поле помещается рядом с определенными участками, идентифицированными в мозге. В выявленных местах индуцируются слабые электрические токи, что может привести к восстановлению электрических функций в тканях головного мозга.

Апноэ во сне («остановка дыхания») поражает как взрослых, так и младенцев (особенно недоношенных детей и может быть причиной внезапной младенческой смерти [SID]).У таких людей дыхание может неоднократно останавливаться во время сна. Прекращение более чем на 20 секунд может быть очень опасным. Инсульт, сердечная недостаточность и усталость — вот лишь некоторые из возможных последствий для человека, страдающего апноэ во сне. Беспокойство у младенцев вызывает остановка дыхания на эти более длительные периоды времени. Один из типов мониторов для оповещения родителей о том, что ребенок не дышит, использует электромагнитную индукцию. Через провод, обернутый вокруг грудной клетки младенца, проходит переменный ток. Расширение и сжатие грудной клетки младенца, когда он дышит, изменяет площадь, проходящую через спираль. В расположенной рядом съемной катушке индуцируется переменный ток, обусловленный изменяющимся магнитным полем исходного провода. Если ребенок перестанет дышать, индуцированный ток изменится, и родитель может быть предупрежден.

Установление связей: сохранение энергии

Закон Ленца является проявлением закона сохранения энергии. ЭДС индукции создает ток, противодействующий изменению потока, потому что изменение потока означает изменение энергии. Энергия может войти или уйти, но не мгновенно.Закон Ленца является следствием. Когда изменение начинается, закон говорит, что индукция противодействует и, таким образом, замедляет изменение. На самом деле, если бы ЭДС индукции была направлена ​​в том же направлении, что и изменение потока, существовала бы положительная обратная связь, которая давала бы нам свободную энергию без видимого источника — закон сохранения энергии был бы нарушен.

Пример 23.1

Расчет ЭДС: насколько велика ЭДС индукции?

Рассчитайте величину ЭДС индукции при включении магнита на рисунке 23. 7(a) втягивается в катушку с учетом следующей информации: катушка с одним контуром имеет радиус 6,00 см и среднее значение BcosθBcosθ размера 12{B»cos»θ} {} (это дано, так как стержень поле магнита сложное) увеличивается с 0,0500 Тл до 0,250 Тл за 0,100 с.

Стратегия

Чтобы найти величину ЭДС, мы используем закон индукции Фарадея, сформулированный как ЭДС=-NΔΦΔtemf=-NΔΦΔt, но без знака минус, указывающего направление:

ЭДС=NΔΦΔt.ЭДС=NΔΦΔt.

23,3

Решение

Нам дано, что N=1N=1 размер 12{N=1} {} и Δt=0,100 с Δt=0,100 с, но мы должны определить изменение потока ΔΦΔΦ размер 12{ΔΦ} {}, прежде чем мы сможем найти ЭДС. Поскольку площадь петли фиксирована, мы видим, что

ΔΦ=Δ(BAcosθ)=AΔ(Bcosθ).ΔΦ=Δ(BAcosθ)=AΔ(Bcosθ). размер 12{ΔΦ=Δ \( BA»cos»θ \) =AΔ \( B»cos»θ \)} {}

23,4

Теперь Δ(Bcosθ)=0,200 TΔ(Bcosθ)=0,200 T размер 12{Δ \( B»cos»θ \) =0 «. » «200»`T} {}, так как было дано, что размер BcosθBcosθ 12{B»cos»θ} {} изменяется с 0.от 0500 до 0,250 Тл. Площадь петли A=πr2=(3,14…)(0,060 м)2=1,13×10−2м2A=πr2=(3,14…)(0,060 м)2=1,13×10 −2m2 размер 12{A=πr rSup { размер 8{2} } = \( 3 «.» «14» «.» «.» «.» \) \( 0 «.» «060»`м \) rSup {размер 8{2}} =1 «.» «13» умножить на «10» rSup { размер 8 { — 2} } `m rSup { размер 8 {2} } } {}. Таким образом,

ΔΦ=(1,13×10–2 м2)(0,200 Тл).ΔΦ=(1,13×10–2 м2)(0,200 Тл). размер 12{ΔΦ= \( 1 «.» «13» умножить на «10» rSup { размер 8{ — 2} } «m» rSup { размер 8{2} } \) \( 0 «.» «200»» Т» \) } {}

23,5

Ввод полученных значений в выражение для ЭДС дает

ЭДС=NΔΦΔt=(1.13×10-2 м2)(0,200Тл)0,100с=22,6мВ.Эдс=NΔΦΔt=(1,13×10-2 м2)(0,200Тл)0,100с=22,6мВ. размер 12{E=N {{ΔΦ} над {Δt} } = { { \( 1 «.» «13» умножить на «10» rSup {размер 8{- 2} } «m» rSup {размер 8{2} } \) \( 0 «.» «200»» T» \) } более {0 «.» «100»» с»} } =»22″ «.» 6″ мВ»} {}

23,6

Обсуждение

Хотя это легко измеряемое напряжение, оно явно недостаточно велико для большинства практических применений. Больше петель в катушке, более сильный магнит и более быстрое движение делают индукцию практическим источником напряжения, которым она и является.

Исследования ФЕТ

Электромагнитная лаборатория Фарадея

Поиграйте со стержневым магнитом и катушками, чтобы узнать о законе Фарадея. Переместите стержневой магнит рядом с одной или двумя катушками, чтобы лампочка загорелась. Посмотрите на линии магнитного поля. Счетчик показывает направление и величину тока. Просмотрите линии магнитного поля или используйте измеритель, чтобы показать направление и величину тока. Вы также можете играть с электромагнитами, генераторами и трансформаторами!

из класса на кухню – Наука в школе

Автор(ы): Пауло Андре, Ана Рита Бастос и Руте Феррейра

Изучите электромагнитную индукцию и одно из ее хорошо известных применений — индукционную плиту — с помощью этих практических занятий.

Многие современные устройства основаны на электромагнитной индукции. Закон индукции Фарадея, сформулированный в 1831 году, описывает, как переменное магнитное поле индуцирует электродвижущую силу (ЭДС). Применение этого закона включает:

  • генераторы, производящие большую часть потребляемой в мире электроэнергии
  • поезда на магнитной подушке
  • индукционные плиты на кухне
  • звукосниматели для электрогитары
  • колодки для беспроводной передачи энергии, используемые для зарядки мобильных устройств.

Преподавание закона индукции Фарадея в старших классах является сложной задачей. Учащиеся в возрасте 16–19 лет должны применять как математические расчеты, так и концептуальное понимание для изучения науки, лежащей в основе электромагнитной индукции, и изучения ее применения в повседневной жизни.

В этом упражнении учащиеся получают непосредственный опыт работы с электромагнитной индукцией. Задания подходят для учащихся, изучающих физику, в возрасте 16–19 лет, и на их выполнение уходит около часа, хотя для подготовки к упражнению 2 перед уроком требуется дополнительное время.

Индукционная плита
CC0

В конце занятия учащиеся должны уметь:

  • понимать с экспериментальной точки зрения закон индукции Фарадея
  • определить параметры, влияющие на применение закона индукции Фарадея
  • исследовать взаимосвязь между вариациями магнитного потока и индуцированной электродвижущей силы
  • построить электрический генератор, используя катушку и индукционную плиту для питания светодиода

Закон индукции Фарадея гласит, что изменение магнитного окружения проволочной катушки индуцирует электродвижущую силу (ЭДС), представленную как ε :

, где N — число витков катушки, а Φ — магнитный поток через катушку.

Если масштаб времени мал, производный член d Φ / d t  может быть аппроксимирован до Δ Φ / Δ t . Это приближение особенно полезно, если учащиеся недостаточно знакомы с дифференциальным исчислением.

Магнитный поток зависит от площади катушки A , напряженности магнитного поля B и угла θ , образованного между силовыми линиями магнитного поля и вектором нормали (под углом 90°) к плоскости катушки:

Любое изменение напряженности магнитного поля, площади катушки или угла приводит к индуцированной ЭДС, которую можно измерить с помощью гальванометра и использовать для демонстрации принципов индукции.Эта установка показана на рисунке 1.

Рисунок 1: Электрическая цепь с гальванометром и квадратной катушкой в ​​магнитном поле с напряженностью B и направлением.
Изображение предоставлено Пауло Андре

Задание 1: свободно падающий магнит

В этом эксперименте, который должны провести учащиеся, магнитный диполь падает через катушку, индуцируя ЭДС, вызывая кратковременное изменение напряженности магнитного поля. Чтобы наблюдать за изменением ЭДС, катушку можно подключить к гальванометру или светодиоду (LED).Преимущество использования светодиода (рисунок 2) состоит в том, что он создает видимый выходной сигнал (вспышку света), когда индуцированная ЭДС превышает пороговое значение (~ 1,5 В).

Рисунок 2: Эксперимент со свободно падающим магнитом со светодиодом
Изображение предоставлено Пауло Андре

Материалы

  • Катушка с N > 10 000 витков
  • Малый стержневой магнит
  • Светодиод
  • Линейка
  • Смартфон (для съемки свободного падения)

Процедура

  1. Подсоедините клеммы катушки к контактным площадкам светодиода.Если требуется пайка, этот шаг должен быть сделан учителем заранее.
  2. С помощью линейки поместите магнит на 20 см выше центра катушки (и выровняйте его по центру катушки).
  3. Настройте камеру смартфона на запись события, желательно в замедленном режиме.
  4. Отпустите магнит и наблюдайте за светодиодом (рис. 3).
  5. Поэкспериментируйте с выпуском катушки с разной высоты над катушкой. Какие отличия, если они есть, вы заметили?
  6. Теперь поверните катушку на 180º и повторите эксперимент.Наблюдается ли какое-либо изменение?
Рисунок 3: Кадры видео, показывающего свободно падающий магнит. Последний кадр —
, когда магнит находится внутри катушки, а светодиод излучает (красный).
Изображение предоставлено Пауло Андре

Обсуждение

Учителя могут обсудить с учащимися следующие вопросы для изучения ключевых понятий:

  • Как интенсивность свечения светодиода зависит от расстояния, на котором высвобождается магнит?
  • При одинаковом расстоянии падения приводит ли поворот катушки на 180º к различной интенсивности излучения светодиодов?

Учащиеся могут просмотреть свои видеоролики об эксперименте, чтобы найти подтверждение своим ответам, или просмотреть предоставленный видеоролик.В реальной жизни процесс происходит очень быстро, поэтому для уточнения деталей необходимо замедленное видео.

Пояснение

Эксперимент должен показать четкую разницу в интенсивности излучения светодиода по мере увеличения начального расстояния между магнитом и катушкой, что приводит к увеличению скорости магнита и большей скорости изменения магнитного потока.

Светодиод представляет собой поляризованное устройство, что означает, что он излучает свет только в том случае, если приложенная ЭДС положительна (когда может протекать электрический ток).Является ли ЭДС положительной или отрицательной, зависит от направления движения магнита (какой полюс магнита в данный момент движется через катушку) и в каком направлении катушка подключена к контактным площадкам светодиода.

Мы можем увидеть это более подробно в моделировании, показанном на рисунке 4e. Здесь ЭДС положительна только примерно на половине периода времени, в течение которого магнит находится внутри катушки, и что положительная ЭДС имеет более высокое максимальное значение, чем отрицательная ЭДС из-за ускорения магнита при падении через катушку.

Расширение деятельности 1: математическое моделирование

Хотя мигающий светодиод указывает на индуцированную ЭДС, возникающую в результате изменения магнитного потока, он не дает количественных значений. Мы можем более точно определить изменяющиеся значения магнитного потока, когда магнит падает через катушку, используя следующее уравнение:

, где y — координата магнита, y 0 — координата центра катушки, B max — максимальное значение напряженности магнитного поля, а σ — параметр, описывающий спад напряженности магнитного поля.

Здесь мы делаем следующие предположения или приближения:

  • длина магнита меньше длины катушки
  • вектор его магнитного поля совпадает с его продольной осью
  • Φ (магнитный поток через катушку) максимален, когда геометрические центры катушки и магнита совпадают.

Параметр σ (расстояние для B   ~ 37 % от B max ) можно принять в диапазоне 5–10 мм, полную процедуру экспериментального определения можно найти в Ref. [1].

Для магнита в свободном падении смещение y магнита в момент времени t связано с ускорением свободного падения, g, уравнением 4:

В таблице 1 приведен пример используемых параметров.

Таблица 1: Примеры значений параметров, использованных для получения результатов, показанных на рис. 4.
Параметры Символ Значение Блок
Область катушки А 250 мм 2
Количество витков катушки Н 12000
Максимальная напряженность магнитного поля В макс. 3 мТ
Распад магнитного поля σ 10 мм
Координата центра катушки г 0 200 мм

Используя значения в таблице 1, уравнениях 3 и 4 и прилагаемой электронной таблице, мы можем создать математическую модель, которая графически отображает эти изменения, как видно из результатов и графиков на рисунке 4. [2] Здесь магнитный поток через катушку и ЭДС индукции показаны как функция положения и времени. Магнит освобождается при y = 0 и t = 0 и падает в положительном направлении оси. Катушка отцентрирована в позиции y 0 .

Рис. 4: а) Экспериментальная схема. b–e) Смоделированные значения для магнита в свободном падении: магнитный поток как функция положения (b) и времени (d) и ЭДС как функция положения (c) и времени (e)
Изображение предоставлено Пауло Андре

Обсуждение

Используя рисунок 4 и электронную таблицу, учителя могут обсудить с учениками следующие вопросы:

  • Как изменяется магнитный поток по мере приближения магнита к центру катушки? (Она увеличивается, а после прохождения центра уменьшается, см. рис.4б.)
  • Что происходит с ЭДС на рисунке 4c, когда магнит проходит через центр катушки? (Происходит смена знака с отрицательного на положительный.)
  • Форма кривой ЭДС на рисунке 4e симметрична до и после прохождения магнита через центр катушки? (Нет, он асимметричен, потому что магнит находится в свободном падении, поэтому его скорость со временем увеличивается, а скорость изменения магнитного потока и ЭДС индукции также увеличивается со временем. )

Действие 2: индукционная плита

Реальным применением закона Фарадея является приготовление пищи с использованием индукционной плиты, где сковорода нагревается за счет электрической индукции, а не за счет теплопроводности от пламени или электрической плиты.Индукционные плиты генерируют тепло внутри самой посуды, что делает этот метод приготовления более эффективным. Однако все кастрюли должны быть изготовлены из ферромагнитного металла (обычно из чугуна или нержавеющей стали).

Индукционная плита имеет катушку, питаемую переменным электрическим током, под керамической пластиной. Переменный ток создает колеблющееся магнитное поле, которое индуцирует колеблющийся магнитный поток в основании кастрюли, поставленной на плиту. Это создает электрический ток (называемый вихревым током) в основании кастрюли, нагревая его.

В индукционных варочных панелях напряженность магнитного поля обычно мала (~100 мТл), но колеблется с высокой частотой (27 кГц). Это означает, что скорость изменения напряженности магнитного поля очень высока, что приводит к высоким значениям индуцированной ЭДС и, следовательно, к производимому нагреву.

В этом упражнении учащиеся исследуют индуцированные ЭДС вокруг индукционной плиты, снова используя светодиод, подключенный к катушке.

Материалы

  • Кухонная индукционная плита
  • Светодиоды (различные цвета излучения)
  • 0.Медная проволока диаметром 2 мм для изготовления катушки
  • Карандаш
  • Бумага
  • Клейкая лента

Указание по технике безопасности

Хотя индукционная плита не нагревается, сковорода и вода нагреваются, поэтому учащиеся должны быть предупреждены, чтобы они не касались ее, и следует следить за тем, чтобы ручка кастрюли не мешала и ее нельзя было легко сбить при переноске. вне эксперимента. Следует проявлять особую осторожность, если учащиеся должны выполнять этап пайки самостоятельно, и это следует делать только под пристальным наблюдением учителя.

Процедура

  1. Возьмите карандаш, накройте его листом бумаги (это будет внутренняя часть катушки) и намотайте на него 300–400 витков провода.
  2. Наклейте ленту, чтобы закрыть провод и зафиксируйте его на месте; затем уберите карандаш.
  3. Снимите эмаль с медных проводов на каждом конце катушки.
  4. Припаяйте два светодиода к медным проводам встречно-параллельно (параллельно, но с обратной полярностью относительно друг друга). Этот шаг может выполнять учитель, или ученики могут делать это под наблюдением учителя.
  5. Поставьте кастрюлю с водой в центр индукционной плиты.
  6. Поместите змеевик рядом с поддоном.
  7. Включите варочную панель, начиная с минимальной мощности (рис. 5).
  8. Переместите катушку вдоль близлежащих областей варочной панели. Попробуйте выяснить, какие изменения заставляют светодиод становиться ярче или тусклее.
Рис. 5: Катушка возле индукционной плиты с выключенной (слева) и включенной (справа) плитой
Изображение предоставлено Пауло Андре

Обсуждение

Учителя могут обсудить с учащимися следующие вопросы, чтобы изучить ключевые понятия.

  • Как яркость светодиода зависит от расстояния до варочной панели?
  • В том же положении приведет ли поворот катушки к изменению интенсивности светодиода?

Учащиеся должны обнаружить, что магнитное поле в основном сосредоточено в области кастрюли, а интенсивность поля быстро уменьшается по мере удаления от варочной панели. Вращение катушки приводит к изменению ЭДС согласно уравнению (2) из-за изменения угла между катушкой и силовой линией магнитного поля.

Майкл Фарадей (1791–1867)

Портрет Майкла Фарадея работы
Томаса Филлипса (1842 г.)
Общественное достояние

Майкл Фарадей был британским ученым, который изложил принципы, лежащие в основе электромагнитной индукции. Хотя Фарадей не получил формального образования, он стал одним из величайших научных первооткрывателей в истории. Единица электрической емкости, фарад (Ф), названа в его честь, и во многом благодаря усилиям Фарадея электричество стало практичным для широкого использования. Несколько концепций, которые он вывел из экспериментов, таких как магнитные силовые линии, стали важными теоретическими идеями в физике, породив современную электромагнитную теорию.

Фарадей работал в лаборатории Королевского института в Лондоне. В 1831 году он продемонстрировал принцип индукции: это позволило разработать динамо-машину (или генератор), которая производит электричество механическими средствами. В 1845 году Фарадей также установил, что сильное магнитное поле может вращать плоскость поляризации света (теперь известное как эффект Фарадея), показывая основную связь между магнетизмом и светом.

Фарадей прекратил исследовательскую работу в 1855 г., но продолжал читать лекции до 1861 г.

Благодарности

Эта работа была разработана в рамках проекта Института материалов CICECO-Aveiro (UIDB/50011/2020 и UIDP/50011/2020), Instituto de Telecomunicações (UIDB/50008/2020-UIDP/50008/2020) и WinLEDs. (POCI-01-0145-FEDER-030351) финансируется за счет национальных фондов через FCT/MEC и, при необходимости, софинансируется FEDER в рамках Партнерства PT2020 через Европейский фонд регионального развития (ERDF) в рамках Программы операционной конкурентоспособности и интернационализации ( ПОКИ).


Ссылки

[1] Enrique A et al. (2015) Измерение магнитного поля небольших магнитов с помощью смартфона: очень экономичная лабораторная практика для вводных курсов физики. European Journal of Physics  36 :1–11. дои: 10.1088/0143-0807/36/6/065002 [2] Амрани Д. (2005) Электродвижущая сила: закон индукции Фарадея получает трактовку свободно падающего магнита. Обучение физике   40 :313–314. дои: 10.1088/0031-9120/40/4/F02

Ресурсы

Автор(ы)

Пауло Андре является профессором телекоммуникационной инженерии в Instituto Superior Técnico Университета Лиссабона, Португалия.Он имеет докторскую степень в области инженерной физики, и его исследовательские интересы включают устройства и системы фотоники. Ана Бастос — ассистент-исследователь кафедры физики и Института материалов CICECO Университета Авейру, Португалия. Ее специальные исследовательские интересы включают оптоэлектронные системы, интегральную оптику и оптические коммуникации. Руте Феррейра — доцент кафедры физики Университета Авейру, Португалия. Она координирует исследования в области информационных и коммуникационных технологий в CICECO-Institute of Materials, University of Aveiro.Ее текущие научные интересы сосредоточены на органических/неорганических гибридах с перспективными приложениями в области оптоэлектроники/зеленой фотоники (твердотельное освещение и интегрированная оптика) и фотогальваники (люминесцентные солнечные концентраторы).

Лицензия

Закон Ленца – College Physics

Закон индукции Фарадея имеет множество применений, которые мы рассмотрим в этой и других главах. На этом этапе давайте упомянем несколько, которые связаны с хранением данных и магнитными полями.Очень важное применение связано с аудио и видео записывающими лентами . Пластиковая лента, покрытая оксидом железа, проходит мимо записывающей головки. Эта записывающая головка представляет собой круглое железное кольцо, на которое намотана катушка проволоки — электромагнит (рис. 2). Сигнал в виде переменного входного тока от микрофона или камеры поступает на записывающую головку. Эти сигналы (которые зависят от амплитуды и частоты сигнала) создают переменные магнитные поля на записывающей головке.Когда лента движется мимо записывающей головки, ориентация магнитного поля молекул оксида железа на ленте изменяется, что приводит к записи сигнала. В режиме воспроизведения намагниченная лента проходит мимо другой головки, аналогичной по устройству записывающей головке. Различная ориентация магнитного поля молекул оксида железа на ленте индуцирует ЭДС в катушке провода в головке воспроизведения. Затем этот сигнал отправляется на громкоговоритель или видеоплеер.

Аналогичные принципы применимы и к жестким дискам компьютеров, но с гораздо большей скоростью.Здесь записи на вращающемся диске с покрытием. Считывающие головки исторически заставляли работать по принципу индукции. Однако входная информация передается в цифровой, а не в аналоговой форме — на вращающемся жестком диске записывается последовательность нулей или единиц. Сегодня большинство устройств считывания с жестких дисков не работают по принципу индукции, а используют технику, известную как гигантское магнитосопротивление . (Открытие того, что слабые изменения магнитного поля в тонкой пленке железа и хрома могут вызвать гораздо большие изменения электрического сопротивления, было одним из первых крупных успехов нанотехнологии.) Еще одно применение индукции можно найти на магнитной полосе на обратной стороне вашей личной кредитной карты, используемой в продуктовом магазине или банкомате. Это работает по тому же принципу, что и упомянутая в последнем абзаце аудио- или видеокассета, в которой голова считывает личную информацию с вашей карты.

Еще одним применением электромагнитной индукции является передача электрических сигналов через барьер. Рассмотрим кохлеарный имплант , показанный ниже. Звук улавливается микрофоном снаружи черепа и используется для создания переменного магнитного поля.Ток индуцируется в приемнике, закрепленном в кости под кожей, и передается на электроды во внутреннем ухе. Электромагнитная индукция может использоваться и в других случаях, когда электрические сигналы необходимо передавать через различные среды.

Еще одной современной областью исследований, в которой электромагнитная индукция успешно реализуется (и имеет значительный потенциал), является транскраниальное магнитное моделирование. Множество расстройств, включая депрессию и галлюцинации, можно отнести к нерегулярной локальной электрической активности в головном мозге.При транскраниальной магнитной стимуляции быстро меняющееся и очень локализованное магнитное поле помещается рядом с определенными участками, идентифицированными в мозге. В выявленных местах индуцируются слабые электрические токи, что может привести к восстановлению электрических функций в тканях головного мозга.

Апноэ во сне («остановка дыхания») поражает как взрослых, так и младенцев (особенно недоношенных детей и может быть причиной внезапной младенческой смерти [SID]). У таких людей дыхание может неоднократно останавливаться во время сна. Прекращение более чем на 20 секунд может быть очень опасным. Инсульт, сердечная недостаточность и усталость — вот лишь некоторые из возможных последствий для человека, страдающего апноэ во сне. Беспокойство у младенцев вызывает остановка дыхания на эти более длительные периоды времени. Один из типов мониторов для оповещения родителей о том, что ребенок не дышит, использует электромагнитную индукцию. Через провод, обернутый вокруг грудной клетки младенца, проходит переменный ток. Расширение и сжатие грудной клетки младенца, когда он дышит, изменяет площадь, проходящую через спираль.В расположенной рядом съемной катушке индуцируется переменный ток, обусловленный изменяющимся магнитным полем исходного провода. Если ребенок перестанет дышать, индуцированный ток изменится, и родитель может быть предупрежден.

Установление связей: сохранение энергии

Закон Ленца является проявлением закона сохранения энергии. ЭДС индукции создает ток, противодействующий изменению потока, потому что изменение потока означает изменение энергии. Энергия может войти или уйти, но не мгновенно.Закон Ленца является следствием. Когда изменение начинается, закон говорит, что индукция противодействует и, таким образом, замедляет изменение. На самом деле, если бы ЭДС индукции была направлена ​​в том же направлении, что и изменение потока, существовала бы положительная обратная связь, которая давала бы нам свободную энергию без видимого источника — закон сохранения энергии был бы нарушен.

Пример 1. Расчет ЭДС: насколько велика ЭДС индукции?

Рассчитайте величину ЭДС индукции, когда магнит на рисунке 1(а) вталкивается в катушку, учитывая следующую информацию: катушка с одним контуром имеет радиус 6.00 см, а среднее значение $latex \boldsymbol{B \;\textbf{cos} \;\theta} $ (данное, поскольку поле стержневого магнита комплексное) увеличивается с 0,0500 Тл до 0,250 Тл за 0,100 с.

Стратегия

Чтобы найти величину ЭДС, мы используем закон индукции Фарадея, сформулированный как $latex \boldsymbol{\textbf{ЭДС} = -N \frac{\Delta \phi}{\Delta t}} $, но без знака минус, указывающего направление:

$латекс \boldsymbol{\textbf{ЭДС} = N} $

Раствор

Нам дано, что $latex \boldsymbol{N = 1} $ и $latex \boldsymbol{\Delta t=0. 2 = (3.2)(0,200 \;\textbf{T})}. $

Ввод найденных значений в выражение для ЭДС дает

$latex \boldsymbol{\textbf{Emf} =N} $ $latex \boldsymbol{=} $ $latex \boldsymbol{= 22,6 \; \textbf{мВ}} $

Обсуждение

Хотя это легко измеряемое напряжение, оно явно недостаточно велико для большинства практических применений. Больше петель в катушке, более сильный магнит и более быстрое движение делают индукцию практическим источником напряжения, которым она и является.

Закон Фарадея

Закон Фарадея
Следующая: Закон Ленца Вверх: Магнитная индукция Предыдущий: Магнитная индукция Явление магнитной индукции играет решающую роль в три очень полезных электрических устройства: электрический генератор , электрический генератор двигатель и трансформатор .Без этих устройств современная жизнь была бы невозможным в его нынешнем виде. Магнитная индукция была открыта в 1830 г. английский физик Майкл Фарадей. Американский физик Джозеф Генри независимо сделал то же самое открытие примерно в одно и то же время. Обе физиков заинтриговал тот факт, что электрический ток, протекающий вокруг цепь может генерировать магнитное поле. Конечно, рассуждали они, если электрический ток может генерировать магнитное поле, тогда магнитное поле должно каким-то образом быть в состоянии генерировать электрический ток.Однако потребовались годы бесплодных экспериментов. прежде чем они смогли найти основной ингредиент, который позволяет магнитное поле для создания электрического тока. Этот ингредиент изменение времени .

Рассмотрим плоскую петлю из проводника площадью поперечного сечения . Поместим эту петлю в магнитное поле, напряженность которого приблизительно равна равномерный по всей длине петли. Предположим, что направление магнитное поле образует угол с направлением нормали к петля.Магнитный поток через контур равен определяется как произведение площади петли на составляющую магнитное поле перпендикулярно контуру. Таким образом,

(191)

Если цикл обернут вокруг себя раз ( т.е. , если цикл имеет витка ), тогда магнитный поток через петлю просто умножить на магнитный поток через один виток:
(192)

Наконец, если магнитное поле неоднородно по петле или петля не лежат в одной плоскости, то мы должны оценить магнитный поток как поверхностный интеграл
(193)

Здесь — некоторая поверхность, присоединенная к .Если петля имеет витки, то поток умножается на указанное выше значение. Единицей магнитного потока в системе СИ является вебер (Вб). Один тесла эквивалентен один вебер на квадратный метр:
(194)

Фарадей обнаружил, что если магнитное поле через проволочную петлю меняется во времени тогда вокруг контура индуцируется ЭДС. Фарадей смог наблюдать этот эффект, потому что ЭДС вызывает ток, циркулирующий в контуре.Фарадей обнаружил, что величина ЭДС прямо пропорциональна скорости изменения магнитного поля во времени. Он также обнаружил, что ЭДС генерируется, когда петля провода перемещается . из области с низкой напряженностью магнитного поля в область с высокой напряженностью магнитного поля, и наоборот . ЭДС прямо пропорциональна скорость, с которой петля перемещается между двумя областями. Ну наконец то, Фарадей обнаружил, что ЭДС генерируется вокруг петли, которая вращается в однородном магнитном поле постоянной напряженности. В этом случае ЭДС прямо пропорциональна скорости вращения петли. В конце концов Фарадей в состоянии предложить один закон, который мог объяснить все его многочисленные и разнообразные наблюдения. Этот закон, известный как Закон Фарадея о магнитной индукции выглядит следующим образом:

ЭДС, индуцированная в цепи, пропорциональна скорости изменения во времени магнитный поток, связывающий эту цепь.
Единицы СИ были зафиксированы таким образом, чтобы константа пропорциональности в этом закон единство .Таким образом, если магнитный поток через цепь изменяется на сумму во временном интервале тогда ЭДС, возникающая в цепи, равна
(195)

Существует много разных способов, которыми магнитный поток, связывающий электрическая цепь может изменять. Может измениться либо напряженность магнитного поля, либо направление магнитного поля. поле может измениться, или положение цепи может измениться, или форма схема может измениться, или ориентация схемы может измениться.Закон Фарадея гласит, что все эти пути полностью эквивалентно по мере генерации ЭДС вокруг цепь касается.



Следующая: Закон Ленца Вверх: Магнитная индукция Предыдущий: Магнитная индукция
Ричард Фицпатрик 2007-07-14

Закон индукции Фарадея для чайников

Закон индукции Фарадея был открыт в результате экспериментов, проведенных Майклом Фарадеем в Англии в 1831 году и Джозефом Генри в Соединенных Штатах примерно в то же время.
Несмотря на то, что Фарадей опубликовал свои результаты первым, что дает ему приоритет открытия, единица измерения индуктивности в системе СИ называется генри (аббревиатура Г) . С другой стороны, единица измерения емкости в системе СИ, как мы видели, называется фарад (сокращение F) .
В главе, посвященной колебаниям в емкостно-индуктивных цепях, мы видим, как уместно связывать имена этих двух талантливых современников в едином контексте.

*Помимо их независимого одновременного открытия закона индукции, Фарадей и Генри имеют несколько других сходств в их жизнях.Оба были учениками в раннем возрасте. Фарадей в возрасте 14 лет поступил в ученики к лондонскому переплетчику. Генри в возрасте 13 лет поступил в ученики к часовщику в Олбани, штат Нью-Йорк. В последующие годы Фарадей был назначен директором королевского учреждения в Лондоне, основанием которого в значительной степени обязан американец Бенджамин Томсон (граф Румфорд). Генри, с другой стороны, потому что секретарь Смитсоновского института в Вашингтоне, округ Колумбия, который был найден благодаря пожертвованию англичанина Джеймса Смитсона.

Фарадей заметил, что если магнит перемещать к катушке с проволокой (соленоиду), соединенной последовательно с гальванометром, в токе возникает электрический ток. При перемещении магнита к соленоиду гальванометр показывает отклонение в одном направлении, а при удалении магнита от соленоида гальванометр показывает отклонение в противоположном направлении. Когда магнит неподвижен, в гальванометре нет отклонения. Аналогичные результаты получаются, когда магнит остается неподвижным, а катушка перемещается.При перемещении магнита отклонение в гальванометре велико, а при медленном перемещении — отклонение мало. Было также обнаружено, что если в непосредственной близости находятся две замкнутые цепи, одна из которых содержит батарею, а другая — гальванометр, и цепь батареи замыкается нажатием кнопки К, а затем размыкается, то гальванометр во вторичной цепи показывает отклонение сначала в одну сторону, а затем в другую.

Замечено, что в гальванометре не происходит отклонения, если ток в первичной цепи течет непрерывно.Отклонение в гальванометре производится только при включении или отключении тока в первичной цепи. Фарадей суммировал эти экспериментальные результаты в виде следующих законов:

  • 1: Всякий раз, когда происходит изменение магнитных силовых линий или магнитного потока, в цепи возникает индуцированный ток.
  • 2:Индуцированный ток или ЭДС длится только то время, в течение которого силовые линии или магнитный поток действительно меняются.
  • 3: Величина индуцированной ЭДС зависит от скорости изменения магнитных силовых линий или магнитного потока.

На рисунке (1) показана катушка провода как часть цепи, содержащей амперметр. Обычно мы ожидаем, что амперметр не покажет ток в цепи, потому что электродвижущая сила отсутствует. Однако если мы подтолкнем стержневой магнит к катушке так, чтобы его северный полюс был обращен к катушке, произойдет замечательная вещь. Пока магнит движется, амперметр отклоняется, показывая, что в катушке установился ток. Если мы удерживаем магнит неподвижно относительно катушки, амперметр не отклоняется.Если мы отодвинем магнит от катушки, счетчик снова отклонится, но уже в другую сторону, а значит, ток в катушке будет противоположного направления. Если мы используем конец магнита с северным полюсом вместо конца с северным полюсом, эксперимент работает, как описано, но отклонения меняются на противоположные. Чем быстрее перемещается магнит, тем больше показания счетчика. Дальнейшие эксперименты показывают, что имеет значение относительное движение магнита и катушки. Нет никакой разницы, перемещаем ли мы магнит к катушке или катушку к магниту.

 формула закона индукции Фарадея

«ЭДС индукции в цепи равна отрицательному значению скорости, с которой магнитный поток через цепь изменяется во времени». Математически это записывается как:

Объяснение:

Эксперимент Фарадея показал, и как помогает нам визуализировать техника линий поля Фарадея, именно изменение числа силовых линий, проходящих через петлю цепи, индуцирует ЭДС в петле.В частности, именно скорость изменения числа силовых линий, проходящих через петлю, определяет ЭДС индукции.

Чтобы сделать это утверждение количественным, мы вводим магнитный поток Φ B , который определяется как «Число магнитных силовых линий, проходящих нормально через определенную область, называется магнитным потоком». Он обозначается как Φ B. Это скалярная величина, и ее единицей СИ является Вебер (Вб). Он измеряется произведением напряженности магнитного поля на составляющую площади вектора, параллельную магнитному полю.Математически это представляется как:

Φ B = B.A

Φ B =BA cosθ

Где A — вектор, величина которого равна площади элемента и направление которого проходит по нормали к поверхности элемента, θ — угол между направлениями векторов B и A.

Когда магнит приближается к петле, стрелка амперметра отклоняется в одном направлении, как показано на рисунке (а).Когда магнит останавливается и удерживается неподвижно относительно фигуры петли (b), отклонения не наблюдается. При удалении магнита от петли игла отклоняется в противоположную сторону, как показано на рисунке (в). Наконец, если магнит удерживать неподвижно, а петлю перемещать либо к нему, либо от него, игла отклоняется. Из этих наблюдений мы заключаем, что петля обнаруживает, что магнит движется относительно нее, и связываем это обнаружение с изменением магнитного поля.Таким образом, кажется, что существует связь между текущим и изменяющимся магнитным полем.

Эти результаты весьма примечательны, учитывая тот факт, что ток устанавливается даже при отсутствии в цепи батарей. Мы называем такой ток индукционным током, который создается ЭДС индукции. Это явление называется электромагнитной индукцией.


На нашем веб-сайте есть и другие связанные темы:
1: Закон Ленца
2: Электромагнитная индукция
3: Трансформатор
4: Магнетизм
Внешние источники

  • https://en.wikipedia.org/wiki/Фарадей%27s_law_of_induction
  • https://www.daenotes.com/electronics/basic-electronics/faraday-laws-of-electromagnetic-induction

Закон индукции Фарадея > ENGINEERING.

com Закон индукции Фарадея
Посох опубликован 10 ноября 2006 г. |
Закон индукции Фарадея

В физике количественная зависимость между изменяющимся магнитным полем и электрическим полем, создаваемым этим изменением, разработанная на основе экспериментальных наблюдений, сделанных в 1831 году английским ученым Майклом Фарадеем.

Фарадей обнаружил, что всякий раз, когда магнитное поле вокруг электромагнита увеличивалось и уменьшалось путем замыкания и размыкания электрической цепи, частью которой он был, электрический ток можно было обнаружить в отдельном соседнем проводнике. Перемещение постоянного магнита в катушку с проволокой и из нее также индуцировало ток в проволоке, пока магнит находился в движении. Перемещение проводника рядом с неподвижным постоянным магнитом также вызывало протекание тока в проводе, пока он двигался.

Фарадей представлял себе магнитное поле как состоящее из множества линий индукции, вдоль которых указывал бы небольшой магнитный компас. Совокупность линий, пересекающих данную площадь, называется магнитным потоком. Таким образом, электрические эффекты были приписаны Фарадеем изменяющемуся магнитному потоку.

Годы спустя шотландский физик Джеймс Клерк Максвелл предположил, что основным эффектом изменения магнитного потока является создание электрического поля не только в проводнике, но и в пространстве даже при отсутствии электрических зарядов.Максвелл сформулировал математическое выражение, связывающее изменение магнитного потока с индуцированной электродвижущей силой ( E , или эдс ).

Это соотношение, известное как закон индукции Фарадея, утверждает, что величина ЭДС , индуцированная в цепи, пропорциональна скорости изменения магнитного потока, пересекающего цепь.

Если скорость изменения магнитного потока выражается в веберах в секунду, то ЭДС индукции имеет единицы вольт.

.

Добавить комментарий

Ваш адрес email не будет опубликован.