Фаза мейоза, набор хромосом (n — хромосомы, |
Рисунок |
Характеристика фазы, расположение хромосом |
Профаза 1 |
Демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, “исчезновение” ядрышек, конденсация двухроматидных хромосом, конъюгация гомологичных хромосом и кроссинговер. |
|
Метафаза 1 |
Выстраивание бивалентов в экваториальной плоскости клетки, прикрепление нитей веретена деления одним концом к центриолям, другим – к центромерам хромосом. |
|
Анафаза 1 |
Случайное независимое расхождение двухроматидных хромосом к противоположным полюсам клетки (из каждой пары гомологичных хромосом одна хромосома отходит к одному полюсу, другая – к другому), перекомбинация хромосом. |
|
Телофаза 1 |
Образование ядерных мембран вокруг групп двухроматидных хромосом, деление цитоплазмы. |
|
Профаза 2 |
Демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления. |
|
Метафаза 2 |
Выстраивание двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим – к центромерам хромосом. |
|
Анафаза 2 |
Деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами), перекомбинация хромосом. |
|
Телофаза 2 Всего |
Деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия) с образованием двух, а в итоге обоих мейотических делений – четырех гаплоидных клеток. |
biology100.ru
Анафаза 2 мейоза 2: удвоение набора хромосом
Одна двухроматидная хромосома обособилась на две самостоятельных хроматиды. Они теперь стали двумя независимыми хромосомами. Придуманный нами для наглядности слон с двумя хоботами разделился на двух самостоятельных слонов.
Каждая новая хромосома имеет в себе одну молекулу ДНК. У каждого слона теперь один хобот.
Вообразим, что эти два слона (представители двух видов: индийский и африканский) живут в одном зоопарке, в одном вольере. Две отдельные новые хромосомы находятся в одной клетке, поэтому мы говорим, что в данной клетке двойной набор хромосом (2n).
Какое событие характерно для анафазы 2 мейоза 2?
Происходит расхождение сестринских хроматид каждой хромосомы к противоположным полюсам клетки.
Каково количество хромосом и хроматид (молекул ДНК) в анафазе 2 мейоза 2?
Итак, теперь мы имеем дело с двумя слонами (2n). У каждого из них по одному хоботу, то есть всего хоботов два (2с). Биологи говорят, что сестринские хроматиды разошлись к противоположным полюсам. При этом хроматиды стали самостоятельными однохроматидными хромосомами. Значит, хромосом стало в два раза больше, так же, как и слонов в нашей метафоре. Число молекул ДНК не изменяется по сравнению с метафазой 2.
Рисунок. Набор хромосом и количество хроматид (молекул ДНК) в анафазе 2 мейоза 2
Хочешь сдать экзамен на отлично? Жми сюда — подготовка ГИА по биологии 9 класс
egevideo.ru
События интерфазы 2. Профаза 2 и метафаза 2
Обычно второе деление мейоза идет быстрее первого и занимает несколько часов. В целом мейоз более длительный процесс, чем митоз. Например, у человека он идет 3,5 недели.
Интерфаза 2 или интеркинез (n2c), представляет собой короткий перерыв между первым и вторым мейотическими делениями, во время которого не происходит репликация ДНК.
Для каких клеток характерна интерфаза 2 или интеркинез?
Интерфаза между делениями мейоза характерна для животных клеток. У многих растений на этом этапе нет интерфазы. Растения живут быстро, у них нет времени на интерфазу 2. Они приспособлены к стремительному росту и распространению спор, образованных в результате мейоза.
Какие события характерны для профазы 2 мейоза 2?
События в этой фазе стандартные: разрушение ядерной оболочки, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления. Сложность ответа на этот вопрос в том, как описать хромосомы и молекулы ДНК в профазе 2. Чем они отличаются от профазы 1 мейоза? Кратко отвечу — показатели в профазе 2 меньше, чем в профазе 1 в два раза. Если в профазе 1 формула была 2n4c, то в профазе 2 она n2c.
Каково количество хромосом и хроматид (молекул ДНК) в профазе 2 и в метафазе 2 мейоза 2?
Воспользуемся новой метафорой. Представим себе фантастического слона (n) с двумя хоботами (2с). Слон олицетворяет один набор хромосом, два хобота у него — это две молекулы ДНК. В профазу 2 вступают две молодые клетки, образованные в конце телофазы 1. У них не изменяется набор хромосом и количество ДНК ни в профазе 2, ни в метафазе 2. Это связано с тем, что разделения хромосом в клетке в эти фазы не происходит. Также в данные моменты мейоза не будет происходить расхождения хроматид из одной хромосомы. Именно это смогло бы изменить набор хромосом. Запомните, что ни в профазе, ни в метафазе расхождений хроматид не бывает ни в мейозе, ни в митозе.
Рисунок. Набор хромосом и число молекул ДНК в профазе 2 и метафазе 2
Можно ли найти сходство метафазы 2 с метафазой митоза?
Да. Сходство состоит в том, что в центре клетки расположены одиночные двухроматидные хромосомы. Но есть одна тонкость. В метафазе митоза рядом с одной двухроматидной хромосомой вверху или внизу всегда можно найти хромосому, гомологичную ей. Для метафазы 2 мейоза 2 это не характерно. В этой фазе в центре клетки просто стоят одиночные хромосомы. Все хромосомы, гомологичные им, остались в другой клетке в результате деления при мейозе 1.
В чем особенность прикрепления нитей веретена деления в метафазе 1 мейоза 1?
В митозе две нити веретена прикреплены к одной центромере с разных сторон. В метафазе 1 мейоза 1 есть другая особенность прикрепления нитей — одна нить присоединяется к центромере первой хромосомы, другая — к центромере второй, и эти две хромосомы гомологичные.
Метафаза 2 мейоза 2 у женщин
Овоциты 1 порядка хранятся долгие годы в яичниках у женщин. При достижении половой зрелости девушки они проходят стадию роста. В ней они могут пребывать несколько месяцев, увеличиваясь в размере. Затем овоциты 1 порядка проходят мейоз 1, образуются овоциты 2 порядка, которые выходят в брюшную полость женщины. Именно на стадии метафазы 2 овоциты 2 порядка попадают в матку. Там они ждут оплодотворения. Только после этого у них пройдет анафаза 2 и телофаза 2, и из овоцита образуется яйцеклетка. Как образуются овоциты 1 порядка? Об этом читайте в теме «гаметогенез».
Хочешь сдать экзамен на отлично? Жми сюда — услуги репетитора по биологии
egevideo.ru
Митоз и мейоз в помощь к сдаче ЕГЭ
Здравствуйте, уважаемые читатели блога репетитора биологии по Скайпу biorepet-ufa.ru.
В последние два года в вариантах тестовых заданий ЕГЭ по биологии стало появляться все больше вопросов по способам размножения организмов, чередованию поколений, способам деления клеток, отличиям разных стадий митоза и мейоза, наборам хромосом (n) и содержанию ДНК (с) в различных стадиях жизни клеток.
Я согласен с авторами заданий. Чтобы хорошо вникнуть в суть процессов митоза и мейоза надо не только в целом понимать, чем они отличаются друг от друга, но и знать как меняется набор хромосом (n), а, главное, их качество (с), на различных стадиях этих процессов.
Помним, конечно, что митоз и мейоз — это различные способы деления ядра клеток, а не деление самих клеток (цитокинез).
Помним и то, что благодаря митозу происходит размножение диплоидных (2n) соматических клеток и обеспечивается бесполое размножение, а мейоз обеспечивает образование гаплоидных (n) половых клеток (гамет) у животных или гаплоидных (n) спор у растений.
Для удобства восприятия информации
на рисунке ниже митоз и мейоз изображены вместе. Как мы видим, эта схема не включает жизненный цикл клетки, в ней нет и полного описания того, что происходит в клетках при митозе или мейозе. Цель данной статьи и этого рисунка обратить ваше внимание только на те изменения, которые происходят с самими хромосомами на разных стадиях митоза и мейоза. Именно на это делается упор в новых тестовых заданиях ЕГЭ.
Чтобы не перегружать рисунки, диплоидный кариотип в ядрах клеток представлен всего двумя парами гомологичных хромосом (то есть n = 2). Первая пара — более крупные хромосомы (красная и оранжевая). Вторая пара — более мелкие (синяя и зеленая). Если бы мы изображали конкретно, например, кариотип человека (n = 23), пришлось бы рисовать 46 хромосом.
Так каков был набор хромосом и их качество до начала деления в интерфазной клетке в период G1? Конечно он был 2n2c. Клеток с таким набором хромосом мы на этом рисунке не видим. Так как после S периода интерфазы (после репликации ДНК) количество хромосом, хотя и остается прежним (2n), но, так как каждая из хромосом теперь состоит из двух сестринских хроматид, то формула кариотипа клетки будет записываться уже так: 2n4c. И вот клетки с такими двойными хромосомами, готовые уже приступить к митозу или мейозу, и изображены на рисунке.
Данный рисунок позволяет нам ответить на следующие вопросы тестовых заданий
— Чем отличается профаза митоза от профазы I мейоза? В профазе I мейоза хромосомы не свободно распределены по всему объему бывшего клеточного ядра (ядерная оболочка в профазе растворяется), как в профазе митоза, а гомологи объединяются и коньюгируют (переплетаются) друг с другом. Это может привести к кроссинговеру: обмену некоторыми идентичными участками сестринских хроматид у гомологов.
— Чем отличается метафаза митоза от метафазы I мейоза? В метафазу I мейоза по экватору клетки выстраиваются не отдельные двухроматидные хромосомы как в метафазе митоза, в биваленты (по два гомолога вместе) или тетрады (тетра — четыре, по числу задействованных в коньюгации сестринских хроматид).
— Чем отличается анафаза митоза от анафазы I мейоза? В анафазу митоза нитями веретена деления к полюсам клетки растаскиваются сестринские хроматиды (которые в это время уже следует называть однохроматидными хромосомами). Обратите внимание, что в это время, поскольку из каждой двухроматидной хромосомы образовалось две однохроматидные хромосомы, а два новых ядра еще не образовались, то хромосомная формула таких клеток будет иметь вид 4n4c. В анафазу I мейоза нитями веретена деления к полюсам клетки растаскиваются двухроматидные гомологи. Кстати, на рисунке в анафазу I мы видим, что одна из сестринских хроматид оранжевой хромосомы имеет участки из красной хроматиды (и, соответственно, наоборот), а одна из сестринских хроматид зеленой хромосомы имеет участки из синей хроматиды (и, соответственно, наоборот). Поэтому мы можем утверждать, что в профазу I мейоза между гомологичными хромосомами происходила не только коньюгация, но и кроссинговер.
— Чем отличается телофаза митоза от телофазы I мейоза? В телофазу митоза в двух новых образовавшихся ядрах (двух клеток еще нет, они образуются в результате цитокинеза) будет содержаться диплоидный набор однохроматидных хромосом — 2n2c. В телофазу I мейоза в двух образующихся ядрах будет находиться гаплоидный набор двухроматидных хромосом — 1n2c. Таким образом, мы видим, что мейоз I уже обеспечил редукционное деление (количество хромосом снизилось вдвое).
— Что обеспечивает мейоз II ? Мейозом II называется эквационное (уравнительное) деление, в результате которого в четырех образовавшихся клетках будет находиться гаплоидный набор нормальных однохроматидных хромосом — 1n1c.
— Чем отличается профаза I от профазы II ? В профазу II ядра клеток не содержат гомологичных хромосом, как в профазу I, поэтому не происходит объединения гомологов.
— Чем отличается метафаза митоза от метафазы II мейоза? Очень «коварный» вопрос, так как из любого учебника вы запомните, что мейоз II в целом протекает как митоз. Но, обратите внимание, в метафазу митоза по экватору клетки выстраиваются двухроматидные хромосомы и у каждой хромосомы есть её гомолог. В метафазе II мейоза по экватору тоже выстраиваются двухроматидные хромосомы, но нет гомологичных. На цветном рисунке, как в этой статье выше, это хорошо видно, но на экзамене рисунки черно-белые. На этом черно-белом рисунке одного из тестовых заданий изображена метафаза митоза, так как здесь есть гомологичные хромосомы (большая черная и большая белая — одна пара; маленькая черная и маленькая белая — другая пара).
— Может быть и аналогичный вопрос по анафазе митоза и анафазе II мейоза.
— Чем отличается телофаза I мейоза от телофазы II ? Хотя набор хромосом в обоих случаях гаплоидный, но во время телофазы I хромосомы двухроматидные, а во время телофазы II они однохроматидные.
Когда писал на этом блоге подобную статью о митозе и мейозе никак не думал, что за три года содержание тестов так сильно изменится. Очевидно, из-за сложностей создавать все новые и новые тесты, опираясь на школьную программу по биологии, авторы-составители уже не имеют возможности «копать вширь» (всё уже давно «вскопано») и они вынуждены «копать вглубь».
*******************************************
У кого будут вопросы по статье к репетитору биологии по Скайпу, прошу обращаться в комментариях.
www.biorepet-ufa.ru
События анафазы 1 мейоза 1
На этом этапе существования клетки биваленты разделяются. Имеет место их случайное и независимое расхождение к противоположным полюсам, причем гомологичные двухроматидные хромосомы отходят к разным полюсам. Хромосомы при расхождении перекомбинируются.
Рисунок 1. Процесс расхождения гомологичных хромосом к противоположным полюсам клетки
Анафаза 1. Какой метафорой можно ее описать?
Представьте себе развод между двумя супругами, которые утратили то общее, что их объединяло в семью. Мужчина (одна гомологичная хромосома) с парой рук (парой хроматид) уходит от жены. В биологии мы называем этот «развод» расхождением гомологичных двухроматидных хромосом к противоположным полюсам клетки.
Для чего природа создала анафазу 1? Ради того, чтобы каждая гомологичная хромосома получила шанс самореализации внутри отдельной клетки. Анафаза 1 — это «эгоистический» принцип, который разделяет пару хромосом, заставляет каждую гомологичную хромосому жить отдельно ради собственных целей.
Но в этом не вся роль анафазы 1. Она существует с целью составления новых комбинаций хромосом.
Есть такое понятие в биологии — независимое расхождение хромосом в анафазе 1 мейоза 1. Почему независимое? Продолжим нашу метафору «развода». В каждой стране множество семейных пар разводятся (как расходятся друг от друга хромосомы). Но развод каждой пары происходит независимо от других, он оформляется в отдельных государственных учреждениях. Так и каждая пара гомологичных хромосом расходится независимо.
А теперь представьте, как много комбинаций можно составить из разведенных супругов. Мы не знаем, в какую точку планеты человек поедет после развода, с кем он там познакомится, на ком вновь женится: американец ли на русской, или камбоджиец на финке. Точно также в анафазе появляются новые сочетания хромосом. Как это происходит?
У каждой из гомологичных хромосом при расхождении есть только два варианта: идти либо к одному полюсу клетки, либо к другому. Напоминаю, что сейчас мы говорим только об одной паре хромосом. Но пар много! Скажем, у человека их 23, и каждая пара при расхождении распадается, образуя две хромосомы. Эти две хромосомы устремляются к противоположным полюсам, как если бы разведенные супруги ринулись друг от друга — один на запад, в США, другой на восток, в Китай. А там — ах! — уже много разведенных россиян, французов и кенийцев. Количество будущих комбинаций огромно.
Применим метафору к хромосомам. При расхождении разных пар хромосом к полюсам мы также получим разнообразные комбинации хромосом. Пар хромосом много, и все они несут разные аллели генов. Комбинируясь у полюсов клетки, они создают интересные сочетания. Вот еще одна причина комбинативной изменчивости. Ее суть теперь уже не в комбинации генов, как было при кроссинговере. Здесь вы говорим о новых экстраординарных сочетаниях хромосом.
Объясните, почему независимое расхождение хромосом в анафазе мейоза 1 обеспечивает появление новых комбинаций хромосом в половой клетке?
Ниже я привел рисунок, на котором показано появление новой комбинации хромосом в анафазе 1, и подробный комментарий к нему. Хочу сделать акцент на том, что в будущей клетке, образованной в конце мейоза 1, будут комбинироваться именно хромосомы из разных пар гомологичных хромосом. Они довольно уникальны и поэтому могут сформировать причудливые новые комбинации генов в клетке.
Рисунок 2. Процесс независимого расхождения гомологичных хромосом в анафазе 1 мейоза 1
При независимом расхождении хромосом в анафазе 1 материнские и отцовские хромосомы расходятся к полюсам дочерних клеток в случайном порядке. В результате у полюсов равновероятно могут появиться разные сочетания хромосом. Например, у нас есть одна пара гомологичных хромосом с аллелями «А» и «а», и вторая пара с аллелями «В» и «b». Пусть аллель «А» отвечает за карий цвет глаз, «а» за голубой. Аллель «В» — за темные волосы, «b» — за светлые.
Представим, что в данной клетке всего две пары хромосом. Каким образом они могут распределиться к полюсам?
1. К одному полюсу пойдут «А» и «В», к другому «а» и «b».
Здесь можно получить два результата:
а) хромосомы «А» и «B», попадая в одну клетку, могут в мейозе 2 дать гамету с геном карих глаз и с геном темных волос;
б) хромосомы «а» и «b», попадая в одну клетку, могут в мейозе 2 дать гамету с геном голубых глаз и с геном светлых волос.
2. К одному полюсу пойдут «А» и «b», к другому «а» и «В».
Здесь также два результата возможны:
а) хромосомы «А» и «b», попадая в одну клетку, могут в мейозе 2 дать гамету с геном карих глаз и с геном светлых волос;
б) хромосомы «а» и «В», попадая в одну клетку, могут в мейозе 2 дать гамету с геном голубых глаз, и с геном темных волос.
Каково количество хромосом и хроматид (молекул ДНК) в анафазе 1 мейоза 1?
В анафазе наши гипотетические «супруги», несмотря на «развод», все еще «живут» в одной квартире-клетке. Их двое (2n) и у них на двоих четыре руки (4с). По сути, в одной клетке все еще расположены две хромосомы и четыре хроматиды в них. Поэтому набор хромосом и количество ДНК не изменились.
Хочешь сдать экзамен на отлично? Жми сюда — подготовка к ОГЭ по биологии
egevideo.ru
Мейоз: 2 деления
Поделись с друзьямиПрофаза 1:
Лептотена Появление тонких нитей хромосом (хромосомы удвоены)
Зиготена Конъюгация хромосом
Пахитена Видны конъюгированные хромосомы
Диплотена Начало отталкивания гомологов – различима фигура, похожая на греческ. Х
Метафаза 1: Разрушение ядерной мембраны. Хромосомы выстраиваются в метафазную пластинку.
Анафаза 1: К разным полюсам расходятся гомологичные хромосомы, состоящие из 2 хроматид.
Телофаза 1 может отсутствовать, или ядро может восстанавливаться
Профаза 2, Метафаза 2: по митотическому типу.
Анафаза 2: Расхождение хроматид удвоенных хромосом.
Телофаза 2: 4 гаплоидных ядра.
Схема: 2n2c – 2n4c – 1n2c – 1n1c.
Таким образом, биологическое значение мейоза заключается в поддержании постоянства числа хромосом при наличии полового процесса. Мейоз обеспечивает также комбинативную изменчивость – появление новых сочетаний наследственных задатков при дальнейшем оплодотворении.
Гибридологический метод представляет собой специфический метод генетики. Он в значительной степени совпадает с методом генетического анализа, однако не исчерпывает его, поскольку в генетическом анализе гибридологический метод часто сочетается с методами получения мутаций. Метод гибридологического анализа, заключающийся в гибридизации и последующем учете расщеплений, в законченной форме был предложен Г. Менделем. Им были сформулированы непреложные правила, которым следуют все генетики:
1. Скрещиваемые организмы должны принадлежать к одному виду.
2. Скрещиваемые организмы должны четко различаться по отдельным признакам.
3. Изучаемые признаки должны быть константны, т. е. воспроизводиться из поколения в поколение при скрещивании в пределах линии (родительской формы).
4. Необходимы характеристика и количественный учет всех классов расщепления, если оно наблюдается у гибридов первого и последующих поколений.
Со времен Менделя генетический анализ обогатился целым рядом методов. В частности, методы получения мутаций позволяют создавать исходную гетерогенность для последующего применения гибридологического анализа. Метод отдаленной гибридизации позволяет выяснять степень эволюционного родства между видами и родами.
Стадии генетического анализа. 1. Выяснить, как наследуется признак. 2. Определить число генов, отвечающих за развитие признака. 3. Проводят определение на какой хромосоме и в каком ее месте расположен данный ген. 4. Тонкая характеристик гена.
students-library.com
Мейоз, его фазы, биологическое значение
При половом размножении дочерний организм возникает в результате слияния двух половых клеток (гамет) и последующего развития из оплодотворенной яйцеклетки — зиготы.
Половые клетки родителей обладают гаплоидным набором (n) хромосом, а в зиготе при объединении двух таких наборов число хромосом становится диплоидным (2n): каждая пара гомологичных хромосом содержит одну отцовскую и одну материнскую хромосому.
Гаплоидные клетки образуются из диплоидных в результате особого клеточного деления — мейоза.
Мейоз — разновидность митоза, в результате которого из диплоидных (2п) соматических клеток половых желез образуются гаплоидные гаметы (1n). При оплодотворении ядра гаметы сливаются, и восстанавливается диплоидный набор хромосом. Таким образом, мейоз обеспечивает сохранение постоянного для каждого вида набора хромосом и количества ДНК.
Мейоз представляет собой непрерывный процесс, состоящий из двух последовательных делений, называемых мейозом I и мейозом II. В каждом делении различают профазу, метафазу, анафазу и телофазу. В результате мейоза I число хромосом уменьшается вдвое (редукционное деление): при мейозе II гаплоидность клеток сохраняется (эквационное деление). Клетки, вступающие в мейоз, содержат генетическую информацию 2n2хр (рис. 1).
В профазе мейоза I происходит постепенная спирализация хроматина с образованием хромосом. Гомологичные хромосомы сближаются, образуя общую структуру, состоящую из двух хромосом (бивалент) и четырех хроматид (тетрада). Соприкосновение двух гомологичных хромосом по всей длине называется конъюгацией. Затем между гомологичными хромосомами появляются силы отталкивания, и хромосомы сначала разделяются в области центромер, оставаясь соединенными в области плеч, и образуют перекресты (хиазмы). Расхождение хроматид постепенно увеличивается, и перекресты смещаются к их концам. В процессе конъюгации между некоторыми хроматидами гомологичных хромосом может происходить обмен участками — кроссинговер, приводящий к перекомбинации генетического материала. К концу профазы растворяются ядерная оболочка и ядрышки, формируется ахроматиновое веретено деления. Содержание генетического материала остается прежним (2n2хр).
В метафазе мейоза I биваленты хромосом располагаются в экваториальной плоскости клетки. В этот момент спирализация их достигает максимума. Содержание генетического материала не изменяется (2п2хр).
В анафазе мейоза I гомологичные хромосомы, состоящие из двух хроматид, окончательно отходят друг от друга и расходятся к полюсам клетки. Следовательно, из каждой пары гомологичных хромосом в дочернюю клетку попадает только одна — число хромосом уменьшается вдвое (происходит редукция). Содержание генетического материала становится 1n2хр у каждого полюса.
В телофазе происходит формирование ядер и разделение цитоплазмы — образуются две дочерние клетки. Дочерние клетки содержат гаплоидный набор хромосом, каждая хромосома — две хроматиды (1n2хр).
Интеркинез — короткий промежуток между первым и вторым мейотическими делениями. В это время не происходит репликации ДНК, и две дочерние клетки быстро вступают в мейоз II, протекающий по типу митоза.
Рис. 1. Схема мейоза (показана одна пара гомологичных хромосом). Мейоз I: 1, 2, 3. 4. 5 — профаза; 6 —метафаза; 7 — анафаза; 8 — телофаза; 9 — интеркинез. Мейоз II; 10 —метафаза; II —анафаза; 12 — дочерние клетки.
В профазе мейоза II происходят тс же процессы, что и в профазе митоза. В метафазе хромосомы располагаются в экваториальной плоскости. Изменений содержания генетического материала не происходит (1n2хр). В анафазе мейоза II хроматиды каждой хромосомы отходят к противоположным полюсам клетки, и содержание генетического метериала у каждого полюса становится lnlxp. В телофазе образуются 4 гаплоидные клетки (lnlxp).
Таким образом, в результате мейоза из одной диплоидной материнской клетки образуются 4 клетки с гаплоидным набором хромосом. Кроме того, в профазе мейоза I происходит перекомбинация генетического материала (кроссинговер), а в анафазе I и II — случайное отхождение хромосом и хроматид к одному или другому полюсу. Эти процессы являются причиной комбинативной изменчивости.
Биологическое значение мейоза:
1) является основным этапом гаметогенеза;
2) обеспечивает передачу генетической информации от организма к организму при половом размножении;
3) дочерние клетки генетически не идентичны материнской и между собой.
Атак же, биологическое значение мейоза заключается в том, что уменьшение числа хромосом необходимо при образовании половых клеток, поскольку при оплодотворении ядра гамет сливаются. Если бы указанной редукции не происходило, то в зиготе (следовательно, и во всех клетках дочернего организма) хромосом становилось бы вдвое больше. Однако это противоречит правилу постоянства числа хромосом. Благодаря мейозу половые клетки гаплоидны, а при оплодотворении в зиготе восстанавливается диплоидный набор хромосом (рис. 2 и 3).
Рис. 2. Схема гаметогенеза: ? — сперматогенез; ? — овогенез
Рис. 3. Схема, иллюстрирующая механизм сохранения диплоидного набора хромосом при половом размножении
Источник: Краснодембский Е. Г.»Общая биология: Пособие для старшеклассников и поступающих в вузы»
Н. С. Курбатова, Е. А. Козлова «Конспект лекций по общей биологии»
Р.Г. Заяц «Биология для абитуриентов. Вопросы, ответы, тесты, задачи»
xn--90aeobapscbe.xn--p1ai