Таблица степеней окисления химических элементов. Максимальная и минимальная степень окисления. Возможные степени окисления химических элементов.





Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Химический справочник / / Таблица Менделеева. Названия. Электронные формулы. Структурные формулы. Таблицы степеней окисления и валентности. Изотопы.  / / Таблица степеней окисления химических элементов. Максимальная и минимальная степень окисления. Возможные степени окисления химических элементов.

Таблица степеней окисления химических элементов. Возможные степени окисления химических элементов. Стандартные, высшие, низшие, редкие степени окисления, исключения. Максимальная степень окисления и минимальная степень окисления.

Степень окисления – это условный заряд атомов химического элемента в соединении, вычисленный из предположения, что все связи имеют ионный тип. Степени окисления могут иметь положительное, отрицательное или нулевое значение, поэтому
алгебраическая сумма степеней окисления элементов в молекуле с учётом числа их атомов равна 0, а в ионе – заряду иона
.
  1. Степени окисления металлов в соединениях всегда положительные.
  2. Высшая степень окисления соответствует номеру группы периодической системы, где находится данный элемент (исключение составляют: Au+3 (I группа), Cu+2 (II), из VIII группы степень окисления +8 может быть только у осмия Os и рутения Ru.
  3. Степени окисления неметаллов зависят от того, с каким атомом он соединён:
    • если с атомом металла, то степень окисления отрицательная;
    • если с атомом неметалла то степень окисления может быть и положительная, и отрицательная. Это зависит от электроотрицательности атомов элементов.
  4. Высшую отрицательную степень окисления неметаллов можно определить вычитанием из 8 номера группы, в которой находится данный элемент, т.е. высшая положительная степень окисления равна числу электронов на внешнем слое, которое соответствует номеру группы.
  5. Степени окисления простых веществ равны 0, независимо от того металл это или неметалл.
  6. В неорганической химии обычно применяется понятие степень окисления, а в органической химии —

dpva.ru

Магний степени окисления — Справочник химика 21

    Постоянную степень окисления имеют щелочные элементы (+1), бериллий, магний, щелочноземельные элементы (+2), фтор (-1). Д.ая водорода в большинстве соединений характерна степень окисления — -1, а в его соединениях с з-элементами и в некоторых других соединениях она равна -1. Степень окисления кислорода, как правило, равна -2 к важнейшим исключениям относятся пероксидные соединения, где она равна —, и фторид кислорода ОГг, в котором степень окисления кислорода равна -Ь2. 
[c.261]

    Из этих уравнений следует, что окисление магния — это процесс оттягивания от его атома двух валентных электронов атомом окислителя, в данном случае кислорода, который восстанавливается, принимая ири этом отрицательную степень окисления. [c.54]

    Имеется сплав двух металлов. Один компонент сплава растворяется в щелочах, оба металла растворяются в соляной кислоте. В соединениях металлы проявляют степень окисления +2. При действии раствора гидроксида натрия на образец сплава массой 5,7 г выделился водород объемом 2,24 л. Масса нерастворимого остатка составила 4,8 г. При растворении образца сплава массой 3,42 г в соляной кислоте образовался водород объемом 4,032 л. Какие металлы образуют сплав Определите их массовые доли в сплаве. Объемы газов приведены к нормальным условиям. Ответ бериллий— 15,8% магний — 84,2%. 

[c.221]

    Отсюда следует, что окисление магния входящими в состав воды атомами водорода в степени окисления -f-l возможно, и реакция будет протекать в прямом направлении. Напротив, во второй реакции окисление палладия атомами водо- [c.255]

    Органические соединения остальных переходных элементов. Переходные элементы остальных (кроме ПБ) побочных подгрупп периодической системы в проявляемых их атомами степенях окисления имеют незавершенные электронные -подоболочки предвнешнего уровня. Поэтому, наряду с образованием ординарной полярной ковалентной связи с углеродом за счет вклада внешних з- и р-орбиталей, они способны образовывать совершенно иные по строению и свойствам соединения за счет участия ( -орбиталей. В таких соединениях металл можно так же, как и соединения магния, бора, алюминия (см. выше), считать координационно ненасыщенным. Данная ненасыщенность металла теперь определяется наличием вакантных орбиталей не только на внешнем, но и на втором снаружи энергетических уровнях его атома. Природа вакантных орбиталей атома переходного элемента также отличается от орбиталей в- и р-элементов. Симметрия и пространственная протяженность -орбиталей переходного элемента позволяет им эффективно перекрываться с орбиталями большего числа атомов и удаленных на большее расстояние от металла, чем это возможно для з-или р-элемента. Поэтому часто органические соединения переходных металлов являются комплексными. С примерами таких комплексных элементоорганических соединений мы уже встречались ферроцен, дибензолхром, хелаты и др. (разд. 13.4). 

[c.599]

    Атмофильные элементы — это кислород, азот, инертные газы (от гелия до ксенона). Гидрофильные элементы образуют соединения, растворимые в воде и поэтому содержащиеся в гидросфере Земли — в морях, океанах, реках, озерах главным образом поваренную соль (т. е. элементы натрий и хлор), соли калия, магния, кальция. Таким образом, часть гидрофильных элементов являются одновременно и литофильными. Это, как правило, элементы, проявляющие в своих соединениях невысокую степень окисления -1-1, +2, реже +3. 

[c.236]

    К щелочноземельным металлам относят элементы главной подгруппы II группы периодической системы кальций Са, стронций 8г, барий Ва и радий Ка. Кроме них, в эту группу входят бериллий Ве и магний Mg. На внешнем слое атомов щелочноземельных металлов находится два я-электрона. Во всех соединениях они проявляют степень окисления +2. Активность металлов растет с увеличением атомного номера. Все эти элементы — типичные металлы, по свойствам близкие к щелочным. [c.146]

    К основным шести органогенам относятся водород (в степени окисления + 1), кислород (—2), азот (—3), углерод (+4), фосфор ( + 5), сера i(+6 и —2). Как видно, элементы, входящие в состав организмов, проявляют широкий набор степеней окисления. Кроме того, для любого организма необходимы атомы натрия, калия, магния, кальция, марганца, железа, кобальта, меди, цинка и молибдена, называемых металлами жизни. Первые четыре из них содержатся в организме человека, измеряемые десятками и сотнями граммов, содержание остальных в сто 

[c.202]

    Отсюда делаем вывод, что хлор является сильным окислителем. Оч атома хлора в его молекуле равно нулю, а в молекулах его соединений, где он присоединяет один электрон, равно —1. Реакция окисления магния хлором является экзотермической, при этом степень окисления магния повышается от нуля до двух, а степень окисления хлора понижается от О до —1. [c.33]

    Постепенному переходу от типично основных оксидов натрия и магния к амфотерным, или промежуточным (алюминия), и к кислотным оксидам фосфора, серы и хлора соответствует и повышение окислительного числа элементов, образующих оксиды. То же наблюдается при рассмотрении изменения свойств оксидов одного и того же элемента в разной степени окисления, как, например, в ряду оксидов марганца  

[c.60]

    Составьте электронные и молекулярные уравнения реакций а) бериллия с раствором щелочи б) магния с конц. серной кислотой (окислитель приобретает низшую степень окисления). [c.68]

    Определите степень окисления фосфора в таких соединениях фосфорная кислота, фосфин, фосфорный ангидрид, фосфат кальция, фосфид магния. [c.22]

    Напишите формулы таких солей хлорида кобальта (III), сульфида кальция, сульфата калия, сульфата алюминия, сульфата железа (II), нитрата бария, карбоната аммония, метафосфата натрия, ортофосфата магния, гипохлорита калия, хлората натрия, перхлората бария, перманганата калия. Объясните, в каких случаях в названиях соединений указывают степень окисления металла, а в каких нет. [c.22]

    Галогениды низших степеней окисления. Соединения циркония и гафния со степенями окисления П1, И и I известны с хлором, бромом и иодом. Низшие галогениды могут быть получены восстановлением соответствующих тетрагалогенидов металлами-восстановителями — цирконием, гафнием, алюминием, магнием и др. в вакууме или в атмосфере инертного газа. 

[c.297]

    MgO Степень окисления магния=+2  [c.112]

    Однако исходя только из этого нельзя пр шильно составить уравнение реакции. Объясняется это тем, чтс помимо фун

www.chem21.info

Низшая степень окисления, формулы и примеры

Понятие степень окисления

Для характеристики состояния элементов в соединениях введено понятие степени окисления.

Положительная степень окисления обозначает число электронов, которые смещаются от данного атома, а отрицательная – число электронов, которые смещаются к данному атому.

Из этого определения следует, что в соединениях с неполярными связями степень окисления элементов равна нулю. Примерами таких соединений могут служить молекулы, состоящие из одинаковых атомов (N

2, H2, Cl2).

Степень окисления металлов в элементарном состоянии равна нулю, так как распределение электронной плотности в них равномерно.

В простых ионных соединениях степень окисления входящих в них элементов равна электрическому заряду, поскольку при образовании этих соединений происходит практически полный переход электронов от одного атома к другому: Na+1I-1, Mg+2Cl-12, Al+3F-13, Zr+4Br-14.

При определении степени окисления элементов в соединениях с полярными ковалентными связями сравнивают значениях их электроотрицательностей. Поскольку при образовании химической связи электроны смещаются к атомам более электроотрицательных элементов, то последние имеют в соединениях отрицательную степень окисления.

Низшая степень окисления

Для элементов, проявляющих в своих соединениях различные степени окисления, существуют понятия высшей (максимальной положительной) и низшей (минимальной отрицательной) степеней окисления. Низшая степень окисления химического элемента обычно численно равна разности между номером группы в Периодической системе Д. И. Менделеева, в которой расположен химический элемент, и числом 8. Например, азот находится в VA группе, значит его низшая степень окисления равна (-3): V–VIII = -3; сера находится в VIA группе, значит её низшая степень окисления равна (-2): VI–VIII = -2 и т.д.

Примеры решения задач

ru.solverbook.com

как определить минимальную и максимальную степень окисления. Только полегче способ какой нибудь

Определение степени окисления Правила для определения степеней окисления химических элементов в соединениях. 1.Степень окисления любого элемента в простом веществе равна 0. 2.Сумма степеней окисления всех атомов, входящих в состав частицы (молекул, ионов и т. д. ) равна заряду этой частицы. В частности, сумма степеней окисления всех атомов в составе нейтральной молекулы равна 0. 3.Если соединение образовано двумя элементами, то у элемента с большей электроотрицательностью степень окисления меньше нуля, а у элемента с меньшей электроотрицательностью – больше нуля. 4.Максимальная положительная степень окисления любого элемента равна номеру группы в периодической системе элементов, а минимальная отрицательная равна N – 8, где N – номер группы. 5.Степень окисления фтора в соединениях равна -1. 6.Степень окисления щелочных металлов (лития, натрия, калия, рубидия, цезия) равна +1, металлов главной подгруппы II группы периодической системы (магния, кальция, стронция, бария) равна +2, степень окисления алюминия равна +3. 7.Степень окисления водорода в соединениях равна +1(исключение – соединения с металлами NaH, Cah3, в этих соединениях степень окисления у водорода равна -1). 8.Степень окисления кислорода равна –2 (исключения – перекиси h3O2, Na2O2, BaO2 в них степень окисления водорода равна -1, а в соединении с фтором — +2). Алгоритм определения степени окисления химического элемента в бинарных соединениях: 1.Находим, какой из двух элементов в соединении является более электроотрицательным. Над символом более электроотрицательного элемента ставим знак «минус» (-). Над символом менее электроотрицательного элемента ставим знак «плюс» (+). 2.Определяем числовое значение степени окисления для более электроотрицательного элемента. (См. правила. ) 3.Определяем общее число отрицательных зарядов в соединении. Для этого степень окисления более электроотрицательного элемента умножаем на его индекс. 4.Находим степень окисления менее электроотрицательного элемента, помня, что алгебраическая сумма степеней окисления химических элементов в соединении должна быть равна 0. Для этого общее число положительных зарядов делим на индекс у данного элемента.

•Степень окисления атомов в элементарном виде всегда равна нулю. Степень окисления единичного иона равна его заряду. Элементы группы 1A таблицы Менделеева, такие как водород, литий, натрий, в элементарном виде имеют степень окисления +1; степень окисления металлов группы 2A, таких как магний и кальций, в элементарном виде равна +2. Кислород и водород, в зависимости от вида химической связи, могут иметь 2 различных значения степени окисления. •В соединениях сумма всех степеней окисления должна равняться заряду. Например, если соединение представляет собой двухатомный ион, сумма степеней окисления атомов должна быть равна общему ионному заряду. •Очень полезно уметь пользоваться периодической таблицей Менделеева и знать, где в ней располагаются металлические и неметаллические элементы.

Степень окисления у элементов 1-3 группы всегда одна и та же, а минимальная степень окисления у элементов 4-8 подгруппы определяется как по формуле: из 8 вычесть номер группы и взять со знаком минус

touch.otvet.mail.ru

как определить минимальную и максимальную степень окисления. Только полегче способ какой нибудь

Определение степени окисления

Правила для определения степеней окисления химических элементов в соединениях.
1.Степень окисления любого элемента в простом веществе равна 0.
2.Сумма степеней окисления всех атомов, входящих в состав частицы (молекул, ионов и т. д. ) равна заряду этой частицы. В частности, сумма степеней окисления всех атомов в составе нейтральной молекулы равна 0.
3.Если соединение образовано двумя элементами, то у элемента с большей электроотрицательностью степень окисления меньше нуля, а у элемента с меньшей электроотрицательностью – больше нуля.
4.Максимальная положительная степень окисления любого элемента равна номеру группы в периодической системе элементов, а минимальная отрицательная равна N – 8, где N – номер группы.
5.Степень окисления фтора в соединениях равна -1.
6.Степень окисления щелочных металлов (лития, натрия, калия, рубидия, цезия) равна +1, металлов главной подгруппы II группы периодической системы (магния, кальция, стронция, бария) равна +2, степень окисления алюминия равна +3.
7.Степень окисления водорода в соединениях равна +1(исключение – соединения с металлами NaH, Cah3, в этих соединениях степень окисления у водорода равна -1).
8.Степень окисления кислорода равна –2 (исключения – перекиси h3O2, Na2O2, BaO2 в них степень окисления водорода равна -1, а в соединении с фтором — +2).
Алгоритм определения степени окисления химического элемента в бинарных соединениях:

1.Находим, какой из двух элементов в соединении является более электроотрицательным.
Над символом более электроотрицательного элемента ставим знак «минус» (-).
Над символом менее электроотрицательного элемента ставим знак «плюс» (+).
2.Определяем числовое значение степени окисления для более электроотрицательного элемента. (См. правила. )
3.Определяем общее число отрицательных зарядов в соединении. Для этого степень окисления более электроотрицательного элемента умножаем на его индекс.
4.Находим степень окисления менее электроотрицательного элемента, помня, что алгебраическая сумма степеней окисления химических элементов в соединении должна быть равна 0. Для этого общее число положительных зарядов делим на индекс у данного элемента.

otvet.mail.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *