Содержание

Особенности строения соединительных тканей. Кровь. Строение и функции форменных элементов крови.

Соединительная ткань составляет до 50% массы человеческого организма. Это связующее звено между всеми тканями организма. Различают 3 вида соединительной ткани:
— собственно соединительная ткань;
— хрящевая соединительная ткань;
— костная соединительная ткань
Соединительная ткань может выполнять как самостоятельные функции, так и входить в качестве прослоек в другие ткани.

ФУНКЦИИ СОЕДИНИТЕЛЬНОЙ ТКАНИ

1. Структурная
2. Обеспечение постоянства тканевой проницаемости
3. Обеспечение водно-солевого равновесия
4. Участие в иммунной защите организма

СОСТАВ И СТРОЕНИЕ СОЕДИНИТЕЛЬНОЙ ТКАНИ

В соединительной ткани различают: МЕЖКЛЕТОЧНОЕ (ОСНОВНОЕ) ВЕЩЕСТВО, КЛЕТОЧНЫЕ ЭЛЕМЕНТЫ, ВОЛОКНИСТЫЕ СТРУКТУРЫ (коллагеновые волокна). Особенность: межклеточного вещества гораздо больше, чем клеточных элементов.

МЕЖКЛЕТОЧНОЕ (ОСНОВНОЕ) ВЕЩЕСТВО

Кровь — это разновидность соединительной ткани, состоящей из жидкого межклеточного вещества сложного состава — плазмы н взвешенных в ней клеток — форменных элементов крови: эритроцитов (красных кровяных клеток), лейкоцитов (белых кровяных клеток) и тромбоцитов (кровяных пластинок). В 1 мм

3 крови содержится 4,5–5 млн. эритроцитов, 5–8 тыс. лейкоцитов, 200–400 тыс. тромбоцитов.


В организме человека количество крови составляет в среднем 4,5–5 л или 1/13 массы его тела. Плазма крови по объему составляет 55–60%, а форменные элементы 40–45%. Плазма крови представляет собой желтоватую полупрозрачную жидкость. В ее состав входит вода (90–92%), минеральные и органические вещества (8–10%), 7% белков. 0,7% жиров, 0.1% — глюкозы, остальная часть плотного остатка плазмы — гормоны, витамины, аминокислоты, продукты обмена веществ.

Эритроциты (красные кровяные тельца) — высокоспециализированные клетки. Имеют двояковогнутую форму. У человека в эритроцитах нет ядер. Эритроциты содержатся у здорового человека в количестве 4,5*10

6-5*106 в 1 мм3 крови. Они представляют собой безъядерные клетки, по форме напоминающие двояковогнутый диск. В цитоплазме эритроцитов содержится красящее белковое вещество — гемоглобин, который и обусловливает красный цвет крови. Важнейшая функция эритроцитов состоит в том, что они являются переносчиком кислорода. Когда кровь протекает через лёгкие, гемоглобин эритроцитов поглощает кислород; затем насыщенная кислородом (артериальная) кровь разносится по всему организму. В органах кислород отделяется от гемоглобина и поступает в ткани. Гемоглобин участвует также в переносе углекислоты из тканей в лёгкие, где она переходит из крови в воздух. Большая часть углекислоты переносится в составе плазмы крови.

Количество эритроцитов меняется от внешних факторов: мышечной работы, эмоций, потери жидкости (концентрация эритроцитов повышается).


Увеличение количества эритроцитов — эритроцитоз.

Уменьшение количества эритроцитов —

эритропения.

Эритроциты образуются в красном костном мозге (около 107 ежесекундно). Такое пополнение крови эритроцитами необходимо, так как продолжительность их жизни не превышает 120 дней. Разрушение старых эритроцитов происходит в клетках мононуклеарной фагоцитарной системы (селезёнка, печень и др.).

Гемоглобин — красящий белковый пигмент, выполняющий дыхательную функцию, входит в состав эритроцитов. Гемоглобин состоит из белкового глобулина и железа. Для его синтеза необходим витамин B12 (который содержится в говядине с кровью, алыче).

В норме в крови содержится около 140 г/л гемоглобина: у мужчин 130-155 г/л, у женщин 120-138 г/л.

Миоглобин (аналог гемоглобина) — кислород-связывающий белок скелетных мышц и мышцы сердца — снабжает мышцы кислородом.

43.Особенности строения и функции нервной ткани. Нервная ткань — одна из тканей организма, выполняющая функции восприятия раздражений и проведения нервных импульсов. Нервная ткань состоит из

нейронов (нервных клеток) и нейроглии (межклеточное вещество). Нервные клетки имеют различную форму. Нервная клетка снабжена древовидными отростками — дендритами, передающими раздражения от рецепторов к телу клетки, и длинным отростком — аксоном, который заканчивается на эффекторной клетке. Иногда аксон не покрыт миелиновой оболочкой.


Каждый нейрон состоит из тела, отростков; дендритов и аксона. Соответственно числу отростков различают униполярные (одноотростчатые), биполярные (двуртростчатые) и мультиполярные (многоотростчатые) нейроны. Одни отростки проводят нервные импульсы к клетке (дендриты), другие — от клетки (аксоны). По функциональному признаку различают афферентные (чувствительные), ассоциативные (вставочные) и эфферентные (двигательные) нейроны. Тело нейрона является его трофическим центром, нарушение целости которого ведет клетку к гибели. Тело состоит из ядра и цитоплазмы (нейроплазмы). В нейроплазме, помимо обычных органелл, содержатся специальные органоиды — нейрофибриллы и вещество Ниссля (тигроид). Нейрофибриллы — тонкие нити, расположенные в разных направлениях и формирующие густую сеть; они состоят из очень тонких (70—200 А) протофибрилл. Нейрофибриллы служат поддерживающим остовом нейрона. Тигроид представляет собой глыбки базофильного вещества, располагающиеся вокруг ядра и заходящие в основания дендритов. Тигроид принимает участие в процессах синтеза веществ, необходимых для поддержания структурной целостности нейрона и его специфического функционирования. Синтезированные вещества непрерывно транспортируются из тела нейрона в его отростки. Отростки нейрона называются нервными волокнами. Каждое волокно состоит из осевого цилиндра (аксона), внутри которого находятся аксоплазма, нейрофибриллы, митохондрии и синаптические пузырьки. В зависимости от строения оболочек, окутывающих аксоны, различают мякотные (миелиновые) и безмякотные волокна. Безмякотное волокно состоит из 7—12 тонких аксонов, которые проходят внутри тяжа, образованного цепочкой нейроглиальных клеток. Каждый аксон отделен от цитоплазмы глиальной клетки ее собственной оболочкой. Мякотное волокно состоит из одного более толстою аксона, который, помимо глиальной обкладки, окутан миелиновой оболочкой. Благодаря наличию мякотной оболочки и ее сегментированному строению значительно увеличивается скорость проведения нервного импульса. Периферические разветвления волокон формируют нервные окончания. В зависимости от функции эти окончания разделяют на рецепторные (чувствительные) и эффекислоторные (двигательные). Рецепторы бывают инкапсулированными и не-инкапсулированными. Первые отделены от других тканей соединительнотканными капсулами (тельца Фатера — Пачини, Мейсснера, колбы Краузе и др.), вторые непосредственно контактируют с иннервируемыми тканями. Эффекторные окончания образуются разветвлениями аксонов двигательных клеток. На поперечнополосатых мышечных волокнах двигательные волокна формируют нервные окончания — так называемые моторные бляшки. Окончания аксонов одного нейрона на теле и отростках другого называются интернейрональным синапсом.

Функции: опорная, трофическая. Разграничительная
, поддержаниегомеостаза вокруг нейронов, защитная, секреторная.

Глия ЦНС: макроглия и микроглия.

1. Характеристика крови как ткани 2. Механизм и значение свертывания крови 3. Эритроциты:

1.Кровь представляет собой ткань внутренней среды организма.И она является первым компонентом внутренней среды.Она жидкая и подвижная, циркулирует по замкнутой системе сосудов и непосредственно с другими тканями тела не сообщается.  Кровь является разновидностью соединительной ткани. Она составляет около 7% общей массы человека.Состоит из жидкой части — плазмы и форменных элементов клеток — эритроцитов, лейкоцитов и тромбоцитов.
2.Если происходит травма или кровь выходит из сосуда, тромбоциты слипаются и разрушаются. При этом они выделяют ферменты, которые вызывают целую цепочку химических реакций, ведущих к свёртыванию крови. Свёртывание возможно потому что в крови находится жидкий белок  фибриноген(под действием ферментов он превращается в нити нерастворимого белка фибрина).Так же для образования сгустка необходимо, чтобы в крови были соли кальция и витамин К. Образуется сетка, в которой задерживаются клетки крови. Этот сгусток останавливает кровотечение. Если не будет одного из этих условий. то сгустка не будет, а значит и кровь не остановится, а это грозит смертью. 

3.Имеет форму двояковогнутого диска, что увеличивает его поверхность. Красный цвет эритроцита зависит от гемоглобина. Оксигемоглобин ( кислород присоединяется к гемоглобину) имеет более светлую окраску , поэтому артериальная кровь выглядит ярко-алой, а венозная кровь -тёмно-красная ( потому что гемоглобин в ней остался без кислорода). Функции: транспортируют кислород к тканям и углекислый газ к лёгким. 
4.Бесцветные кровяные клетки, с хорошо развитыми ядрами. Функция : распознавание и уничтожение чужеродных соединений и клеток , которые оказываются во внутренней среде организма ( вне клеток) .
Фагоцитоз. Некоторые лейкоциты способны к амебовидному движению. Обнаружив чужеродное тело, они ложноножками захватывают его , поглощают и уничтожают. Это открытие открыл И.И. Мечниковый и назвал фагоцитозом. 
5.Большая группа клеток крови называется лимфоцитами, поскольку созревание их завершается в лимфатических узлах и в вилочковой железе (тимусе). Функция: клетки способны опознавать химическую структуру чужеродных соединений антигенов и вырабатывать антитела, которые нейтрализуют или уничтожают антигены. 

Ткани. Строение и функции эпителиальной и соединительной тканей

Совокупность клеток и межклеточного вещества, сходных по происхождению, строению и выполняемым функциям, называют тканью. В организме человека выделяют 4 основные группы тканей: эпителиальную, соединительную, мышечную, нервную.

Эпителиальная ткань (эпителий) образует слой клеток, из которых состоят покровы тела и слизистые оболочки всех внутренних органов и полостей организма и некоторые железы. Через эпителиальную ткань происходит обмен веществ между организмом и окружающей средой. В эпителиальной ткани клетки очень близко прилегают друг к другу, межклеточного вещества мало. В связи с тем, что эпителий постоянно подвергается разнообразным внешним воздействиям, его клетки погибают в больших количествах и заменяются новыми. Смена клеток происходит благодаря способности эпителиальных клеток и быстрому размножению.

Различают несколько видов эпителия – кожный, кишечный, дыхательный.

К производным кожного эпителия относятся ногти и волосы.

Кишечный эпителий односложный. Он образует и железы. Это, например, поджелудочная железа, печень, слюнные, потовые железы и др. Дыхательные пути выстланы мерцательным эпителием. Его клетки имеют обращенные к наружи подвижные реснички. С их помощью удаляются из организма попавшие с воздухом твердые частицы.

ВИДЫ СОЕДИНИТЕЛЬНОЙ ТКАНИ: кровь, лимфа, волокнистая соединительная ткань, хрящевая ткань и костная.

Основными функциями соединительной ткани являются питательная и опорная.

К соединительной ткани относятся кровь, лимфа, хрящевая, костная, жировая ткани. Кровь и лимфа состоят из жидкого межклеточного вещества и плавающих в нем клеток крови. Эти ткани обеспечивают связь между организмами, перенося различные газы и вещества.

Волокнистая и соединительная ткань состоит из клеток, связанных друг с другом межклеточным веществом в виде волокон. Волокна могут лежать плотно и рыхло. Волокнистая соединительная ткань имеется во всех органах. На рыхлую соединительную ткань похожа и жировая ткань.

В хрящевой ткани клетки крупные (хондроциты), межклеточное вещество упругое, плотное, содержит эластические и другие волокна. Хрящевой ткани много в суставах, между телами позвонков.

Костная ткань состоит из костных пластинок, внутри которых лежат клетки (остеоциты). Клетки соединены друг с другом многочисленными тонкими отростками. Костная ткань отличается твердостью.

Сердечно-сосудистая система и что в нее входит

Cердечно-сосудистая система — одна из важнейших систем организма, обеспечивающих его жизнедеятельность. Сердечно-сосудистая система обеспечивает циркуляцию крови в организме человека. Кровь с кислородом, гормонами и питательными веществами по сосудам разносится по всему организму. По пути она делится указанными соединениями со всеми органами и тканями. Затем забирает все, что осталось от обмена веществ для дальнейшей утилизации.

Сердце

Кровь циркулирует в организме благодаря сердцу. Оно ритмически сокращается как насос, перекачивая кровь по кровеносным сосудам и обеспечивая все органы и ткани кислородом и питательными веществами. Сердце — живой мотор, неутомимый труженик, за одну минуту сердце перекачивает по телу около 5 литров крови, за час – 300 литров, за сутки набегает 7 000 литров.

Круги кровообращения

Кровь, протекающую по сердечно-сосудистой системе, можно сравнить со спортсменом, который бегает на разные дистанции. Когда она проходит через малый (легочный) круг кровообращения – это спринт. А большой круг – это уже марафон. Эти круги англичанин Вильям Гарвей описал еще в 1628 году. Во время большого круга кровь разносится по всему телу, не забывая обеспечивать его кислородом и забирать углекислый газ. Во время этого «забега» артериальная кровь становится венозной.

Малый круг кровообращения отвечает за поступление крови в легкие, там кровь отдает углекислый газ и обогащается кислородом. Кровь из малого круга кровообращения возвращается в левое предсердие. Большой круг кровообращения, начинающийся в левом желудочке, обеспечивает транспорт крови по всему телу. Кровь, насыщенная кислородом, перекачивается левым желудочком в аорту и ее многочисленные ветви – различные артерии. Затем она поступает в капиллярные сосуды органов и тканей, где кислород из крови обменивается на углекислый газ. Большой круг кровообращения заканчивается небольшими венами, которые сливаются в две крупные вены (полые вены) и возвращают кровь в правое предсердие. По верхней полой вене происходит отток крови от головы, шеи и верхних конечностей, а по нижней полой вене – от туловища и нижних конечностей.

Кровеносные сосуды

Кровеносные сосуды — эластичные трубчатые образования в теле человека, по которым силой ритмически сокращающегося сердца или пульсирующего сосуда осуществляется перемещение крови по организму. По артериям кровь бежит от сердца к органам, по венам возвращается к сердцу, а самые мелкие сосуды — капилляры – приносят кровь к тканям.

Артерии

Без питательных веществ и кислорода не может обойтись ни одна клетка. Доставку их осуществляют артерии. Именно они разносят богатую кислородом кровь по всему телу. При дыхании кислород попадает в легкие. где дальше начинается доставка кислорода по всему организму. Сначала к сердцу, потом по большому кругу кровообращения ко всем частям тела. Там кровь меняет кислород на углекислый газ и затем возвращается в сердце. Сердце перекачивает ее обратно в легкие, которые забирают углекислый газ и отдают кислород, и так бесконечно. А еще есть легочные артерии малого круга кровообращения, они находятся в легких и по ним кровь, бедная кислородом и богатая углекислым газом поступает в легкие, где и происходит газообмен. Затем эта кровь по легочным венам возвращается в сердце.

Вены

Кровь с углекислым газом и продуктами обмена веществ из капилляров попадает сначала в вены, а по ним движется к сердцу. Клапаны, которые есть почти у всех вен, делают движение крови односторонним.

Еще в малом круге кровообращения есть так называемые легочные вены. По ним кровь, богатая кислородом течет от легких к сердцу.

Источники:

  1. Козлов В.И. Анатомия сердечно-сосудистой системы. Практическая медицина, 2011г. – 192 с.

SARU.ENO.19.06.1021

Компоненты крови — Служба крови

Размер шрифта А А А Цветовая схема Б Ч Г Ж З Обычная версия Дополнительно

Наша кровь состоит из четырех основных компонентов крови: эритроциты, лейкоциты, тромбоциты и плазмы.

Если раньше переливали цельную кровь, то современная медицина отдает предпочтение «компонентной терапии», когда пациент при переливании получает только те компоненты крови, которые необходимы именно ему.

Эритроциты (красные кровяные тельца)

Основная функция эритроцитов – перенос кислорода ко всем клеткам нашего тела.

Показанием к переливанию эритроцитов могут стать: больших кровопотери (например, травмы, операции, роды), снижение гемоглобина, которое приводит к сердечно-сосудистой недостаточности, а также лечение тяжелой анемии.

Лейкоциты (белые кровяные тельца)

Лейкоциты являются главными клетками иммунной системы. Лейкоциты также влияют на обмен веществ, снабжают ткани и органы недостающими гормонами, ферментами и другими веществами. Переливание лейкоцитов осуществляется пациентам, страдающим от угрожающих жизни инфекционных заболеваний.

Тромбоциты

Главная функция тромбоцитов – участие в процессе свертывания крови – важной защитной реакции организма, предотвращающей большую кровопотерю при ранении сосудов. Показанием к переливанию донорских тромбоцитов является заболевания системы крови, т.ч. лейкоз, снижение тромбоцитов у пациента, которое обычно связано с проведением химиотерапии, а также при обильных кровотечениях (травмы, роды, проведение хирургических операций).

Плазма

Основой плазмы является вода (90%), в которой растворены разнообразные белки, факторы свертывания, а также другие органические соединения и минеральные вещества. Плазма широко используется в лечебных целях в хирургии, акушерстве и гинекологии, онкологии и других областях медицинской практики. Донорская плазма нужна также для производства важнейших медицинских препаратов:

  • Альбумин — показан к применению при основных видах шока (травматическом, операционном, токсическом), при острой кровопотери, заболеваниях печени и почек. При определенных видах лечения альбумин является наиболее оптимальным препаратом.
  • Иммуноглобулины плазмы составляют группу иммунологических препаратов, обладающих специфической активностью направленного действия против гриппа, клещевого энцефалита, столбняка и других инфекционных болезней. Их широко применяют в клинической практике не только внутривенно, но и внутримышечно.

Читайте также

Современная эффективная деятельность Службы крови стала возможна только благодаря реализации основных направлений ее развития.

Большинство людей знают о донорстве очень мало и потому доверяют самым необоснованным мифам…

Успешные практики организации донорских дней, мнения ведущих экспертов Службы крови

Планируешь донацию? Расскажи об этом своим друзьям!

Клетки крови человека под микроскопом

Назад к списку

Если вы рассмотрели все доступные предметы под микроскопом, то сейчас самое время усложнить технику наблюдения и расширить исследуемые объекты. С помощью прибора можно заглянуть в ту часть природы, из которой состоим мы. Рассмотрим, как выглядят наши клетки крови под микроскопом.

Оборудование

Чтобы исследовать кровь, используют разные методы окраски материала: по Романовскому-Гимзе (самый распространенный), по Маю-Грюнвальду, по Паппенгейму или по Райту. Окраска помогает выделить структуру клетки и способствует более детальному ее рассмотрению. Для этого нужно приобрести готовый красящий раствор или порошок, состоящий из азура и эозина. Они всегда есть в продаже в специализированных магазинах.

Исследуют кровь в домашних условиях с помощью светового микроскопа, используя разное увеличение. Например, при 150х можно рассмотреть множество мелких клеток.


При среднем увеличении от 400х – 600х различаются эритроциты и среди них лейкоциты.


Для более глубокого изучения используют увеличение от 1000х и более. В этом случае можно детально рассмотреть структуру каждой клетки.


Как выглядят клетки крови под микроскопом?

Наша кровь состоит из нескольких видов клеток, выполняющих три основные функции: 

  • доставляют кислород к органам и тканям;
  • защищают от вредных микроорганизмов;
  • поддерживают постоянную внутреннюю среду.

Эритроциты под микроскопом

Самая многочисленная группа круглых клеток — эритроциты. Глядя в микроскоп, вы их увидите сразу. Эритроциты переносят кислород ко всем клеткам организма и имеют розовый цвет. 


Лейкоциты под микроскопом

Среди огромного количества эритроцитов вы увидите лейкоциты: лимфоциты, моноциты, базофилы, нейтрофилы и эозинофилы. Подробно их можно разглядеть при увеличении не менее 1000х. Лейкоциты защищают организм человека от различных заболеваний, вызванных вирусами, бактериями, грибками. В борьбе с ними многие лейкоциты погибают.

Малый лимфоцит


Средний лимфоцит


Моноцит


Базофил 


Сегментоядерный нейтрофил


Эозинофил


Тромбоциты под микроскопом

Тромбоциты отвечают за свертываемость крови. Это очень маленькие круглые клетки. Если у вас профессиональный микроскоп с увеличением больше 1000х, то вы их точно увидите.


Мы предоставили небольшой материал о том, как выглядят клетки крови человека под микроскопом с фото, но настоящее исследование с использованием собственного прибора этого не заменит. Если микроскопия станет вашим хобби, то вы откроете для себя потрясающие вещи! Например, вы когда-нибудь задумывались над тем, почему СОЭ (скорость оседания эритроцитов) выше нормы у больного человека? Рассмотрите воспаленную кровь и найдете ответ! Сколько удивительных открытий можно сделать прямо сейчас!

Здесь даже не нужно покупать очень сложное и дорогостоящее оборудование (пусть этим занимаются лаборатории!), но стоит задуматься о приобретении доступной оптической техники среднего класса. Такая покупка даст потрясающую возможность открыть для себя тайны микромира, не доступного нашему глазу!

Предлагаем вашему вниманию микроскопы интернет-магазина Veber.ru, с помощью которых вы сможете изучить клетки крови в мельчайших подробностях:

Назад к списку

Анатомия сердечно-сосудистой системы

Для того чтобы говорить о заболеваниях сердечно-сосудистой системы необходимо представлять её строение. Кровеносная система делится на артериальную и венозную. По артериальной системе кровь течёт от сердца, по венозной — притекает к сердцу. Различают большой и малый круг кровообращения.

Большой круг включает в себя аорту (восходящая и нисходящая, дуга аорты, грудной и брюшной отдел), по которой течёт кровь от левых отделов сердца. От аорты кровь попадает в сонные артерии, кровоснабжающие головной мозг, подключичные артерии, кровоснабжающие руки, почечные артерии, артерии желудка, кишечника, печени, селезёнки, поджелудочной железы, органов малого таза, подвздошные и бедренные артерии, кровоснабжающие ноги. От внутренних органов кровь оттекает по венам, которые впадают в верхнюю полую вену (собирает кровь от верхней половины туловища) и нижнюю полую вену (собирает кровь от нижней половины туловища). Полые вены впадают в правое сердце.

Малый круг кровообращения включает в себя лёгочную артерию (по которой, тем не менее, течёт венозная кровь). По лёгочной артерии кровь поступает в лёгкие, где обогащается кислородом и становиться артериальной. По лёгочным венам (четыре) артериальная кровь поступает в левое сердце.

Перекачивает кровь сердце — полый мышечный орган, состоящий из четырёх отделов. Это правое предсердие и правый желудочек, составляющие правое сердце и левое предсердие и левый желудочек, составляющие левое сердце. Богатая кислородом кровь, поступающая из лёгких по лёгочным венам попадает в левое предсердие, из него — в левый желудочек и далее в аорту. Венозная кровь по верхней и нижней полой венам попадает в правое предсердие, оттуда в правый желудочек и далее по лёгочной артерии в лёгкие, где обогащается кислородом и снова поступает в левое предсердие.

Различают перикард, миокард и эндокард. Сердце расположено в сердечной сумке — перикарде. Сердечная мышца — миокард состоит из нескольких слоёв мышечных волокон, в желудочках их больше чем в предсердиях. Эти волокна, сокращаясь, проталкивают кровь из предсердий в желудочки и из желудочков в сосуды. Внутренние полости сердца и клапаны выстилает эндокард.

  1. Правая коронарная артерия
  2. Передняя нисходящая артерия
  3. Ушко
  4. Верхняя полая вена
  5. Нижняя полая вена
  6. Аорта
  7. Лёгочная артерия
  8. Ветви аорты
  9. Правое предсердие
  10. Правый желудочек
  11. Левое предсердие
  12. Левый желудочек
  13. Трабекулы
  14. Хорды
  15. Трикуспидальный клапан
  16. Митральный клапан
  17. Клапан лёгочной артерии
Клапанный аппарат сердца.

Между левым предсердием и левым желудочком находится митральный (двухстворчатый) клапан, между правым предсердием и правым желудочком — трикуспидальный (трёхстворчатый). Аортальныё клапан находится между левым желудочком и аортой, клапан лёгочной артерии — между лёгочной артерией и правым желудочком.

Работа сердца.

Из левого и правого предсердия кровь поступает в левый и правый желудочек, при этом митральный и трикуспидальный клапан открыты, аортальный и клапан лёгочной артерии закрыты. Эта фаза в работе сердца называется диастолой. Затем митральный и трикуспидальный клапаны закрываются, желудочки сокращаются и через открывшиеся аортальный и клапан лёгочной артерии кровь, соответственно, устремляется в аорту и лёгочную артерию. Эта фаза называется систолой, систола короче диастолы.

Проводящая система сердца.

Можно сказать, что сердце работает автономно — само генерирует электрический импульс, который распространяется по сердечной мышце, заставляя её сокращаться. Импульс должен вырабатываться с определённой частотой — в норме около 50-80 импульсов в минуту. В проводящей системе сердца различаю т синусовый узел (находится в правом предсердии), от него идут нервные волокна к атрио-вентрикулярному (предсердно-желудочковому) узлу (расположен в межжелудочковой перегородке — стенке между правым и левым желудочками). От атрио-вентрикулярного узла нервные волокна идут крупными пучками (правая и левая ножка Гиса), делящимися в стенках желудочков на более мелкие (волокна Пуркинье). Электрический импульс генерируется в синусовом узле и по проводящей системе распространяется в толще миокарда (сердечная мышца).

Кровоснабжение сердца.

Как и все органы сердце должно получать кислород. Доставка кислорода осуществляется по артериям, которые называются коронарными. Коронарные артерии (правая и левая) отходят от самого начала восходящей аорты (в месте отхождения аорты от левого желудочка). Ствол левой коронарной артерии делиться на нисходящую артерию (она же передняя межжелудочковая) и огибающую. Эти артерии отдают веточки — артерия тупого края, диагональные и др. Иногда от ствола отходит так называемая срединная артерия. Ветви левой коронарной артерии кровоснабжают переднюю стенку левого желудочка, большую часть межжелудочковой перегородки, боковую стенку левого желудочка, левое предсердие. Правая коронарная артерия кровоснабжает часть правого желудочка и заднюю стенку левого желудочка.

Теперь, когда Вы стали специалистом в области анатомии сердечно-сосудистой системы, перейдём к её заболеваниям.

Вступить
в РМОАГ

33.2C: Соединительные ткани: кость, жировая ткань и кровь

Кость, жировая (жировая) ткань и кровь — это разные типы соединительной ткани, которые состоят из клеток, окруженных матрицей.

Задачи обучения

  • Описать структуру и функцию соединительных тканей, состоящих из костей, жира и крови

Ключевые моменты

  • Кость содержит три типа клеток: остеобласты, которые откладывают кость; остеоциты, поддерживающие кость; и остеокласты, резорбирующие кость.
  • Функциональной единицей компактной кости является остеон, который состоит из концентрических костных колец, называемых пластинками, окружающих центральное отверстие, называемое гаверсовым каналом, по которому проходят нервы и кровеносные сосуды.
  • Компактная кость, сделанная из неорганического материала, придающего ей прочность и стабильность, расположена на стержне длинных костей, а губчатая кость, сделанная из органического материала, находится внутри концов длинных костей.
  • Жировая (жировая) ткань содержит клетки, называемые адипоцитами, которые хранят жир в форме триглиеридов; они могут быть преобразованы организмом в энергию.
  • Кровь состоит из эритроцитов (красных кровяных телец), которые распределяют кислород по всему телу; лейкоциты (белые кровяные тельца), которые вызывают иммунный ответ; и тромбоциты, участвующие в свертывании крови.

Ключевые термины

  • остеон : любой из центральных каналов и окружающих костных слоев в компактной кости
  • canaliculi : форма канальца множественного числа; любой из множества небольших каналов или протоков в кости или в некоторых растениях
  • трабекула : небольшая минерализованная спикула, которая образует сеть в губчатой ​​кости
  • остеобласт : одноядерная клетка, из которой развивается кость
  • остеокласт : большая многоядерная клетка, связанная с резорбцией кости

Соединительные ткани

Кость

Кость или костная ткань — это соединительная ткань, которая имеет большое количество двух различных типов матричного материала.Органический матрикс материально похож на другие соединительные ткани, включая некоторое количество коллагена и эластических волокон. Это придает ткани прочность и гибкость. Неорганический матрикс состоит из минеральных солей, в основном кальция, которые придают ткани твердость. Без адекватного органического материала в матрице ткань разрывается; без адекватного неорганического материала в матрице ткань изгибается.

В кости есть три типа клеток: остеобласты, остеоциты и остеокласты.Остеобласты активны в создании костей для роста и ремоделирования. Они откладывают костный материал в матрицу, и после того, как матрица окружает их, они продолжают жить, но в пониженном метаболическом состоянии в виде остеоцитов. Остеоциты находятся в лакунах кости и помогают поддерживать состояние кости. Остеокласты активны в разрушении костей для ремоделирования костей, обеспечивая доступ к кальцию, хранящемуся в тканях, для того, чтобы высвободить его в кровь. Остеокласты обычно находятся на поверхности ткани.

Кости можно разделить на два типа: плотные и губчатые. Компактная кость находится в стержне (или диафизе) длинной кости и на поверхности плоских костей, а губчатая кость находится в конце (или эпифизе) длинной кости. Компактная кость состоит из субъединиц, называемых остеонами. Кровеносный сосуд и нерв находятся в центре остеона в длинном отверстии, называемом гаверсовым каналом, с расходящимися кругами компактной кости вокруг него, известными как ламели. Небольшие промежутки между этими кругами называются лакунами.Между лакунами проходят микроканалы, называемые канальцами; они соединяют лакуны, чтобы способствовать диффузии между клетками. Губчатая кость состоит из крошечных пластинок, называемых трабекулами, которые служат подпорками, придающими губчатой ​​кости прочность.

Рисунок \ (\ PageIndex {1} \): Структура кости : (a) Компактная кость — это плотный матрикс на внешней поверхности кости. Губчатая кость внутри компактной кости пористая с сетчатыми трабекулами. (б) Компактная кость состоит из колец, называемых остеонами. Кровеносные сосуды, нервы и лимфатические сосуды находятся в центральном гаверсовском канале.Кольца из ламелей окружают Гаверсский канал. Между ламелями расположены полости, называемые лакунами. Каналикулы — это микроканалы, соединяющие лакуны вместе. (c) Остеобласты окружают кость снаружи. Остеокласты проделывают туннели в кости, а остеоциты находятся в лакунах.

Жировая (жировая) ткань

Жировая ткань или жировая ткань считается соединительной тканью, даже если она не имеет фибробластов или настоящего матрикса и имеет лишь несколько волокон. Жировая ткань состоит из клеток, называемых адипоцитами, которые собирают и хранят жир в форме триглицеридов для энергетического обмена.Жировая ткань дополнительно служит изоляцией, помогая поддерживать температуру тела, позволяя животным быть эндотермическими. Они также действуют как амортизаторы от повреждений органов тела. Под микроскопом клетки жировой ткани кажутся пустыми из-за извлечения жира во время обработки материала для просмотра. Тонкие линии на изображении — это клеточные мембраны; ядра — это маленькие черные точки по краям клеток.

Рисунок \ (\ PageIndex {1} \): Жировая ткань : Жировая ткань (жир) — это соединительная ткань, состоящая из клеток, называемых адипоцитами.Адипоциты имеют небольшие ядра, локализованные на краю клетки, и накапливают жир для использования энергии.

Кровь

Кровь считается соединительной тканью, потому что у нее есть матрица. Типы живых клеток — это красные кровяные тельца, также называемые эритроцитами, и белые кровяные тельца, также называемые лейкоцитами. Жидкая часть цельной крови, ее матрица, обычно называется плазмой.

Рисунок \ (\ PageIndex {1} \): Ткань крови : Кровь — это соединительная ткань, которая имеет жидкий матрикс, называемый плазмой, и не имеет волокон.Эритроциты (красные кровяные тельца), преобладающий тип клеток, участвуют в переносе кислорода и углекислого газа. Также присутствуют различные лейкоциты (белые кровяные тельца), участвующие в иммунном ответе.

Клетка, которая содержится в наибольшем количестве в крови, — это эритроцит, ответственный за транспортировку кислорода к тканям тела. Эритроциты всегда одного и того же размера у разных видов, но различаются по размеру. Эритроциты млекопитающих теряют свои ядра и митохондрии, когда они высвобождаются из костного мозга, в котором они образовались.Эритроциты рыб, земноводных и птиц поддерживают свои ядра и митохондрии на протяжении всей жизни клетки. Основная задача эритроцита — переносить кислород в ткани.

Лейкоциты — это белые кровяные тельца иммунной системы, участвующие в защите организма как от инфекционных заболеваний, так и от инородных материалов. Существует пять различных и разнообразных типов лейкоцитов, но все они продуцируются и происходят из мультипотентных клеток костного мозга, известных как гемопоэтические стволовые клетки.Лейкоциты обнаруживаются по всему телу, включая кровь и лимфатическую систему.

Различные типы лимфоцитов вырабатывают антитела, адаптированные к чужеродным антигенам, и контролируют выработку этих антител. Нейтрофилы — это фагоцитарные клетки, которые участвуют в одной из первых линий защиты от микробных захватчиков, помогая удалять бактерии, попавшие в организм. Другой лейкоцит, который обнаруживается в периферической крови, — это моноцит, который дает начало фагоцитарным макрофагам, которые очищают мертвые и поврежденные клетки в организме, независимо от того, являются ли они чужеродными или взятыми из животного-хозяина.Два дополнительных лейкоцита в крови — это эозинофилы и базофилы, которые помогают облегчить воспалительную реакцию.

Слегка зернистый материал среди клеток представляет собой цитоплазматический фрагмент клетки в костном мозге. Это называется тромбоцитом или тромбоцитом. Тромбоциты участвуют в стадиях, ведущих к свертыванию крови, чтобы остановить кровотечение через поврежденные кровеносные сосуды. Кровь выполняет ряд функций, но в первую очередь она транспортирует материал по телу, доставляя питательные вещества к клеткам и удаляя из них отходы.

Структура и функции крови

Опишите структуру и функцию крови в организме

Кровь важна для регулирования pH тела, температуры, осмотического давления, циркуляции питательных веществ и удаления шлаков, распределения гормонов из эндокринных желез и устранения избыточного тепла; он также содержит компоненты для свертывания крови. Кровь состоит из нескольких компонентов, включая эритроциты, лейкоциты, тромбоциты и плазму, которая содержит факторы свертывания крови и сыворотку.

Цели обучения

  • Определить роль крови в организме
  • Сравните красные и белые кровяные тельца
  • Опишите основные компоненты крови

Роль крови в организме

Кровь, как и человеческая кровь, показанная на рисунке 1, важна для регуляции систем организма и гомеостаза. Кровь помогает поддерживать гомеостаз, стабилизируя pH, температуру, осмотическое давление и устраняя избыточное тепло. Кровь поддерживает рост, распределяя питательные вещества и гормоны, а также удаляя отходы. Красные кровяные тельца содержат гемоглобин, связывающий кислород. Эти клетки доставляют кислород клеткам и удаляют углекислый газ.

Кровь играет защитную роль, транспортируя факторы свертывания и тромбоцитов , чтобы предотвратить потерю крови после травмы. Кровь также переносит агенты борьбы с болезнями лейкоцитов к участкам инфекции. Эти клетки, включая нейтрофилы, моноциты, лимфоциты, эозинофилы и базофилы, участвуют в иммунном ответе.

Рис. 1. Показаны клетки и клеточные компоненты крови человека.

Красные кровяные тельца

Красные кровяные тельца , или эритроциты ( erythro — = «красный»; — cyte = «клетка»), представляют собой специализированные клетки, которые циркулируют по телу, доставляя кислород к клеткам; они образуются из стволовых клеток костного мозга. У млекопитающих эритроциты представляют собой небольшие двояковогнутые клетки, которые в зрелом возрасте не содержат ядра или митохондрий и имеют размер всего 7-8 мкм.У птиц и нептичьих рептилий ядро ​​все еще сохраняется в красных кровяных тельцах.

Красный цвет крови обусловлен железосодержащим белком гемоглобином, как показано на рисунке 2а. Основная задача этого белка — переносить кислород, но он также переносит и углекислый газ. Гемоглобин упакован в красные кровяные тельца из расчета около 250 миллионов молекул гемоглобина на клетку. Каждая молекула гемоглобина связывает четыре молекулы кислорода, так что каждый эритроцит несет один миллиард молекул кислорода.В пяти литрах крови человеческого тела содержится примерно 25 триллионов эритроцитов, которые могут нести до 25 секстиллионов (25 × 10 21 ) молекул кислорода в организме в любое время. У млекопитающих недостаток органелл в эритроцитах оставляет больше места для молекул гемоглобина, а недостаток митохондрий также препятствует использованию кислорода для метаболического дыхания. Только у млекопитающих есть безъядерные эритроциты, а у некоторых млекопитающих (например, верблюды) даже есть ядерные эритроциты.Преимущество ядерных эритроцитов в том, что эти клетки могут подвергаться митозу. Безъядерные эритроциты метаболизируются анаэробно (без кислорода), используя примитивный метаболический путь для производства АТФ и повышения эффективности транспорта кислорода.

Не все организмы используют гемоглобин как средство переноса кислорода. Беспозвоночные, которые используют гемолимфу, а не кровь, используют разные пигменты для связывания с кислородом. Эти пигменты используют медь или железо для кислорода. У беспозвоночных есть множество других респираторных пигментов.Гемоцианин, сине-зеленый медьсодержащий белок, показанный на рисунке 2b, обнаружен у моллюсков, ракообразных и некоторых членистоногих. Хлорокруорин, железосодержащий пигмент зеленого цвета, встречается у четырех семейств полихет трубчатых червей. Гемеритрин, красный железосодержащий белок, обнаруженный у некоторых многощетинковых червей и кольчатых червей, показан на рисунке 2c. Несмотря на название, гемеритрин не содержит гемовой группы, и его способность переносить кислород мала по сравнению с гемоглобином.

Рисунок 2.У большинства позвоночных (а) гемоглобин доставляет кислород в организм и удаляет некоторое количество углекислого газа. Гемоглобин состоит из четырех белковых субъединиц, двух альфа-цепей и двух бета-цепей, а также группы гема, с которой связано железо. Железо обратимо связывается с кислородом и при этом окисляется от Fe 2+ до Fe 3+ . У большинства моллюсков и некоторых членистоногих (б) гемоцианин доставляет кислород. В отличие от гемоглобина, гемолимфа не переносится клетками крови, а свободно плавает в гемолимфе.Медь вместо железа связывает кислород, придавая гемолимфе сине-зеленый цвет. У кольчатых червей, таких как дождевой червь, и некоторых других беспозвоночных, (c) гемеритрин переносит кислород. Подобно гемоглобину, гемеритрин переносится в клетки крови и имеет связанное с ним железо, но, несмотря на свое название, гемеритрин не содержит гема.

Небольшой размер и большая площадь поверхности красных кровяных телец обеспечивают быструю диффузию кислорода и углекислого газа через плазматическую мембрану. В легких выделяется углекислый газ, а кровь забирает кислород.В тканях кислород выделяется из крови, а углекислый газ направляется обратно в легкие. Исследования показали, что гемоглобин также связывает закись азота (NO). NO — это сосудорасширяющее средство, которое расслабляет кровеносные сосуды и капилляры и может способствовать газообмену и прохождению эритроцитов через узкие сосуды. Нитроглицерин, сердечное лекарство от стенокардии и сердечных приступов, превращается в NO, чтобы помочь расслабить кровеносные сосуды и увеличить поток кислорода через тело.

Характерной чертой красных кровяных телец является их гликолипидная и гликопротеиновая оболочка; это липиды и белки, к которым прикреплены молекулы углеводов.У людей поверхностные гликопротеины и гликолипиды в эритроцитах различаются у разных людей, производя разные группы крови, такие как A, B и O. Средняя продолжительность жизни красных кровяных телец составляет 120 дней, за это время они распадаются. и перерабатывается в печени и селезенке фагоцитирующими макрофагами, типом белых кровяных телец.

Лейкоциты

Белые кровяные тельца, также называемые лейкоцитами (лейко = белые), составляют примерно один процент от объема клеток крови.Роль белых кровяных телец сильно отличается от роли красных кровяных телец: они в первую очередь участвуют в иммунном ответе, чтобы идентифицировать и нацеливать патогены, такие как вторгшиеся бактерии, вирусы и другие чужеродные организмы. Лейкоциты образуются постоянно; некоторые живут часами или днями, а некоторые живут годами.

Морфология белых кровяных телец значительно отличается от эритроцитов. Они имеют ядра и не содержат гемоглобина. Различные типы лейкоцитов идентифицируются по их микроскопическому виду после гистологического окрашивания, и каждый из них выполняет свою специализированную функцию.Две основные группы, обе показаны на рисунке 3, — это гранулоциты, которые включают нейтрофилы, эозинофилы и базофилы, и агранулоциты, которые включают моноциты и лимфоциты.

Рис. 3. (a) Гранулоциты, включая нейтрофилы, эозинофилы и базофилы, характеризуются лопастным ядром и зернистыми включениями в цитоплазме. Гранулоциты обычно первыми реагируют во время травмы или инфекции. (b) Агранулоциты включают лимфоциты и моноциты. Лимфоциты, включая В- и Т-клетки, отвечают за адаптивный иммунный ответ.Моноциты дифференцируются в макрофаги и дендритные клетки, которые, в свою очередь, реагируют на инфекцию или травму.

Гранулоциты содержат гранулы в цитоплазме; агранулоциты названы так из-за отсутствия гранул в их цитоплазме. Некоторые лейкоциты становятся макрофагами, которые либо остаются на одном месте, либо перемещаются по кровотоку и собираются в местах инфекции или воспаления, где их привлекают химические сигналы от инородных частиц и поврежденных клеток. Лимфоциты являются первичными клетками иммунной системы и включают В-клетки, Т-клетки и естественные клетки-киллеры.В-клетки уничтожают бактерии и инактивируют их токсины. Они также вырабатывают антитела. Т-клетки атакуют вирусы, грибки, некоторые бактерии, трансплантированные клетки и раковые клетки. Т-клетки атакуют вирусы, выделяя токсины, убивающие вирусы. Естественные клетки-киллеры атакуют множество инфекционных микробов и определенные опухолевые клетки.

Одна из причин, по которой ВИЧ представляет собой серьезную проблему управления, заключается в том, что вирус напрямую нацелен на Т-клетки, проникая через рецептор. Попав внутрь клетки, ВИЧ затем размножается с помощью собственного генетического механизма Т-клетки.После репликации вируса ВИЧ он передается непосредственно от инфицированной Т-клетки к макрофагам. Наличие ВИЧ может оставаться нераспознанным в течение длительного периода времени, прежде чем проявятся полные симптомы заболевания

Компоненты крови

Гемоглобин отвечает за распределение кислорода и, в меньшей степени, углекислого газа по кровеносной системе человека, позвоночных и многих беспозвоночных. Но кровь — это больше, чем белки. Кровь — это фактически термин, используемый для описания жидкости, которая движется по сосудам, и включает плазму (жидкую часть, которая содержит воду, белки, соли, липиды и глюкозу) и клетки (красные и белые клетки) и фрагменты клеток. называется тромбоцитов .Плазма крови на самом деле является доминирующим компонентом крови и содержит воду, белки, электролиты, липиды и глюкозу. Клетки несут ответственность за перенос газов (эритроциты) и иммунную реакцию (белый цвет). Тромбоциты отвечают за свертывание крови. Межклеточная жидкость, окружающая клетки, отделена от крови, но в гемолимфе они объединены. У человека клеточные компоненты составляют примерно 45 процентов крови и 55 процентов жидкой плазмы. Кровь составляет 20 процентов внеклеточной жидкости человека и восемь процентов веса.

Тромбоциты и факторы свертывания

Кровь должна свернуться для заживления ран и предотвращения чрезмерной кровопотери. Маленькие фрагменты клеток, называемые тромбоцитами (тромбоцитами), притягиваются к месту раны, где они прикрепляются, расширяя множество выступов и высвобождая их содержимое. Это содержимое активирует другие тромбоциты, а также взаимодействует с другими факторами свертывания, которые превращают фибриноген, водорастворимый белок, присутствующий в сыворотке крови, в фибрин (не растворимый в воде белок), вызывая свертывание крови.Для работы многих факторов свертывания крови необходим витамин К, а дефицит витамина К может привести к проблемам со свертыванием крови. Многие тромбоциты сходятся и слипаются в месте раны, образуя тромбоцитарную пробку (также называемую фибриновым сгустком), как показано на рисунке 4b. Пробка или сгусток сохраняется в течение нескольких дней и останавливает потерю крови. Тромбоциты образуются в результате распада более крупных клеток, называемых мегакариоцитами, как показано на рисунке 4a. На каждый мегакариоцит образуется 2000–3000 тромбоцитов, при этом в каждом кубическом миллиметре крови присутствует от 150 000 до 400 000 тромбоцитов.Каждая пластинка имеет форму диска и имеет диаметр 2–4 мкм. Они содержат множество мелких пузырьков, но не содержат ядра.

Рис. 4. (a) Тромбоциты образуются из крупных клеток, называемых мегакариоцитами. Мегакариоцит распадается на тысячи фрагментов, которые становятся тромбоцитами. (b) Тромбоциты необходимы для свертывания крови. Тромбоциты собираются на участке раны вместе с другими факторами свертывания, такими как фибриноген, с образованием фибринового сгустка, который предотвращает потерю крови и позволяет ране зажить.

Плазма и сыворотка

Жидкий компонент крови называется плазмой, и он отделяется путем вращения или центрифугирования крови при высоких оборотах (3000 об / мин или выше). Клетки крови и тромбоциты разделяются центробежными силами на дно пробирки с образцом. Верхний жидкий слой, плазма, на 90% состоит из воды и различных веществ, необходимых для поддержания pH организма, осмотической нагрузки и защиты организма. Плазма также содержит факторы свертывания и антитела.

Плазменный компонент крови без факторов свертывания называется сывороткой . Сыворотка похожа на интерстициальную жидкость, в которой правильный состав ключевых ионов, действующих как электролиты, необходим для нормального функционирования мышц и нервов. К другим компонентам сыворотки относятся белки, которые помогают поддерживать pH и осмотический баланс, придавая крови вязкость. Сыворотка также содержит антитела, специализированные белки, которые важны для защиты от вирусов и бактерий.Липиды, включая холестерин, также переносятся в сыворотке вместе с различными другими веществами, включая питательные вещества, гормоны, метаболические отходы, а также внешние вещества, такие как лекарства, вирусы и бактерии.

Сывороточный альбумин человека является наиболее распространенным белком в плазме крови человека и синтезируется в печени. Альбумин, составляющий примерно половину белка сыворотки крови, переносит гормоны и жирные кислоты, буферизует pH и поддерживает осмотическое давление. Иммуноглобин представляет собой белковое антитело, вырабатываемое слизистой оболочкой, и играет важную роль в опосредованном антителами иммунитете.

Типы крови, связанные с белками на поверхности красных кровяных телец

Красные кровяные тельца покрыты антигенами, состоящими из гликолипидов и гликопротеинов. Состав этих молекул определяется генетикой, которая эволюционировала с течением времени. У людей разные поверхностные антигены сгруппированы в 24 разные группы крови с более чем 100 различными антигенами на каждом эритроците. Две наиболее известные группы крови — это ABO, показанная на рисунке 5, и резус-система.Поверхностные антигены в группе крови ABO представляют собой гликолипиды, называемые антигеном A и антигеном B. Люди с группой крови A имеют антиген A, люди с группой крови B имеют антиген B, люди с группой крови AB имеют оба антигена, а люди с группой крови O не имеют ни одного антигена. Антитела, называемые агглютиноугенами, обнаруживаются в плазме крови и реагируют с антигенами A или B, если они смешаны. При объединении крови типа A и типа B агглютинация (слипание) крови происходит из-за антител в плазме, которые связываются с противоположным антигеном; это вызывает сгустки, которые коагулируют в почках, вызывая почечную недостаточность.Кровь типа O не имеет ни антигенов A, ни B, поэтому кровь типа O можно сдавать всем группам крови. Отрицательная кровь типа O — универсальный донор. Положительная кровь типа AB является универсальным акцептором, поскольку она имеет антиген как A, так и B. Группы крови ABO были открыты в 1900 и 1901 годах Карлом Ландштейнером в Венском университете.

Группа крови резус была впервые обнаружена у макак-резусов. У большинства людей есть резус-антиген (Rh +), и у них нет анти-резус-антител в крови. Те немногие люди, у которых нет резус-антигена и являются резус-фактором, могут развить анти-резус-антитела при контакте с Rh + кровью.Это может произойти после переливания крови или после того, как Rh– женщина родила Rh + ребенка. Первое воздействие обычно не вызывает реакции; однако при втором воздействии в крови накопилось достаточно антител, чтобы вызвать реакцию, вызывающую агглютинацию и разрушение эритроцитов. Инъекция может предотвратить эту реакцию.

Рис. 5. Красные кровяные тельца человека могут иметь на своей поверхности гликопротеины типа A или B, оба гликопротеина в сочетании (AB) или ни один из них (O). Гликопротеины служат антигенами и могут вызывать иммунный ответ у человека, которому переливают незнакомые антигены.Кровь типа O, не содержащая антигенов A или B, не вызывает иммунного ответа при введении человеку любой группы крови. Таким образом, O считается универсальным донором. Люди с кровью типа AB могут принимать кровь любой группы крови, а группа AB считается универсальным акцептором.

Сыграйте в игру о группе крови на веб-сайте Нобелевской премии, чтобы укрепить свои представления о группах крови.

Вкратце: структура и функция крови

Эритроциты — это специализированные клетки, которые содержат гемоглобин и циркулируют по телу, доставляя кислород к клеткам.Лейкоциты участвуют в иммунном ответе, чтобы идентифицировать вторгшиеся бактерии, вирусы и другие чужеродные организмы и бороться с ними; они также перерабатывают ненужные компоненты, такие как старые эритроциты.

Тромбоциты и факторы свертывания крови вызывают превращение растворимого белка фибриногена в нерастворимый белок фибрин в месте раны, образуя пробку. Плазма на 90% состоит из воды и различных веществ, таких как факторы свертывания крови и антитела. Сыворотка — это плазменный компонент крови без факторов свертывания.

Проверьте свое понимание

Ответьте на вопросы ниже, чтобы увидеть, насколько хорошо вы понимаете темы, затронутые в предыдущем разделе. В этой короткой викторине , а не засчитываются в вашу оценку в классе, и вы можете пересдавать ее неограниченное количество раз.

Используйте этот тест, чтобы проверить свое понимание и решить, следует ли (1) изучить предыдущий раздел дальше или (2) перейти к следующему разделу.

Гематологический глоссарий — Гематология.org

Кровь — это специализированная биологическая жидкость. Он состоит из четырех основных компонентов: плазмы, красных кровяных телец, лейкоцитов и тромбоцитов. Кровь выполняет множество различных функций, в том числе:

  • транспортировка кислорода и питательных веществ к легким и тканям
  • образование тромбов для предотвращения чрезмерной кровопотери
  • , несущие клетки и антитела, борющиеся с инфекцией
  • выводит продукты жизнедеятельности в почки и печень, которые фильтруют и очищают кровь
  • регулирующий температуру тела

Кровь, которая течет по венам, артериям и капиллярам, ​​известна как цельная кровь, смесь примерно 55 процентов плазмы и 45 процентов клеток крови.Около 7-8 процентов вашей общей массы тела составляет кровь. У мужчины среднего роста около 12 пинт крови в теле, а у женщины среднего роста — около 9 пинт.

Компоненты крови и их значение

Многие люди сдавали анализ крови или сдавали кровь, но гематология — исследование крови — охватывает гораздо больше. Врачи, специализирующиеся в области гематологии (гематологи), возглавляют многие достижения в лечении и профилактике заболеваний крови.

Если у вас или вашего близкого человека диагностировано заболевание крови, ваш лечащий врач может направить вас к гематологу для дальнейшего обследования и лечения.

Плазма

Жидкий компонент крови называется плазмой, смесью воды, сахара, жира, белка и солей. Основная задача плазмы — транспортировать клетки крови по всему телу вместе с питательными веществами, продуктами жизнедеятельности, антителами, белками свертывания крови, химическими посредниками, такими как гормоны, и белками, которые помогают поддерживать баланс жидкости в организме.

Красные кровяные тельца (также называемые эритроцитами или эритроцитами)

Эритроциты, известные своим ярко-красным цветом, являются наиболее многочисленными клетками крови, составляя от 40 до 45 процентов ее объема. Форма эритроцита представляет собой двояковогнутый диск со сплющенным центром — другими словами, обе стороны диска имеют неглубокие углубления в виде чаши (эритроцит выглядит как бублик).

Производство красных кровяных телец контролируется эритропоэтином, гормоном, вырабатываемым в основном почками.Эритроциты появляются в костном мозге как незрелые клетки и примерно через семь дней созревания попадают в кровоток. В отличие от многих других клеток, красные кровяные тельца не имеют ядра и могут легко менять форму, помогая им проходить через различные кровеносные сосуды в вашем теле. Однако, хотя отсутствие ядра делает эритроцит более гибким, оно также ограничивает жизнь клетки, поскольку она проходит через мельчайшие кровеносные сосуды, повреждая мембраны клетки и истощая ее запасы энергии.В среднем эритроцит выживает всего 120 дней.

Красные клетки содержат особый белок, называемый гемоглобином, который помогает переносить кислород из легких к остальным частям тела, а затем возвращает углекислый газ из организма в легкие, чтобы его можно было выдохнуть. Кровь кажется красной из-за большого количества эритроцитов, цвет которых определяется гемоглобином. Процент объема цельной крови, который состоит из эритроцитов, называется гематокритом и является общей мерой уровня эритроцитов.

Белые кровяные тельца (также называемые лейкоцитами)

Лейкоциты защищают организм от инфекции. Их намного меньше, чем красных кровяных телец, и они составляют около 1 процента вашей крови.

Наиболее распространенным типом лейкоцитов является нейтрофил, который является клеткой «немедленного ответа» и составляет от 55 до 70 процентов от общего количества лейкоцитов. Каждый нейтрофил живет меньше суток, поэтому ваш костный мозг должен постоянно вырабатывать новые нейтрофилы, чтобы поддерживать защиту от инфекции.Переливание нейтрофилов обычно неэффективно, поскольку они не остаются в организме очень долго.

Другой основной тип белых кровяных телец — лимфоциты. Есть две основные популяции этих клеток. Т-лимфоциты помогают регулировать функцию других иммунных клеток и напрямую атакуют различные инфицированные клетки и опухоли. В-лимфоциты вырабатывают антитела, которые представляют собой белки, которые нацелены на бактерии, вирусы и другие чужеродные материалы.

Тромбоциты (также называемые тромбоцитами)

В отличие от красных и белых кровяных телец, тромбоциты на самом деле не клетки, а скорее небольшие фрагменты клеток.Тромбоциты помогают процессу свертывания крови (или коагуляции), собираясь в месте травмы, прилипая к слизистой оболочке поврежденного кровеносного сосуда и образуя платформу, на которой может происходить свертывание крови. Это приводит к образованию фибринового сгустка, который покрывает рану и предотвращает вытекание крови. Фибрин также образует начальную основу, на которой формируется новая ткань, способствуя заживлению.

Более высокое, чем обычно, количество тромбоцитов может вызвать ненужное свертывание крови, что может привести к инсультам и сердечным приступам; однако, благодаря достижениям в области антитромбоцитарной терапии, существуют методы лечения, которые помогают предотвратить эти потенциально смертельные события.И наоборот, более низкое, чем обычно, количество может привести к обширному кровотечению.

Общий анализ крови

Полный анализ крови (CBC) дает вашему врачу важную информацию о типах и количестве клеток в вашей крови, особенно об эритроцитах и ​​их процентном содержании (гематокрит) или содержании белка (гемоглобин), лейкоцитах и ​​тромбоцитах. Результаты общего анализа крови могут диагностировать такие состояния, как анемия, инфекция и другие расстройства. Количество тромбоцитов и тесты на свертываемость плазмы (протомбиновое время, частичное тромбопластиновое время и тромбиновое время) можно использовать для оценки нарушений свертываемости и свертываемости крови.

Ваш врач может также сделать мазок крови, который позволяет исследовать ваши кровяные тельца под микроскопом. В нормальном мазке крови эритроциты выглядят как обычные круглые клетки с бледным центром. Вариации размера или формы этих клеток могут указывать на заболевание крови.

Откуда берутся клетки крови?

Клетки крови развиваются из гемопоэтических стволовых клеток и образуются в костном мозге посредством строго регулируемого процесса кроветворения.Гемопоэтические стволовые клетки способны превращаться в эритроциты, лейкоциты и тромбоциты. Эти стволовые клетки циркулируют в крови и костном мозге у людей любого возраста, а также в пуповине новорожденных. Стволовые клетки из всех трех источников можно использовать для лечения различных заболеваний, включая лейкоз, лимфому, недостаточность костного мозга и различные иммунные нарушения.

Где я могу найти дополнительную информацию?

Если вы хотите узнать больше о болезнях и расстройствах крови, вот еще несколько ресурсов, которые могут вам помочь:

статей из гематологии , учебной программы ASH

Учебное пособие Американского общества гематологов (ASH), ежегодно обновляемое экспертами в данной области, представляет собой сборник статей о текущих вариантах лечения, доступных пациентам.Статьи сгруппированы здесь по типу заболевания. Если вы хотите узнать больше о конкретном заболевании крови, мы рекомендуем вам поделиться этими статьями и обсудить их со своим врачом.

Результаты клинических исследований, опубликованные в Кровь

Найдите Blood , официальный журнал ASH, на предмет результатов последних исследований крови. В то время как недавние статьи обычно требуют входа в систему, пациенты, заинтересованные в просмотре статьи с контролируемым доступом в Blood , могут получить копию, отправив запрос по электронной почте в издательство Blood Publishing Office.

Группы пациентов

В этом разделе содержится список веб-ссылок на группы пациентов и другие организации, которые предоставляют информацию.

Состав крови | SEER Training

Когда образец крови вращается в центрифуге, клетки и клеточные фрагменты отделяются от жидкого межклеточного матрикса. Поскольку формованные элементы тяжелее жидкой матрицы, они уплотняются на дне пробирки под действием центробежной силы.Жидкость светло-желтого цвета наверху — это плазма, на которую приходится около 55 процентов объема крови, а эритроциты называются гематокритом или объемом упакованных клеток (PCV). Лейкоциты и тромбоциты образуют тонкий белый слой, называемый «лейкоцитная пленка», между плазмой и эритроцитами.

Плазма

Водянистая жидкая часть крови (90 процентов воды), в которой взвешены корпускулярные элементы. Он переносит питательные вещества, а также отходы по всему телу.В нем растворены различные соединения, включая белки, электролиты, углеводы, минералы и жиры.

Формованные элементы

Форменные элементы — это клетки и фрагменты клеток, взвешенные в плазме. Три класса форменных элементов — это эритроциты (красные кровяные тельца), лейкоциты (белые кровяные тельца) и тромбоциты (тромбоциты).

Эритроциты (красные кровяные тельца)

Эритроциты, или красные кровяные тельца, являются наиболее многочисленными форменными элементами.Эритроциты представляют собой крошечные двояковогнутые диски, тонкие в середине и более толстые по периферии. Форма обеспечивает комбинацию гибкости для движения через крошечные капилляры с максимальной площадью поверхности для диффузии газов. Основная функция эритроцитов — перенос кислорода и, в меньшей степени, углекислого газа.

Лейкоциты (лейкоциты)

Лейкоциты или белые кровяные тельца обычно крупнее эритроцитов, но их меньше.Несмотря на то, что они считаются клетками крови, большую часть своей работы лейкоциты выполняют в тканях. Они используют кровь как транспортную среду. Некоторые из них фагоцитируют, другие вырабатывают антитела; одни выделяют гистамин и гепарин, а другие нейтрализуют гистамин. Лейкоциты способны перемещаться через стенки капилляров в тканевые пространства, этот процесс называется диапедезом. В тканевых пространствах они обеспечивают защиту от организмов, вызывающих заболевание, и либо стимулируют, либо подавляют воспалительные реакции.

В крови есть две основные группы лейкоцитов. Клетки, которые образуют гранулы в цитоплазме, называются гранулоцитами, а те, которые не имеют гранул, называются агранулоцитами. Нейтрофилы, эозинофилы и базофилы представляют собой гранулоциты. Моноциты и лимфоциты — агранулоциты.

Нейтрофилы, самые многочисленные лейкоциты, фагоцитируют и имеют светлые гранулы. Эозинофилы имеют гранулы и помогают противодействовать воздействию гистамина. Базофилы секретируют гистомин и гепарин и имеют синие гранулы.В тканях они называются тучными клетками. Лимфоциты — это агранулоциты, играющие особую роль в иммунных процессах. Некоторые атакуют бактерии напрямую; другие вырабатывают антитела.

Тромбоциты (тромбоциты)

Тромбоциты или тромбоциты — это не полные клетки, а небольшие фрагменты очень крупных клеток, называемые мегакариоцитами. Мегакариоциты развиваются из гемоцитобластов красного костного мозга. Тромбоциты становятся липкими и слипаются, образуя тромбоцитарные пробки, закрывающие разрывы и разрывы в кровеносных сосудах.Они также инициируют образование тромбов.

Функция и состав крови | Блог HealthEngine

Перейти к


Факты крови
  • Примерно 8% веса взрослого человека состоит из крови.
  • У женщин около 4-5 литров, у мужчин — около 5-6 литров. Эта разница в основном связана с различиями в размерах тела мужчин и женщин.
  • Средняя температура 38 градусов по Цельсию.
  • Он имеет pH 7,35-7,45, что делает его слабощелочным (менее 7 считается кислым).
  • Цельная кровь примерно в 4,5–5,5 раз более вязкая, чем вода, что указывает на то, что она более устойчива к течению, чем вода. Эта вязкость жизненно важна для функционирования крови, потому что, если кровь течет слишком легко или со слишком большим сопротивлением, она может перегрузить сердце и привести к серьезным сердечно-сосудистым проблемам.
  • Кровь в артериях ярче красного цвета, чем кровь в венах, из-за более высокого уровня кислорода в артериях.
  • Искусственного заменителя человеческой крови не найдено.


Функции крови

Кровь выполняет три основные функции: транспортировку, защиту и регулирование.

Транспорт

Кровь переносит следующие вещества:

  • Газы, а именно кислород (O 2 ) и углекислый газ (CO 2 ), между легкими и остальным телом
  • Питательные вещества из пищеварительного тракта и мест накопления в остальную часть тела
  • Отходы, подлежащие детоксикации или удалению печенью и почками
  • Гормоны желез, в которых они вырабатываются, до своих клеток-мишеней
  • Нагревает кожу, чтобы помочь регулировать температуру тела

Поддерживайте общее состояние здоровья

Найдите и сразу же забронируйте доступного врача общей практики в Австралии

Найдите врачей общей практики в Австралии

Защита

Кровь играет несколько ролей в воспалении:

  • Лейкоциты, или белые кровяные тельца, уничтожают вторгшиеся микроорганизмы и раковые клетки
  • Антитела и другие белки уничтожают патогенные вещества
  • Факторы тромбоцитов инициируют свертывание крови и помогают минимизировать кровопотерю

Постановление

Кровь помогает регулировать:

  • pH за счет взаимодействия с кислотами и основаниями
  • Водный баланс за счет переноса воды в ткани и из тканей


Состав крови

Кровь классифицируется как соединительная ткань и состоит из двух основных компонентов:

  1. Плазма, представляющая собой прозрачную внеклеточную жидкость
  2. Сформированные элементы, состоящие из клеток крови и тромбоцитов

Формованные элементы названы так потому, что они заключены в плазматическую мембрану и имеют определенную структуру и форму.Все форменные элементы являются клетками, за исключением тромбоцитов, которые представляют собой крошечные фрагменты клеток костного мозга.

Формируемые элементы:

  • Эритроциты, также известные как красные кровяные тельца (эритроциты)
  • Лейкоциты, также известные как лейкоциты (WBC)
  • Тромбоциты

Информация о переиздании этого изображения

Лейкоциты далее подразделяются на две подкатегории, называемые гранулоцитами, которые состоят из нейтрофилов, эозинофилов и базофилов; и агранулоциты, состоящие из лимфоцитов и моноцитов.

Формованные элементы можно отделить от плазмы с помощью центрифуги, при которой образец крови вращается в течение нескольких минут в пробирке для разделения его компонентов в соответствии с их плотностями. Эритроциты плотнее плазмы и поэтому скапливаются на дне пробирки, составляя 45% от общего объема. Этот объем известен как гематокрит. Лейкоциты и тромбоциты образуют узкую пленку кремового цвета, известную как лейкоцит, непосредственно над эритроцитами. Наконец, плазма составляет верхнюю часть пробирки бледно-желтого цвета и составляет чуть менее 55% от общего объема.


Плазма крови

Плазма крови представляет собой смесь белков, ферментов, питательных веществ, отходов, гормонов и газов. Конкретный состав и функции его компонентов следующие:


Белки

Это вещество, наиболее распространенное в плазме по весу, и играет роль в различных функциях, включая свертывание, защиту и транспорт. В совокупности они выполняют несколько функций:

  • Они являются важным резервным источником аминокислот для питания клеток.Клетки, называемые макрофагами, в печени, кишечнике, селезенке, легких и лимфатической ткани могут расщеплять белки плазмы, чтобы высвободить свои аминокислоты. Эти аминокислоты используются другими клетками для синтеза новых продуктов.
  • Белки плазмы также служат переносчиками для других молекул. Многие типы небольших молекул связываются со специфическими белками плазмы и транспортируются из органов, которые поглощают эти белки, в другие ткани для использования. Белки также помогают поддерживать щелочность крови при стабильном pH.Они делают это, действуя как слабые основания, связывая избыточные ионы H +. Таким образом они удаляют из крови избыток H +, что делает ее слегка щелочной.
  • Белки плазмы взаимодействуют определенным образом, вызывая свертывание крови, что является частью реакции организма на повреждение кровеносных сосудов (также известное как повреждение сосудов) и помогает защитить от потери крови и вторжения посторонних микроорганизмов и вирусы.
  • Белки плазмы управляют распределением воды между кровью и тканевой жидкостью, создавая так называемое коллоидное осмотическое давление.

Существует три основных категории белков плазмы, и каждый отдельный тип белков имеет свои собственные специфические свойства и функции в дополнение к их общей коллективной роли:

  1. Альбумины , которые представляют собой самые маленькие и самые распространенные белки плазмы. Снижение содержания альбумина в плазме может привести к потере жидкости из крови и накоплению жидкости в интерстициальном пространстве (пространстве внутри ткани), что может происходить при заболеваниях питания, печени и почек.Альбумин также помогает многим веществам растворяться в плазме, связываясь с ними, поэтому играет важную роль в переносе в плазму таких веществ, как лекарственные препараты, гормоны и жирные кислоты.
  2. Глобулины , которые можно подразделить на три класса от наименьшего до наибольшего по молекулярной массе на альфа-, бета- и гамма-глобулины. Глобулины включают липопротеины высокой плотности (ЛПВП), глобулин альфа-1 и липопротеины низкой плотности (ЛПНП), глобулин бета-1. ЛПВП участвуют в транспорте липидов, транспортируя жиры к клеткам для использования в энергетическом обмене, реконструкции мембран и функции гормонов.ЛПВП также предотвращают проникновение холестерина в стенки артерий и их оседание. ЛПНП переносят холестерин и жиры в ткани для использования в производстве стероидных гормонов и построении клеточных мембран, но он также способствует отложению холестерина в стенках артерий и, таким образом, по-видимому, играет роль в заболеваниях кровеносных сосудов и сердца. Таким образом, ЛПВП и ЛПНП играют важную роль в регуляции холестерина и, следовательно, оказывают большое влияние на сердечно-сосудистые заболевания.
  3. Фибриноген , который представляет собой растворимый предшественник липкого белка, называемого фибрином, который образует каркас тромба.Фибрин играет ключевую роль в свертывании крови, что обсуждается далее в этой статье в разделе «Тромбоциты».


Аминокислоты

Они образуются при расщеплении тканевых белков или при переваривании переваренных белков.


Азотные отходы

Будучи токсичными конечными продуктами распада веществ в организме, они обычно выводятся из кровотока и выводятся почками со скоростью, которая уравновешивает их производство.


Питательные вещества

Те, которые всасываются в пищеварительном тракте, переносятся в плазме крови. К ним относятся глюкоза, аминокислоты, жиры, холестерин, фосфолипиды, витамины и минералы.


Газы

Некоторое количество кислорода и углекислого газа переносится плазмой. Плазма также содержит значительное количество растворенного азота.


Электролиты

Самыми распространенными из них являются ионы натрия, на которые приходится большая осмолярность крови, чем на любые другие растворенные вещества.

Запишитесь на прием к врачу онлайн

Найдите и сразу же запишитесь на следующее посещение врача с помощью HealthEngine

Найдите практикующих врачей

Эритроциты

Красные кровяные тельца (эритроциты), также известные как эритроциты, выполняют две основные функции:

  1. Для забора кислорода из легких и доставки его в другие ткани
  2. Для захвата углекислого газа из других тканей и выгрузки его в легкие

Эритроцит — это дискообразная клетка с толстым ободком и тонким углублением в центре.Плазматическая мембрана зрелых эритроцитов содержит гликопротеины и гликолипиды, которые определяют группу крови человека. На его внутренней поверхности находятся два белка, называемые спектрином и актином, которые придают мембране упругость и прочность. Это позволяет эритроцитам растягиваться, изгибаться и складываться, когда они проталкиваются через мелкие кровеносные сосуды, и возвращаться к своей первоначальной форме, когда они проходят через более крупные сосуды.

эритроцитов неспособны к аэробному дыханию, что не позволяет им потреблять переносимый ими кислород, потому что они теряют почти все свои внутренние клеточные компоненты во время созревания.Утраченные внутренние клеточные компоненты включают митохондрии, которые обычно обеспечивают клетку энергией, и их ядро, которое содержит генетический материал клетки и позволяет ей восстанавливаться. Отсутствие ядра означает, что эритроциты не могут восстанавливаться. Однако получающаяся двояковогнутая форма заключается в том, что ячейка имеет большее отношение площади поверхности к объему, что позволяет O 2 и CO 2 быстро диффундировать к Hb и обратно.

Цитоплазма эритроцитов состоит в основном из 33% раствора гемоглобина (Hb), который придает эритроцитам красный цвет.Гемоглобин переносит большую часть кислорода и часть углекислого газа, переносимых кровью.

Циркулирующие эритроциты живут около 120 дней. По мере старения эритроцитов его мембрана становится все более хрупкой. Без ключевых органелл, таких как ядро ​​или рибосомы, эритроциты не могут восстанавливаться. Многие эритроциты умирают в селезенке, где они попадают в узкие каналы, разрушаются и разрушаются. Гемолиз относится к разрыву эритроцитов, при котором высвобождается гемоглобин, оставляя пустые плазматические мембраны, которые легко перевариваются клетками, известными как макрофаги в печени и селезенке.Затем Hb распадается на различные компоненты и либо перерабатывается в организме для дальнейшего использования, либо утилизируется.

Лейкоциты

Лейкоциты (лейкоциты) также известны как лейкоциты. Их можно разделить на гранулоциты и агранулоциты. У первых есть цитоплазмы, которые содержат органеллы, которые при световой микроскопии выглядят как цветные гранулы, отсюда и их название. Гранулоциты состоят из нейтрофилов, эозинофилов и базофилов. Напротив, агранулоциты не содержат гранул.Они состоят из лимфоцитов и моноцитов.


Гранулоциты

  1. Нейтрофилы: Они содержат очень мелкие цитоплазматические гранулы, которые можно увидеть под световым микроскопом. Нейтрофилы также называют полиморфноядерными (PMN), потому что они имеют множество ядерных форм. Они играют роль в уничтожении бактерий и высвобождении химикатов, убивающих или подавляющих рост бактерий.
  2. Эозинофилы: Они имеют большие гранулы и выступающее ядро, которое разделено на две доли.Они уничтожают аллергены и воспалительные химические вещества, а также выделяют ферменты, выводящие из строя паразитов.
  3. Базофилы: Имеют бледное ядро, обычно скрытое гранулами. Они секретируют гистамин, который увеличивает кровоток в тканях за счет расширения кровеносных сосудов, а также выделяют гепарин, который является антикоагулянтом, который способствует подвижности других лейкоцитов, предотвращая свертывание крови.


Агранулоциты

  1. Лимфоциты: Обычно они делятся на маленькие, средние и большие.Средние и большие лимфоциты обычно обнаруживаются в основном в фиброзной соединительной ткани и лишь изредка в кровотоке. Лимфоциты уничтожают раковые клетки, клетки, инфицированные вирусами, и чужеродные клетки. Кроме того, они представляют антигены для активации других клеток иммунной системы. Они также координируют действия других иммунных клеток, секретируют антитела и служат в иммунной памяти.
  2. Моноциты: Это самые крупные форменные элементы.Их цитоплазма обычно обильная и относительно чистая. Они функционируют, дифференцируясь в макрофаги, которые являются крупными фагоцитарными клетками, и переваривают патогены, мертвые нейтрофилы и остатки мертвых клеток. Как и лимфоциты, они также представляют антигены для активации других иммунных клеток.

Тромбоциты

Тромбоциты представляют собой небольшие фрагменты клеток костного мозга и поэтому сами по себе не классифицируются как клетки.

Тромбоциты выполняют следующие функции:

  1. Секретные сосудосуживающие средства, сужающие кровеносные сосуды, вызывая спазмы сосудов в поврежденных кровеносных сосудах
  2. Формируйте временные тромбоцитарные пробки, чтобы остановить кровотечение
  3. Секретные прокоагулянты (факторы свертывания), способствующие свертыванию крови
  4. Растворяет тромбы, когда они больше не нужны
  5. Переваривать и уничтожать бактерии
  6. Секретные химические вещества, привлекающие нейтрофилы и моноциты к участкам воспаления
  7. Секретные факторы роста для поддержания внутренней выстилки кровеносных сосудов

Первые три перечисленные выше функции относятся к важным гемостатическим механизмам, в которых тромбоциты играют роль во время кровотечения: спазм сосудов, образование тромбоцитарных пробок и свертывание крови (коагуляция).


Спазм сосудов

Это быстрое сужение разорванного кровеносного сосуда и самая немедленная защита от кровопотери. Травма стимулирует болевые рецепторы. Некоторые из этих рецепторов непосредственно иннервируют близлежащие кровеносные сосуды и заставляют их сужаться. Через несколько минут возьмутся другие механизмы. Повреждение гладкой мускулатуры кровеносного сосуда вызывает более продолжительное сужение сосудов, когда тромбоциты выделяют химический вазоконстриктор, называемый серотонином.Это поддерживает спазм сосудов достаточно долго, чтобы в игру вступили другие механизмы гемостаза.


Образование тромбоцитарной пробки

В нормальных условиях тромбоциты обычно не прилипают к стенке неповрежденных кровеносных сосудов, поскольку выстилка сосудов имеет тенденцию быть гладкой и покрытой репеллентом тромбоцитов. Когда сосуд разрывается, тромбоциты выделяют длинные шипы, прикрепляющиеся к стенке сосуда, а также к другим тромбоцитам. Затем эти удлинения сжимаются и сближают стенки сосуда.Образовавшаяся масса тромбоцитов, известная как тромбоцитарная пробка, может уменьшить или остановить незначительное кровотечение.


Коагуляция

Это последняя и самая эффективная защита от кровотечения. Во время кровотечения важно, чтобы кровь быстро свертывалась, чтобы минимизировать кровопотерю, но не менее важно, чтобы кровь не свертывалась в неповрежденных сосудах. Коагуляция — это очень сложный процесс, направленный на свертывание крови в необходимом количестве. Целью коагуляции является преобразование фибриногена плазмы в фибрин, который представляет собой липкий белок, прилипающий к стенкам сосуда.Клетки крови и тромбоциты прилипают к фибрину, и образовавшаяся масса помогает закрыть разрыв в кровеносном сосуде. Образование фибрина — вот что делает коагуляцию такой сложной, поскольку в ней участвуют многочисленные химические реакции и множество факторов свертывания.

Производство крови

Гемопоэз

Кроветворение — это производство форменных элементов крови. Кроветворные ткани относятся к тканям, вырабатывающим кровь. Самой ранней развивающейся кроветворной тканью является желточный мешок, который также участвует в переносе питательных веществ желтка эмбриона.У плода клетки крови производятся костным мозгом, печенью, селезенкой и тимусом. Это меняется во время и после рождения. Печень перестает производить клетки крови примерно во время рождения, в то время как селезенка перестает производить их вскоре после рождения, но продолжает вырабатывать лимфоциты на всю жизнь. С младенчества все форменные элементы вырабатываются красным костным мозгом. Лимфоциты дополнительно продуцируются в лимфоидных тканях и органах, широко распространенных в организме, включая тимус, миндалины, лимфатические узлы, селезенку и участки лимфоидных тканей в кишечнике.

Эритропоэз

Эритропоэз относится, в частности, к производству эритроцитов или красных кровяных телец (эритроцитов). Они образуются в результате следующей последовательности трансформаций клеток:

Информация о переиздании этого изображения

Проэритробласт имеет рецепторы гормона эритропоэтина (ЭПО). Как только рецепторы ЕРО находятся на своем месте, клетка обязуется производить исключительно эритроциты. Затем эритробласты размножаются и синтезируют гемоглобин (Hb), который является красным транспортным белком кислорода.Затем ядро ​​из эритробластов отбрасывается, давая начало клеткам, названным ретикулоцитами. Общая трансформация гемоцитобласта в ретикулоциты включает уменьшение размера клеток, увеличение числа клеток, синтез гемоглобина и потерю ядра клетки. Эти ретикулоциты покидают костный мозг и попадают в кровоток, где они созревают в эритроциты, когда их эндоплазматический ретикулум исчезает.


Лейкопоэз

Лейкопоэз относится к производству лейкоцитов (лейкоцитов).Он начинается, когда некоторые типы гемоцитобластов дифференцируются на три типа коммитированных клеток:

  1. предшественников B, которым суждено стать B-лимфоцитами
  2. предшественников Т, которые становятся Т-лимфоцитами
  3. Гранулоцитарно-макрофагальные колониеобразующие единицы, которые становятся гранулоцитами и моноцитами

Эти клетки имеют рецепторы колониестимулирующих факторов (CSF). Каждый CSF стимулирует развитие разных типов лейкоцитов в ответ на определенные потребности. Зрелые лимфоциты и макрофаги секретируют несколько типов спинномозговой жидкости в ответ на инфекции и другие иммунные нарушения.Красный костный мозг хранит гранулоциты и моноциты до тех пор, пока они не потребуются в кровотоке. Однако циркулирующие лейкоциты не задерживаются в крови надолго. Гранулоциты циркулируют в течение 4-8 часов, а затем мигрируют в ткани, где живут еще 4-5 дней. Моноциты перемещаются в крови в течение 10-20 часов, затем мигрируют в ткани и превращаются в различные макрофаги, которые могут жить до нескольких лет. Лимфоциты отвечают за долговременный иммунитет и могут выжить от нескольких недель до десятилетий.Они постоянно перерабатываются из крови в тканевую жидкость, в лимфу и, наконец, обратно в кровь.

Тромбопоэз

Тромбопоэз относится к производству тромбоцитов в крови, потому что тромбоциты раньше назывались тромбоцитами. Это начинается, когда гемоцитобласт развивает рецепторы гормона тромбопоэтина, который вырабатывается печенью и почками. Когда эти рецепторы на месте, гемоцитобласт становится коммитированной клеткой, называемой мегакариобластом.Это реплицирует его ДНК, производя большую клетку, называемую мегакариоцитом, которая распадается на крошечные фрагменты, которые попадают в кровоток. Около 25-40% тромбоцитов хранятся в селезенке и высвобождаются по мере необходимости. Остальные свободно циркулируют в крови и живут около 10 дней.

Возрастные изменения в крови

Свойства крови меняются с возрастом. Считается, что эти изменения могут способствовать учащению образования тромбов и атеросклероза у пожилых людей.Вот некоторые из наиболее заметных результатов этих изменений:

  1. Повышение фибриногена
  2. Повышение вязкости крови
  3. Повышение вязкости плазмы
  4. Повышенная ригидность эритроцитов
  5. Повышенное образование продуктов распада фибрина
  6. Ранее активация системы коагуляции

Считается, что повышенный уровень фибриногена в плазме связан либо с его быстрой выработкой, либо с более медленной деградацией. С возрастом вязкость фибриногена и плазмы имеет тенденцию к положительной корреляции, причем повышение вязкости плазмы в значительной степени объясняется повышением уровня фибриногена.

Вязкость крови зависит от таких факторов, как скорость сдвига, гемокрит, деформируемость эритроцитов, вязкость плазмы и агрегация эритроцитов. Хотя здесь задействовано множество факторов, синдром повышенной вязкости может быть вызван повышением только одного фактора. Состояние повышенной вязкости вызывает вялый кровоток и снижение поступления кислорода к тканям.

Также было обнаружено возрастное увеличение различных факторов свертывания крови, положительная корреляция с фибриногеном и отрицательная корреляция с плазменным альбумином.Агрегация тромбоцитов и эритроцитов увеличивается с возрастом, причем агрегация эритроцитов, по-видимому, является основным фактором, ответственным за повышение вязкости крови при низких скоростях сдвига.

Уменьшение деформируемости эритроцитов (увеличение жесткости) относится к их способности деформироваться под действием силы потока. Менее деформируемые клетки оказывают большее сопротивление потоку в микроциркуляции, что влияет на доставку кислорода к тканям. Исследования показали, что у пожилых людей меньше жидких мембран в эритроцитах.

Blood H + также обнаружил положительную корреляцию с возрастом, делая кровь немного более кислой с возрастом. Это приводит к набуханию клетки, что делает эритроциты менее деформируемыми. Это устанавливает цикл дальнейшего увеличения вязкости крови и ухудшения параметров кровотока.

Поскольку старение вызывает уменьшение общего количества воды в организме, объем крови уменьшается из-за того, что в кровотоке присутствует меньше жидкости. Количество эритроцитов и соответствующие уровни гемоглобина и гемокрита снижаются, что способствует утомлению человека.Большинство лейкоцитов остаются на исходном уровне, хотя наблюдается уменьшение количества лимфоцитов и их способности бороться с бактериями, что приводит к снижению способности противостоять инфекции.

В целом, повышение фибриногена является наиболее частым и значительным изменением в крови при старении, поскольку оно способствует повышению вязкости плазмы, агрегации эритроцитов и повышению вязкости крови при низких скоростях сдвига. Пожилой возраст связан с состоянием гиперкоагуляции крови, что делает пожилых людей более восприимчивыми к образованию тромбов и атеросклерозу.

Информация о переиздании этого изображения

Список литературы
  1. Аджмани Р.С., Рифкинд Дж. М.. Гемореологические изменения при старении человека. Геронтология 1998; 44 (2): 111-120
  2. Каскад коагуляции [онлайн]. 2003 [цитируется 9 сентября 2007 г.]. Доступно по адресу: URL: http://labtestsonline.org/standing / analytes / coag_cascade / coagulation_cascade.html
  3. Marieb EN. Анатомия и физиология человека. 4-е изд. Менло-Парк, Калифорния: Бенджамин / Каммингс; 1998 г.
  4. Саладин К.С. Анатомия и физиология — единство формы и функции. 3-е изд. Нью-Йорк: Макгроу-Хилл; 2004 г.
  5. Шервуд Л. Физиология человека — от клеток к системам. 5-е изд. Бельмонт, Калифорния: Брукс / Коул; 2004 г.

Кровь и содержащиеся в ней клетки — Группы крови и антигены эритроцитов

В среднем у взрослого человека более 5 литров (6 кварт) крови тело. Кровь переносит кислород и питательные вещества к живым клеткам и уносит их отходы. продукты.Он также доставляет иммунные клетки для борьбы с инфекциями и содержит тромбоциты. которые могут образовывать пробку в поврежденном кровеносном сосуде, чтобы предотвратить потерю крови.

Через систему кровообращения кровь адаптируется к потребностям организма. Когда вы во время тренировок ваше сердце качает сильнее и быстрее, чтобы обеспечить больше крови и, следовательно, кислород для ваших мышц. Во время инфекции кровь доставляет больше иммунных клеток к место заражения, где они накапливаются, чтобы отразить вредных захватчиков.

Все эти функции делают кровь драгоценной жидкостью.Каждый год в США 30 миллионов Единицы компонентов крови переливаются пациентам, которые в них нуждаются. Кровь считается настолько драгоценно, что его еще называют «красным золотом», потому что клетки и белки в нем Содержимое может быть продано по цене, превышающей стоимость того же веса в золоте.

В этой главе представлены компоненты крови.

Кровь содержит клетки, белки и сахара

Если оставить пробирку с кровью постоять полчаса, кровь разделяется на три слоя по мере более плотной компоненты опускаются на дно трубки, а жидкость остается наверху.

Жидкость соломенного цвета, которая образует верхний слой, называется плазмой и составляет около 60%. крови. Средний белый слой состоит из лейкоцитов (WBC) и тромбоциты, а нижний красный слой — красные кровяные тельца (эритроциты). Эти два нижних слои клеток составляют около 40% крови.

Плазма — это в основном вода, но она также содержит много важных веществ, таких как белки (альбумин, факторы свертывания крови, антитела, ферменты и гормоны), сахара (глюкоза) и частицы жира.

Все клетки, обнаруженные в крови, происходят из костного мозга. Они начинают свою жизнь как стволовые клетки, и они созревают в три основных типа клеток — эритроциты, лейкоциты, и тромбоциты. В свою очередь, есть три типа лейкоцитов — лимфоциты, моноциты и гранулоциты — и три основных типа гранулоцитов (нейтрофилы, эозинофилы и базофилы). Посмотрите их в действии в «Знакомство с кровяными тельцами».

См. Диаграмму всех клеточных элементов крови в журнале Janeway & Traver’s Immunobiology.

Проба крови может быть разделена на отдельные компоненты путем центрифугирования. образец в центрифуге.Сила вращения заставляет более плотные элементы раковина, и дальнейшая обработка позволяет изолировать конкретный белок или выделение определенного типа клетки крови. Используя этот метод, антитела и факторы свертывания крови могут быть получены из плазмы для лечения иммунной недостаточности и нарушения свертываемости крови соответственно. Таким же образом можно собирать эритроциты. для переливания крови.

Красные кровяные тельца переносят кислород

Каждую секунду 2-3 миллиона эритроцитов производится в костном мозге и попадает в кровоток.Также известный как эритроциты, эритроциты являются наиболее распространенным типом клеток, обнаруживаемых в крови, причем каждый кубический миллиметр крови, содержащий 4-6 миллионов клеток. Диаметр всего 6 мкм, эритроциты достаточно малы, чтобы протиснуться через мельчайшие кровеносные сосуды. Они циркулируют по телу до 120 дней, после чего старые или поврежденные Эритроциты удаляются из кровотока специализированными клетками (макрофагами) в селезенка и печень.

У человека, как и у всех млекопитающих, в зрелых эритроцитах отсутствует ядро.Это позволяет ячейке больше места для хранения гемоглобина, связывающего кислород белка, позволяющего эритроцитам транспортировать больше кислорода. Эритроциты также двояковогнутые; эта форма увеличивает их площадь поверхности для диффузии кислорода через их поверхности. У не млекопитающих У позвоночных, таких как птицы и рыбы, зрелые эритроциты действительно имеют ядро.

Если у пациента низкий уровень гемоглобина, состояние, называемое анемией, они могут кажутся бледными, потому что гемоглобин придает красный цвет эритроцитам и, следовательно, крови.Они может также легко устать и почувствовать одышку из-за важной роли гемоглобин переносит кислород из легких туда, где он необходим тело.

Лейкоциты являются частью иммунного ответа.

Лейкоциты бывают разных форм и размеров. Некоторые клетки имеют ядра с множественными доли, тогда как другие содержат одно большое круглое ядро. Некоторые содержат пакеты гранулы в их цитоплазме и поэтому известны как гранулоциты.

Несмотря на различия во внешнем виде, все типы лейкоцитов играют определенную роль. в иммунном ответе.Они циркулируют в крови до тех пор, пока не получат сигнал, что повреждена часть тела. Сигналы включают интерлейкин 1 (IL-1), молекулу секретируются макрофагами, которые вызывают лихорадку инфекций, и гистамином, который высвобождается циркулирующими базофилами и тучными клетками тканей и способствует аллергические реакции. В ответ на эти сигналы лейкоциты покидают кровеносный сосуд путем выдавливание через отверстия в стенке кровеносного сосуда. Они мигрируют к источнику сигнализируйте и помогите начать процесс заживления.

Лица с низким уровнем лейкоцитов могут иметь все более тяжелые инфекции. В зависимости от при отсутствии лейкоцитов, пациент подвержен риску различных типов инфекционное заболевание. Например, макрофаги особенно хорошо проглатывают бактерии и дефицит макрофагов приводит к рецидивирующим бактериальным инфекциям. Напротив, T клетки особенно квалифицированы в борьбе с вирусными инфекциями, и потеря их функция приводит к повышенной восприимчивости к вирусным инфекциям.

Нейтрофилы переваривают бактерии

Нейтрофилы также известны как полиморфно-ядерные клетки, потому что они содержат ядро, форма (морфа) которого неправильной формы и содержит много (поли) долей.Они также принадлежат к группе лейкоцитов. известны как гранулоциты, потому что их цитоплазма усеяна гранулами, которые содержат ферменты, которые помогают им переваривать болезнетворные микроорганизмы.

Моноциты становятся макрофагами

Моноциты — это молодые лейкоциты, которые циркулируют в крови. Они превращаются в макрофаги после того, как покидают кровь и перекочевала в ткани. Там они обеспечивают немедленную защиту, потому что они могут поглощать (фагоцитоз) и переваривать патогены раньше других типов лейкоцитов добраться до области.

В печени тканевые макрофаги называются клетками Купфера, и они специализируются на удаление вредных агентов из крови, вышедшей из кишечника.Альвеолярные макрофаги находятся в легких и удаляют вредные вещества, которые могли попасть в дыхательные пути. Макрофаги в селезенке удаляют старые или поврежденные эритроциты и тромбоциты. из обращения.

Макрофаги также являются «антигенпрезентирующими клетками», представляющими чужеродные белки. (антигены) к другим иммунным клеткам, вызывая иммунный ответ.

Лимфоциты состоят из В-клеток и Т-клеток

Лимфоциты представляют собой круглые клетки, которые содержат одно большое круглое ядро. Есть два основных класса ячеек: В-клетки, созревающие в костном мозге, и Т-клетки, созревающие в костном мозге. вилочковая железа.

После активации В-клетки и Т-клетки запускают различные типы иммунной системы. отклик. Активированные В-клетки, также известные как плазматические клетки, производят большое количество специфические антитела, которые связываются с агентом, вызвавшим иммунный ответ. Т клетки, называемые вспомогательными Т-клетками, выделяют химические вещества, которые привлекают другие иммунные клетки. и помочь скоординировать их атаку. Другая группа, называемая цитотоксическими Т-клетками, атакует инфицированные вирусом клетки.

Тромбоциты способствуют свертыванию крови

Тромбоциты неправильной формы фрагменты клеток, которые циркулируют в крови, пока они не активируются, чтобы образуют сгусток крови или удаляются селезенкой.Тромбоцитопения — это состояние низкий уровень тромбоцитов и повышенный риск кровотечения. Наоборот, a высокий уровень тромбоцитов (тромбоцитемия) несет повышенный риск образования несоответствующие сгустки крови. Они могут лишить такие важные органы, как сердце и мозг их кровоснабжения, вызывая сердечные приступы и инсульты, соответственно.

Как и все клетки крови, тромбоциты происходят из стволовых клеток в кости. костный мозг. Стволовые клетки превращаются в предшественников тромбоцитов (так называемые мегакариоциты), которые «проливать» тромбоциты в кровоток.Там тромбоциты циркулируют около 9 дней. Если в это время они сталкиваются с поврежденными стенками кровеносных сосудов, они прилипают к поврежденный участок и активируются с образованием тромба. Это закрывает дыру. Иначе, в конце своей жизни они выводятся из кровообращения селезенкой. При различных заболеваниях, при которых селезенка чрезмерно активна, например ревматоидный артрита и лейкемии, селезенка удаляет слишком много тромбоцитов, что приводит к увеличению кровотечение.

Общий анализ крови

Общий анализ крови (CBC) — это простой анализ крови, который обычно заказывается как часть планового медицинского осмотра.Как следует из названия, это подсчет различные типы клеток, обнаруженные в крови. Тест может диагностировать и контролировать многие различные заболевания, такие как анемия, инфекции, воспалительные заболевания и злокачественность. дает пример Значения CBC, но обратите внимание, что контрольные диапазоны и используемые единицы могут отличаться, в зависимости от лаборатории, проводившей тест.

Подсчет эритроцитов выявляет анемию

Общий анализ крови измеряет следующие характеристики эритроцитов:

  • общее количество гемоглобина (Hb) в крови

  • количество эритроцитов (RBC)

  • средний размер эритроцитов (MCV)

  • объем пространства, занимаемого эритроцитами в крови (гематокрит)

CBC также включает информацию об эритроцитах, рассчитанную на основе других измерения, e.г., количество (MCH) и концентрация (MCHC) гемоглобина в РБК.

Количество эритроцитов и количество гемоглобина в крови ниже у женщин чем у мужчин. Это происходит из-за ежемесячной менструальной потери крови. Ниже определенный уровень гемоглобина, пациент считается анемичным, что предполагает клинически значимое падение кислородной способности. Анемия — это не диагноз, но симптом основного заболевания, который необходимо исследовать.

Ключом к разгадке причины анемии является средний размер эритроцитов (средний корпускулярный объем, MCV).Причины высокого MCV включают дефицит B 12 или витамины фолиевой кислоты в рационе. B 12 содержится в красном мясе, следовательно, a дефицит B 12 особенно часто встречается у вегетарианцев и веганов. И наоборот, в свежих листовых зеленых овощах много фолиевой кислоты, поэтому дефицит фолиевой кислоты часто встречается у пожилых людей, которые могут плохо питаться.

Анемия с низким уровнем MCV является обычным явлением и может быть результатом наследственных заболеваний крови, таких как как талассемия, но чаще всего вызвана дефицитом железа.Например, женщины репродуктивного возраста могут терять слишком много железа из-за обильных менструаций. кровотечения и склонны к этой форме анемии, известной как железодефицитная анемия.

Гематокрит — это процент эритроцитов по отношению к общему объему крови.

Гематокрит измеряет долю крови, состоящую из эритроцитов. Это отражает комбинацию общего количества эритроцитов и объема, который они занимать.

Одно из изменений, наблюдаемых при беременности, — снижение гематокрита.Это происходит потому, что хотя производство эритроцитов сильно не меняется, объем плазмы увеличивается, т.е. эритроциты «разбавляются». В качестве альтернативы низкий гематокрит может отражают снижение выработки эритроцитов костным мозгом. Это может быть связано с заболевание костного мозга (повреждение токсинами или рак) или из-за снижения эритропоэтин, гормон, секретируемый почками, который стимулирует выработку эритроцитов. Уменьшение количества эритроцитов также может быть результатом сокращения продолжительности жизни эритроцитов (например, хроническое кровотечение).

Высокое значение гематокрита может действительно отражать увеличение доли эритроцитов. (например, повышение эритропоэтина, связанное с опухолью эритроцитов, называемой белая полицитемия), или это может отражать снижение плазменного компонента кровь (например, потеря жидкости у пострадавших от ожогов).

Количество лейкоцитов увеличивается при инфицировании и опухолях

Количество лейкоцитов — это количество лейкоцитов, обнаруженных в одном кубическом миллиметре кровь.

Повышенное количество лейкоцитов чаще всего вызывается инфекциями, такими как инфекция мочевыводящих путей или пневмония.Это также может быть вызвано опухолями лейкоцитов, такими как как лейкоз.

Уменьшение количества лейкоцитов вызвано неспособностью костного мозга производить лейкоциты. или за счет повышенного удаления лейкоцитов из кровотока больной печенью или гиперактивная селезенка. Отказ костного мозга может быть вызван токсинами или нормальные клетки костного мозга заменяются опухолевыми.

Дифференциальная часть лейкоцитов CBC разделяет лейкоциты на пять различных типы: нейтрофилы, лимфоциты, моноциты, эозинофилы и базофилы.Находка подсчет каждого типа лейкоцитов дает больше информации о лежащих в основе проблема. Например, на ранних стадиях инфекции большая часть увеличения в лейкоцитах связано с увеличением нейтрофилов. Как инфекция продолжается, лимфоциты увеличиваются. Глистные инфекции могут вызвать увеличение эозинофилов, тогда как аллергические состояния, такие как сенная лихорадка, вызывают повышение в базофилах.

Количество тромбоцитов указывает на вероятность кровотечения или свертывания

Обычно в одном кубическом миллиметре крови содержится от 150 000 до 400 000 тромбоциты.Если число падает ниже этого диапазона, неконтролируемое кровотечение становится риск, тогда как превышение верхнего предела этого диапазона указывает на риск неконтролируемое свертывание крови.

Гемоглобин связывает кислород

Гемоглобин — это белок, переносящий кислород, который содержится во всех эритроцитах. Он поднимает кислород там, где его много (легкие), и отдает кислород там, где он необходим по всему телу. Гемоглобин также является пигментом, придающим эритроцитам красный цвет.

Гемовые группы и глобины

Как следует из названия, гемоглобин состоит из «гемовых» групп (железосодержащих кольца) и «глобины» (белки).На самом деле гемоглобин состоит из четырех глобинов. белки — две альфа-цепи и две бета-цепи — каждая с группа гема. Гемовая группа содержит один атом железа, и он может связывать один молекула кислорода. Поскольку каждая молекула гемоглобина содержит четыре глобина, он может переносить до четырех молекул кислорода.

Гемоглобин переносит кислород

В легких молекула гемоглобина окружена высокой концентрацией кислород, следовательно, он связывает кислород. В активных тканях концентрация кислорода ниже, поэтому гемоглобин выделяет кислород.

Такое поведение намного эффективнее, потому что гемоглобин –– связывание кислорода «кооперативное». Это означает что связывание одной молекулы кислорода облегчает связывание последующие молекулы кислорода. Точно так же отсоединение кислорода облегчает для высвобождения других молекул кислорода. Это означает, что ответ Гемоглобин удовлетворяет потребности активных тканей в кислороде гораздо быстрее.

Помимо насыщения гемоглобина кислородом, существуют другие факторы, влияющие на то, как легко гемоглобин связывает кислород, включая pH плазмы, уровни бикарбоната плазмы, и давление кислорода в воздухе (особенно на больших высотах).

Молекула 2,3-дисфосфоглицерат (2,3-DPG) связывается с гемоглобином и снижает его сродство к кислороду, что способствует высвобождению кислорода. У лиц, у которых есть привыкли к жизни на больших высотах, уровень 2,3-ДПГ в кровь увеличивается, что позволяет доставить больше кислорода к тканям при низком кислородное напряжение.

Гемоглобин плода

Гемоглобин плода отличается от гемоглобина взрослого тем, что он содержит два гамма цепочки вместо двух бета-цепочек. Гемоглобин плода очень сильно связывает кислород. большее сродство, чем у взрослого гемоглобина; в утробе это преимущество, потому что позволяет крови плода извлекать кислород из материнской крови, несмотря на ее низкий концентрация кислорода.

Обычно весь гемоглобин плода замещается гемоглобином взрослого к моменту рождение.

Разрушение гемоглобина

Старые или поврежденные эритроциты удаляются из кровотока макрофагами в селезенке и печень, а содержащийся в них гемоглобин расщепляется на гем и глобин. Белок глобина может быть переработан или расщеплен на его составляющие. аминокислоты, которые могут быть переработаны или метаболизированы. Гем содержит драгоценные железо, которое сохраняется и повторно используется в синтезе новых молекул гемоглобина.

В процессе метаболизма гем превращается в билирубин, желтый пигмент, который может обесцвечивать кожу и склеры глаза, если он накапливается в крови, состояние, известное как желтуха. Вместо этого альбумин белка плазмы связывается с билирубин и переносит его в печень, где он секретируется с желчью, а также способствует окраске кала.

Желтуха — одно из осложнений переливания несовместимой крови. Этот происходит, когда иммунная система реципиента атакует эритроциты донора как иностранный.Скорость разрушения эритроцитов и последующего производства билирубина может превышают способность печени метаболизировать производимый билирубин.

Гемоглобинопатии

Гемоглобинопатии образуют группу наследственных заболеваний, вызываемых мутации в глобиновых цепях гемоглобина. Серповидно-клеточная анемия — самая является общим из них и может быть отнесен на счет мутации, которая изменяет одну из аминокислот кислоты в бета-цепи гемоглобина, производящие гемоглобин, который является «хрупким». Когда концентрация кислорода низкая, эритроциты имеют тенденцию искажаться и становиться серповидными. сформированный.Эти деформированные клетки могут блокировать мелкие кровеносные сосуды и повреждать органы. они поставляют. Это может быть очень болезненно и, если не лечить, может вызвать серповидно-клеточную анестезию. кризис может быть фатальным.

Другая наследственная анемия, которая особенно поражает жителей Средиземноморья. происхождение — талассемия. Ошибка в производстве альфа- или бета-глобина цепочки вызывает ряд симптомов в зависимости от того, сколько копий альфа и бета-гены. Некоторые люди могут быть носителями болезни и не имеют никаких симптомов, тогда как если все копии генов потеряны, болезнь фатальный.

Порфирии представляют собой группу наследственных заболеваний, при которых синтез гема нарушается. В зависимости от стадии, на которой происходит нарушение, различают ряд неврологических и желудочно-кишечных побочных эффектов. Король Георг III Англия («безумие короля Георга») была одной из самых известных личностей. кто страдал порфирией.

Что за кровь? (для детей) — Nemours Kidshealth

Вы знаете, что такое кровь — это та красная жидкость, которая сочится, если вас порезать бумагой.Но что такое кровь на самом деле и для чего она нужна?

Что такое кровь и для чего она нужна?

Кровь нужна нам, чтобы выжить. Он доставляет кислород и питательные вещества ко всем частям тела, чтобы они могли продолжать работать. Кровь переносит углекислый газ и другие отходы в легкие, почки и пищеварительную систему, которые затем выводятся из организма. Кровь также борется с инфекциями и переносит гормоны по всему телу.

Кровь состоит из клеток крови и плазмы. Плазма (скажем: PLAZ-muh) — это желтоватая жидкость, содержащая питательные вещества, белки, гормоны и продукты жизнедеятельности.Различные типы клеток крови выполняют разные функции.

Какие типы клеток крови?

Эритроциты: Эритроциты (эритроциты, также называемые эритроцитами; скажем: ih-RITH-ruh-sytes) имеют форму слегка зазубренных, уплощенных дисков. Эритроциты содержат гемоглобин (скажем: HEE-muh-glow-bin), белок, переносящий кислород. Кровь приобретает ярко-красный цвет, когда гемоглобин поглощает кислород в легких. Когда кровь движется по телу, гемоглобин выделяет кислород в различные части тела.

Каждый RBC живет около 4 месяцев. Каждый день организм производит новые эритроциты взамен тех, которые умирают или теряются в организме. Эритроциты образуются во внутренней части костей, называемой костным мозгом.

Лейкоциты: Лейкоциты (лейкоциты, также называемые лейкоцитами, скажем: LOO-kuh-sytes) являются ключевой частью иммунной системы. Иммунная система помогает организму защищаться от инфекции. Различные типы лейкоцитов борются с микробами, такими как бактерии и вирусы. Некоторые типы лейкоцитов вырабатывают антитела, которые представляют собой особые белки, распознающие инородные материалы и помогающие организму избавиться от них.

Есть несколько типов лейкоцитов, продолжительность жизни которых варьируется от часов до лет. Постоянно образуются новые клетки — некоторые в костном мозге, а некоторые в других частях тела, таких как селезенка, тимус и лимфатические узлы.

Кровь содержит гораздо меньше лейкоцитов, чем эритроцитов, хотя организм может увеличить выработку лейкоцитов для борьбы с инфекцией. Количество лейкоцитов (количество клеток в заданном количестве крови) у людей с инфекцией часто выше, чем обычно, потому что больше лейкоцитов производится или попадает в кровоток для борьбы с инфекцией.

Тромбоциты: Тромбоциты (также называемые тромбоцитами, скажем: THROM-buh-sytes) — это крошечные клетки овальной формы, которые помогают в процессе свертывания крови. Когда кровеносный сосуд разрывается, тромбоциты собираются в этой области и помогают перекрыть утечку. Тромбоциты работают с белками, называемыми факторами свертывания, и контролируют кровотечение внутри нашего тела и на коже.

Тромбоциты выживают в кровотоке всего около 9 дней и постоянно замещаются новыми тромбоцитами, производимыми костным мозгом.

Как кровь перемещается в организме?

С каждым ударом сердце перекачивает кровь по нашему телу, доставляя кислород к каждой клетке.После доставки кислорода кровь возвращается к сердцу. Затем сердце отправляет кровь в легкие, чтобы набрать больше кислорода. Этот цикл повторяется снова и снова.

Система кровообращения состоит из кровеносных сосудов, которые переносят кровь от сердца и к сердцу.

Два типа кровеносных сосудов несут кровь по всему телу:

  1. Артерии переносят насыщенную кислородом кровь (кровь, которая получила кислород из легких) от сердца к остальным частям тела.
  2. Кровь затем проходит по венам обратно к сердцу и легким, чтобы получить больше кислорода для отправки обратно в тело через артерии.

Когда сердце бьется, вы можете почувствовать, как кровь течет по телу в точках пульса, таких как шея и запястье, где большие, наполненные кровью артерии проходят близко к поверхности кожи.

Что делать, если у кого-то мало клеток крови?

Иногда можно дать лекарство, чтобы помочь человеку вырабатывать больше клеток крови.Иногда клетки крови и некоторые особые белки, содержащиеся в крови, можно заменить, сдав человеку кровь другого человека. Это называется переливанием (скажем: транс-FEW-zyun).

Люди могут переливать необходимую часть крови, например тромбоциты, эритроциты или фактор свертывания крови. Когда кто-то сдает кровь, цельную кровь можно разделить на разные части для использования таким образом.

Эй, какой ты тип?

У всех кровь красная, но не у всех одинаковая.Существует восемь групп крови, описываемых буквами A, B и O. Эти буквы обозначают определенные белки, обнаруженные в красных кровяных тельцах.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *