Физические свойства неметаллов — урок. Химия, 8–9 класс.

Из \(118\) известных на данный момент химических элементов \(22\) элемента образуют простые вещества, обладающие неметаллическими свойствами. Неметаллических простых веществ намного больше, чем самих неметаллических химических элементов. Причиной тому служит существование явления, называемого аллотропией.

Аллотропия — это способность атомов данного химического элемента образовывать несколько простых веществ, называемых аллотропными видоизменениями, или аллотропными модификациями.

Например, химический элемент кислород \(O\) образует простое вещество кислород O2, молекула которого состоит из двух атомов, и простое вещество озон O3, молекула которого состоит из трёх атомов данного элемента.

 

Химический элемент фосфор \(P\) образует множество аллотропных видоизменений, важнейшими из которых являются красный фосфор и белый фосфор.

 

Химический элемент углерод \(C\) образует встречающиеся в природе модификации — алмаз и графит.

 

Аллотропные видоизменения, образуемые одним и тем же химическим элементом, существенно отличаются между собой как по строению, так и по свойствам.

 

Аллотропия присуща не всем неметаллических химическим элементам.

Например, водород, азот, элементы \(VII\)A и \(VIII\)A групп не имеют аллотропных модификаций, т. е. каждый из упомянутых элементов образует только одно простое вещество.

Кристаллическая решетка неметаллов

Причина большого разнообразия физических свойств неметаллов кроется в различном строении кристаллических решёток этих веществ.

 

Часть неметаллов имеет атомную кристаллическую решетку. Кристаллы таких веществ состоят из атомов, соединённых между собой прочными ковалентными связями. Такие неметаллы находятся в твёрдом агрегатном состоянии и являются нелетучими. Примерами таких веществ служат алмаз, графит, красный фосфор и кремний.

 

  

Модели кристаллических решёток алмаза (слева) и графита. Кристаллы этих аллотропных видоизменений состоят из атомов углерода, соединённых между собой ковалентными связями. Кристаллы графита, в отличие от кристаллов алмаза, сложены из отдельных слоёв, которые располагаются друг по отношению к другу подобно тому, как листы бумаги — в книге

 

Другая часть неметаллов имеет молекулярную кристаллическую решетку. В этом случае в каждой молекуле атомы соединены достаточно прочно ковалентной связью, а вот отдельные молекулы друг с другом в кристаллах вещества связаны очень слабо. Поэтому вещества молекулярного строения при обычных условиях могут быть газами, жидкостями или легкоплавкими твёрдыми веществами.

 

Кислород O2, озон O3, азот N2, водород h3, фтор F2, хлор Cl2, бром Br2, иод I2, белый фосфор P4, кристаллическая сера S8  и инертные газы — это всё вещества, кристаллы которых состоят из отдельных молекул (а в случае инертных газов — из отдельных атомов, как бы выполняющих роль молекул).

 

 

Модель молекулы серы (слева) и кристалл серы. Кристалл серы состоит из отдельных молекул \(S_8\)

Физические свойства неметаллов

Свойства неметаллических простых веществ отличаются большим разнообразием. Собственно говоря, их объединяет только то, что они, как правило, не обладают теми физическими свойствами, которые типичны для металлов, т. е. не обладают характерным металлическим блеском, ковкостью, пластичностью, высокой тепло- и электропроводностью.

 

Агрегатное состояние
 

Неметаллы при обычных условиях могут быть газообразными, жидкими и твёрдыми веществами.

 

Газообразными неметаллами являются гелий \(He\), неон \(Ne\), аргон \(Ar\), криптон \(Kr\), ксенон \(Xe\) и радон \(Rn\). Их называют инертными (или благородными) газами. Каждая «молекула» инертного газа состоит только из одного атома.

 

Такие химические элементы, как водород \(H\), кислород \(O\), азот \(N\), хлор \(Cl\), фтор \(F\) образуют газообразные вещества, состоящие из двухатомных молекул, соответственно — h3, O2, N2, Cl2, F2.

 

Из неметаллических простых веществ при обычных условиях жидкостью является только бром, молекулы которого двухатомны — Br2.

 

Остальные неметаллические химические элементы при обычных условиях находятся в твёрдом агрегатном состоянии. Например, химический элемент углерод образует такие твёрдые вещества, как алмаз и графит. Твёрдыми являются кристаллическая сера S8, фосфор красный и фосфор белый P4, кристаллический иод I2.

 

Цвет и блеск

  

Только некоторые неметаллы в отличие от металлов имеют блеск. Например, кристаллический иод, кремний и графит не похожи на остальные неметаллы — они имеют блеск, несколько напоминающий блеск металлов.

 

Если для подавляющего большинства металлов характерны серебристо-серый или серебристо-белый цвета, то окраска неметаллов очень разнообразна. Белый цвет имеет белый фосфор, красный — красный фосфор,

жёлтый — сера и фтор, красно-бурый — жидкий бром, жёлто-зелёный — хлор, фиолетовый цвет имеют пары иода, синий — жидкий кислород, серый — графит и кремний. Бесцветным является алмаз, окраски не имеют также инертные газы, азот, кислород и водород.

 

Красный фосфор

  

Белый фосфор

  

Бром

  

Хлор

  

Иод

Алмаз

Неметаллы могут находиться в твёрдом, жидком и газообразном агрегатных состояниях.

  

Запах

  

Некоторые неметаллы имеют запах. Например, резкий удушливый запах имеют озон O3, фтор F2 (при попадании в органы дыхания практически моментально разрушает ткани), хлор Cl2, бром Br2 и иод I2.

 

Пластичность

  

Неметаллы в твёрдом агрегатном состоянии не обладают пластичностью. Они являются хрупкими.

 

Электро- и теплопроводность

  

Неметаллы, за исключением графита, плохо проводят тепло и практически не проводят электрический ток (являются диэлектриками).

www.yaklass.ru

2.4 Простые и сложные вещества

1.      В каком ряду перечислены два сложных вещества и одно простое:
а) кислород, азот, вода б) хлор, аммиак, углекислый газ
в) водород, бром, углерод г) алмаз, оксид кремния (IV), медь
2.     Аллотропные видоизменения кислорода – озон и кислород – различаются между собой:
а) все ответы верны б) физическими свойствами
в) химическими свойствами г) количественным составом молекул
3.     В каких выражениях речь идет о простом веществе кислород, а не о химическом элементе:
а) кислород входит в состав воды б) кислород плохо растворяется в воде
в) в оксиде меди (II) массовая доля кислорода составляет 20 % г) все ответы верны
4.     Какие утверждения справедливы для понятия «простое вещество»:
а) форма существования химического элемента в природе б) все ответы верны
в) состоит из атомов одного вида
г) простых веществ больше, чем химических элементов
5.     Найдите вариант ответа, где указано простое вещество:
6.     К простым веществам относится каждое из двух веществ:
а) натрий и вода б) хлор и углерод
в) кислород и сульфат натрия г)  серная кислота и аммиак
7.     В перечне азотная кислота, калий, нитрат кальция, железо, оксид натрия, сульфид бария, фосфора - число формул простых веществ равно:
8.      К сложным веществам относятся:
9.     Аллотропные модификации углерода:
г) все ответы верны
10.                        Благородные газы:
г) все ответы верны

himiy88.blogspot.com

§ 1.5. Простые и сложные вещества. Аллотропы. Вещества и смеси.

В предыдущей главе было сказано, что образовывать связи друг с другом могут не только атомы одного химического элемента, но также атомы разных элементов. Вещества, образованные атомами одного химического элемента, называют простыми веществами, а вещества, образованные атомами разных химических элементов, — сложными. Некоторые простые вещества имеют молекулярное строение, т.е. состоят из молекул. Например, молекулярное строение имеют такие вещества, как кислород, азот, водород, фтор, хлор, бром, йод. Каждое из этих веществ образовано двухатомными молекулами, поэтому их формулы можно записать как O

2, N2, H2, F2, Cl2, Br2 и I2 соответственно. Как можно заметить, простые вещества могут иметь одинаковое название с элементами, их образующими. Поэтому следует четко различать ситуации, когда речь идет о химическом элементе, а когда о простом веществе.

Нередко простые вещества имеют не молекулярное, а атомное строение. В таких веществах атомы могут образовывать друг с другом связи различных типов, которые подробно будут рассмотрены чуть позже. Веществами подобного строения являются все металлы, например, железо, медь, никель, а также некоторые неметаллы — алмаз, кремний, графит и т.д. Для данных веществ обычно характерно не только совпадение названия химического элемента с названием им образованного вещества, но также идентичны запись формулы вещества и обозначения химического элемента. Например, химические элементы железо, медь и кремний, имеющие обозначения Fe, Cu и Si, образуют простые вещества, формулы которых Fe, Cu и Si соответственно. Существует также небольшая группа простых веществ, состоящих из разрозненных атомов, никак не связанных между собой. Такие вещества являются газами, которые называют, ввиду их крайне низкой химической активности, благородными. К ним относятся гелий (Не), неон (Ne), аргон (Аr), криптон (Кr), ксенон (Хе), радон (Rn).

Поскольку только известных простых веществ насчитывается около 500, то логично вытекает вывод о том, что для многих химических элементов характерно явление, называемое аллотропией.

Аллотропия – явление, когда один химический элемент может образовывать несколько простых веществ. Разные химические вещества, образованные одним химическим элементом, называют аллотропными модификациями или аллотропами.

Так, например, химический элемент кислород может образовывать два простых вещества, одно и которых имеет название химического элемента – кислород. Кислород как вещество состоит из двухатомных молекул, т.е. формула его O2. Именно данное соединение входит в состав жизненно необходимого нам воздуха. Другой аллотропной модификацией кислорода является трехатомный газ озон, формула которого O3. Несмотря на то что и озон, и кислород образованы одним химическим элементом, их химическое поведение весьма различно: озон отличается намного большей активностью по сравнению с кислородом в реакциях с теми же веществами. Кроме того, данные вещества отличаются друг от друга по физическим свойствам уже как минимум из-за того, что молекулярная масса озона больше, чем у кислорода в 1,5 раза. Это приводит к тому, что его плотность в газообразном состоянии также больше в 1,5 раза.

Многие химические элементы склонны образовывать аллотропные модификации, отличающиеся друг от друга особенностями строения кристаллической решетки. Так, например, на рисунке 5, вы можете видеть схематичные изображения фрагментов кристаллических решеток алмаза и графита, которые являются аллотропными модификациями углерода.


Рисунок 5. Фрагменты кристаллических решеток алмаза (а) и графита (б)

Кроме того, углерод может иметь и молекулярное строение: такая структура наблюдается у такого типа веществ, как фуллерены. Вещества данного типа образованы молекулами углерода сферической формы. На рисунке 6 представлены 3D модели молекулы фуллерена с60 и футбольного мяча для сравнения. Обратите внимание на их интересное сходство.

Рисунок 6. Молекула фуллерена С60 (а) и футбольный мяч (б)

Сложные вещества — это вещества, которые состоят из атомов разных элементов. Они так же, как и простые вещества, могут иметь молекулярное и немолекулярное строение. Немолекулярный тип строения сложных веществ может быть более разнообразен, нежели у простых. Любые сложные химические вещества могут быть получены либо прямым взаимодействием простых веществ, либо последовательностью их взаимодействий друг с другом. Важно осознавать один факт, который заключается в том, что свойства сложных вещества как физические, так и химические сильно отличаются от свойств простых веществ, из которых они получены. Например, поваренная соль, имеющая форуму NaCl и представляющая собой бесцветные прозрачные кристаллы, может быть получена взаимодействием натрия, являющегося металлом с характерными для металлов свойствами (блеск и электропроводность), с хлором Cl2 — газом желто-зеленого цвета.

Серная кислота H2SO4 может быть образована серией последовательных превращений из простых веществ — водорода H2, серы S и кислорода O2. Водород — газ легче воздуха, образующий с воздухом взрывчатые смеси, сера — твердое вещество желтого цвета, способное гореть, и кислород — газ чуть тяжелее воздуха, в котором могут гореть многие вещества. Серная кислота, которая может быть получена из данных простых веществ, представляет собой тяжелую маслянистую жидкость, обладающая сильными водоотнимающими свойствами, из-за которых обугливает многие вещества органического происхождения.

Очевидно, что помимо индивидуальных химических веществ, бывают также и их смеси. Преимущественно именно смесями различных веществ образован мир вокруг нас: сплавы металлов, продукты питания, напитки, различные материалы, из которых состоят окружающие нас предметы.

Например, воздух, которым мы дышим, состоит в основном из азота N2 (78%), жизненно необходимого нам кислорода (21%), оставшийся же 1% приходится на примеси других газов (углекислый газ, благородные газы и др.).

Смеси веществ разделяют на гомогенные и гетерогенные. Гомогенными смесями называют такие смеси, у которых нет границ раздела фаз. Гомогенными смесями являются смесь спирта и воды, сплавы металлов, раствор соли и сахара в воде, смеси газов и т.д. Гетерогенными смесями называют такие смеси, у которых имеется граница раздела фаз. К смесям такого типа можно отнести смесь песка и воды, сахара и соли, смесь масла и воды и др.

Вещества, из которых состоят смеси, называют компонентами.

Смеси простых веществ в отличие от химических соединений, которые могут быть получены из этих простых веществ, сохраняют свойства каждого компонента.

scienceforyou.ru

Физические свойства простых веществ - Справочник химика 21

    Физические свойства простых веществ [c.100]

    Ниже приведены основные физические свойства простых веществ плотность, температура плавления и температура кипения, твердость, растворимость в воде. [c.22]

    От чего зависят физические свойства простых веществ, если элемент образует несколько аллотропных видоизменений  [c.41]

    ФИЗИЧЕСКИЕ СВОЙСТВА ПРОСТЫХ ВЕЩЕСТВ [c.22]

    Как изменяются физические свойства простых веществ Почему (Для ответа на этот вопрос необходимо знать, какой тип кристаллической решетки характерен для этих веществ. Но можно и предположить, какой он может быть). [c.88]


    Периодичность в изменении физических свойств простых веществ ярко выявляется, например, при сопоставлении их атомных объемов .  [c.53]

    Элементы-металлы входят в состав всех групп периодической системы, кроме нулевой. Химические и физические свойства простых веществ, образованных элементами-металлами, — собственно металлов — имеют ряд особенностей. Металлический блеск, высокая тепло- и электропроводность определяются особенностями электронной структуры атомов металлов. Интересно, что электропроводность различных металлов сильно различается. Это можно легко показать, включив в электрическую цепь с гальванометром поочередно медную, железную и, например, нихромовую проволоку (сплав никеля и хрома). Проволока из меди обладает столь высокой электропроводностью, что гальванометр зашкаливает . Включение в тех же условиях в цепь проволоки из железа дает лишь слабое отклонение стрелки гальванометра. В случае нихромовой проволоки отклонение стрелки гальванометра незаметно — так велико электрическое сопротивление сплава нихром (на этом основано его использование в электронагревательных приборах). [c.252]

    Физические свойства простого вещества [c.104]

    Химический знак элемента Физические свойства простого вещества Кислородные соединения с высшей степенью окисления  [c.133]

    Не только химические свойства элементов, но и очень многие физические свойства простых веществ изменяются периодически, если рассматривать их как функции атомной массы. [c.75]

    Сверху вниз в подгруппе с ростом порядкового номера закономерно изменяются физические свойства простых веществ — галогенов температура кипения и плавления, агрегатное состояние. [c.339]

    Физические свойства простых веществ, образованных элементами подгруппы азота, изменяются в той же последовательности, что и у ранее рассмотренных нами подгрупп (см. гл. XI, XII), Так, температура плавления у азота и фосфора составляет соответственно —209,8° и 44,1°, температура кипения —195° и 280° соответ ственно. [c.298]

    Каковы физические свойства простого вещества кислорода  [c.360]

    Физические свойства. Простые вещества этой подгруппы представляют собой мягкие, легко сжимаемые и режущиеся ножом металлы. Наиболее твердый из них литий (твердость по шкале Мооса 0,6). Все они в свежем разрезе белого цвета с сильным серебристым блеском, кроме цезия, который имеет золотисто-желтый цвет. Кристаллизуются в форме центрированных в пространстве кубов. По плотности относятся к легким металлам литий, натрий и калий плавают на воде, а литий — даже и на керосине. Все вещества этого ряда имеют сравнительно невысокие температуры плавления и кипения, постепенно уменьшающиеся от лития к цезию. Нужно отметить некоторую особенность для лития он стоит несколько особняком по отношению к своим аналогам, отличаясь более высокими температурами плавления и кипения, чем следовало бы ожидать. [c.232]

    Физические свойства простых веществ, образуемых атомами рассматриваемой подгруппы, приведены в табл. 112. [c.368]

    При рассмотрении физических свойств и характера их изменения в периодической системе следует различать атомные свойства (свойства элементов) и свойства простых веществ (гомоатомных соединений). Кроме того, физические свойства простых веществ могут характеризовать обе формы химической организации вещества (молекула и кристалл) или только одну из них. Очевидно, такие свойства, как температура плавления и кипения, твердость и вязкость, электрическая проводимость и т. п., относятся только к конденсированному состоянию вещества. С другой стороны, например, магнитные свойства (диа- или парамагнетизм) характерны как для кристаллов, так и для молекул. Элементы (изолированные атомы) характеризуются сравнительно небольшим набором ([)пзи-ческих свойств заряд ядра, атомная масса, орбитальный радиус, потенциал ионизации, сродство к электрону. [c.32]

    При рассмотрении физических свойств простых веществ подчеркивалось, что они в основном присущи макроскопическим количествам вещества (особенно в конденсированном состоянии). Что же касается химических свойств, то они главным образом определяются свойствами атомов или молекул, поскольку химическое взаимодействие всегда протекает на атомном или молекулярном уровне. Однако реально наблюдаемая химическая активность твердых простых веществ в заметной мере зависит, например, от величины поверхности соприкосновения, ее состояния, структуры кристалла и т. п., т. е. опять-таки от макроскопических характеристик. Так, мелкодисперсный цинк (цинковая пыль) значительно энергичнее взаимодействует с кислотами, чем гранулированный. Например, цинковая пыль восстанавливает азотную кислоту до аммиака, а гранулированный цинк — только до низших оксидов азота. Хорошо известна также способность многих металлов (А1, Ре, Т1, Сг и т. п.) к пассивации в агрессивных окисляющих ср

www.chem21.info

Отправить ответ

avatar
  Подписаться  
Уведомление о