Краткая биография Джеймс Максвелл
Максвелл Джеймс Клерк (1831—1879), английский физик, создатель классической электродинамики, один из основателей статистической физики.
Родился 13 июня 1831 г. в Эдинбурге в семье шотландского дворянина. В десять лет поступил в Эдинбургскую академию, где стал первым учеником.
С 1847 г. учился в Эдинбургском университете (окончил его в 1850 г.). Здесь увлёкся опытами по химии, оптике, магнетизму, занимался математикой, физикой, механикой. Через три года для продолжения образования Джеймс перевёлся в Кембриджский Тринити-колледж и начал изучать электричество по книге М. Фарадея. Затем приступил к экспериментальным исследованиям по электричеству.
После успешного окончания колледжа (1854 г.) молодой учёный был приглашён на преподавательскую работу. Через два года он написал статью «О фарадеевых силовых линиях».
В это же время Максвелл разрабатывал кинетическую теорию газов. Он вывел закон, согласно которому молекулы газа распределяются по скоростям движения (распределение Максвелла).
В 1856—1860 гг. Максвелл — профессор Абердинского университета; в 1860— 1865 гг. он преподавал в Лондонском королевском колледже, где впервые встретился с Фарадеем. Именно в этот период создана его главная работа «Динамическая теория электромагнитного поля» (1864— 1865 гг.), в которой обнаруженные им закономерности выражены в виде систем из четырёх дифференциальных уравнений (уравнения Максвелла). Учёный утверждал, что изменяющееся магнитное поле образует в окружающих телах и в вакууме вихревое электрическое поле, а оно, в свою очередь, вызывает появление магнитного поля.
Это открытие стало новым этапом в познании мира. А. Пуанкаре считал теорию Максвелла вершиной математической мысли. Максвелл предположил, что должны существовать электромагнитные волны и что скорость их распространения равна скорости света. Значит, свет есть разновидность электромагнитных волн. Он теоретически обосновал такое явление, как давление света.
В 1871 г. Максвелл стал первым профессором экспериментальной физики в Кембридже. Под его руководством была основана знаменитая Кавендишская лаборатория, которую он возглавлял до конца жизни. Усилиями Максвелла увидели свет два тома работ Г. Кавендиша — гениального физика, намного опередившего своё время.
Максвелл умер 5 ноября 1879 г., оставив после себя огромное научное наследие, которое до сих пор служит людям. Его поистине энциклопедический «Трактат об электричестве и магнетизме» (1873 г.) посвящен памяти Фарадея.
citaty.su
биография, факты из жизни, даты
Максвелл, Джеймс Клерк – английский математик и физик шотландского происхождения. Основатель современной классической электродинамики, кинетической теории газов. Провел ряд важных исследований в термодинамике, молекулярной физике. Создатель количественной теории цветов, заложил основы принципов цветного фотографирования.
Биография
Джеймс Клерк Максвелл появился на свет 13 июня 1831 в шотландской столице Эдинбурге. Отец, Джон Клерк Максвелл. Был членом адвокатской коллегии, владел поместьем в Южной Шотландии. Мать, Фрэнсис Кей, была дочерью судьи Адмиралтейского суда.
Мать Джеймса умерла, когда ему было восемь лет. Отцу пришлось воспитывать самостоятельно. На всю жизнь Джеймс сохранил очень теплые чувства к отцу, который действительно всегда заботился о нем.
Когда настала пора получать образование, для Джеймса поначалу приглашали учителей на дом. Впрочем, эти учителя были невежественными и грубыми, а других найти не удавалось. Поэтому отец принял решение отправить сына в Эдинбургскую академию.
Поначалу юный Максвелл относился к учебе в академии довольно настороженно, но постепенно втянулся. Уроки вызывали у него подлинный интерес, особое внимание привлекала к себе геометрия. Именно эта наука стала той основой, на которой выросли все будущие научные достижения Максвелла.
Максвелл подарил академии на прощанье гимн, который после этого с удовольствием распевало не одно поколение студентов. Затем Джеймс поступает в Эдинбургский университет. Здесь он исследует теорию упругости, результаты данной работы получают высокую оценку специалистов.
В 1850 году Максвелл уезжает в Кембридж, несмотря на недовольство отца этим решением. Сначала учится в колледже св. Петра, затем переходит в Тринити-Колледж. Он просто поражал преподавателей своими знаниями и занял второе место на выпуске. Получив степень бакалавра, Максвелл остается в Тринити-Колледже работать преподавателем. В этот период он занимается проблемой цветов, геометрией, электричеством. В 1854 году в письме одному из друзей
Джеймс заявил о намерении «атаковать электричество». Это удалось – вскоре был опубликован труд «О фарадеевых силовых линиях», — одна из трех самых крупных работ Максвелла. Главный труд этого периода жизни ученого – создание теории цветов. Он экспериментальным путем доказал, как смешиваются цвета. Эти исследования впоследствии легли в основу цветной фотографии.
В 1856 году Максвелл становится профессором натуральной философии абердинского Маришаль-Колледжа. Он, по сути, создал здесь с нуля кафедру физики. В 1858 году Максвелл женился на Кэтрин Мери Дьюар, которая была дочерью руководителя Маришаль-Колледжа.
В этот период ученый занимается расчетом движения колец Сатурна, издает трактат «Об устойчивости движения колец Сатурна». Эта работа впоследствии стала классической.
Тогда же Максвелл сосредотачивается на кинетической теории газов. В июне 1860 года он делает доклад по этой теме на съезде Британской ассоциации в Оксфорде.
В том же 1860 году Максвеллу пришлось распрощаться с профессорской должностью в Маришаль-колледже. Вскоре после этого его приглашают в Кингс-колледж на должность профессора кафедры натуральной философии.
17 мая 1861 года ученый продемонстрировал первую в мире цветную фотографию. Спустя сто лет компания «Кодак» доказала, что Максвеллу тогда просто повезло – его способом получить зеленое и красное изображение было нельзя, эти цвета образовались случайно. Тем не менее, принципы были все же правильными, пусть и с небольшими ошибками.
После этого Максвелл сосредотачивается на исследовании электромагнетизма. Публикуются работы «О физических силовых линиях» и «Динамическая теория электромагнитного поля». С этого времени и вплоть до конца своей жизни ученый работает над проблемами электрических измерений.
В 1865 году состояние здоровья Максвелла ухудшается, и в следующем году он выезжает из Лондона в свое имение Гленлэр. В 1867 году он отправляется для поправки здоровья в Италию. В этот период публикуются книги «Теория теплоты» и «Теория тепла».
В 1871 году Максвелл становится профессором Кембриджского университета. Спустя два года ученый заканчивает труд всей своей жизни – двухтомник «Трактат по электричеству и магнетизму». Затем вышли книги «Материя и движение»,
С 1874 по 1879 годы Максвелл обрабатывал труды Генри Кавендиша, которые были ему торжественно вручены герцогом Девонширским.
К этому времени состояние его здоровья сильно ухудшается. Вскоре был поставлен диагноз – рак. 5 ноября 1879 года Джеймс Клерк Максвелл скончался. Его тело похоронили в деревне Партон, рядом с родителями.
Основные достижения Максвелла
- При жизни Максвелла многие его труды не были оценены должным образом, но потом в истории науки его работы заняли достойное место.
- Исследования в области теории электромагнитного поля стали основой идеи о поле в физике XX века. На это указывали многие ученые, в том числе Леопольд Инфельд, Альберт Эйнштейн, Рудольф Пайерлс.
- Вклад в молекулярно-кинетическую теорию.
- Разработка статистических методов, которые поспособствовали развитию статистической механики. Ввел термин «статистическая механика».
- Создание теории цветов. Электромагнитная теория света.
- Развитие динамической теории газов.
Важные даты биографии Максвелла
- 13 июня 1831 года – в Эдинбурге.
- 1841 год – поступление в Эдинбургскую академию.
- 1846 год – первая научная работа «О свойствах овалов и о кривых с многими фокусами».
- 1847 год – поступление в Эдинбургский университет.
- 1850 год – доклад «О равновесии упругих тел». Поступление в Кембриджский университет.
- 1854 год – окончание университета. Начало профессорской деятельности.
- 1856 год – смерть отца. Максвелл становится членом Эдинбургского королевского общества.
- 1857 год – работа «О фарадеевских силовых линиях».
- 1858 год – женился на Кетрин Мери Дьюар.
- 1859 год – первая статья по кинетической теории газов.
- 1860 год – профессор физики в Лондонском университете.
- 1860 год – получает Румфордовскую медаль за исследования оптики и цветов.
- 1861 год – первая в мире цветная фотография.
- 1861-1864 годы – публикация работ «Динамическая теория электромагнитного поля», «О физических линиях сил».
- 1865 год – переезд в Гленлэр.
- 1867 год – поездка в Италию.
- 1871 год – профессор экспериментальной физики Кембриджского университета.
- 1873 год – публикация работ «Материя и движение», «Трактат по электричеству и магнетизму».
- 1874 год – начало работы Кавендишской лаборатории.
- 1878-1879 годы – публикация статей «О напряжениях, возникающих в разреженных газах за счет неравенства температур», «Гармонический анализ».
- 5 ноября 1879 года — Джеймс Клерк Максвелл умер в своем кембриджском доме.
Интересные факты из жизни Максвелла
- Единственная деталь рельефа Венеры, названная мужским именем – горный хребет Джеймса Максвелла.
- В школе Максвелл очень плохо знал арифметику.
- После получения сообщения об обязательном посещении богослужения в Кембриджском университете сказал: «Я в это время только ложусь спать».
- Любил исполнять шотландские песни, аккомпанируя себе на гитаре.
- В восьмилетнем возрасте мог процитировать практически любой стих из Книги Псалмов.
Источник: http://myimperia.ru/
biografix.ru
Доклад — Джеймс Максвелл — Физика
Джеймс Максвелл
Биография
Содержание
Эдинбург. 1831-1850 ……………………………………………………………..3
Детство и школьные годы
Первое открытие
Эдинбургский университет …………………………………………………….4
Оптико-механические исследования
Кембридж. 1850-1856 ……………………………………………………………5
Занятия электричеством
Абердин. 1856-1860 ………………………………………………………………7 Трактат о кольцах Сатурна
Лондон – Гленлейр. 1860-1871 ………………………………………………….9
Первая цветная фотография
Теория вероятностей
Электромагнитные волны и электромагнитная теория света
Кембридж 1871-1879 ……………………………………………………………11
Кавендишская лаборатория
Мировое признание
Список использованной литературы ………………………………………..13
Эдинбург. 1831-1850
Детство и школьные годы
13 июня 1831г. в Эдинбурге в доме номер 14 по улице Индии Франсез Кей, дочь эдинбургского судьи, после замужества – миссис Клерк Максвелл, родила сына Джеймса. В этот день во всем мире не произошло ничего сколько-нибудь значительного, еще не свершилось главное событие 1831 года. Но уже одиннадцать лет гениальный Фарадей пытается постичь тайны электромагнетизма, и лишь сейчас, летом 1831 года, он напал на след ускользающей электромагнитной индукции, и Джеймсу будет всего лишь четыре месяца, когда Фарадей подведет итог своему эксперименту «по получению электричества из магнетизма». И тем самым откроет новую эпоху – эпоху электричества. Эпоху, для которой предстоит жить и творить маленькому Джеймсу, потомку славных родов шотландских Клерков и Максвеллов.
Отец Джеймса, Джон Клерк Максвелл, адвокат по профессии, ненавидел юриспруденцию и питал неприязнь, как сам он говорил, к «грязным адвокатским делишкам». Как только случалась возможность, Джон прекращал бесконечное шарканье по мраморным вестибюлям Эдинбургского суда и посвящал себя научным экспериментам, которыми он между делом, по-любительски занимался. Он был дилетантом, сознавал это и тяжело переживал. Джон был влюблен в науку, в ученых, в людей практической сметки, в своего ученого деда Джорджа. Именно опыты сконструировать воздуходувные мехи, которые проводились совместно с братом Франсез Кей, свели его с будущей женой; свадьба состоялась 4 октября 1826 года. Воздуходувные мехи так никогда и не заработали, зато на свет появился сын Джеймс.
Когда Джеймсу было восемь, скончалась его мать, и он остался жить с отцом. Его детство заполнено природой, общением с отцом, книгами, рассказами о родных, «научными игрушками», первыми «открытиями». Родных Джеймса беспокоило то, что он не получает систематического образования: случайное чтение всего того, что есть в доме, уроки астрономии на крыльце дома и в гостиной, где Джеймс вместе с отцом построил «небесный глобус». После неудачной попытки обучения у частного преподавателя, от которого Джеймс часто сбегал к более увлекательным занятиям, было решено отправить его учиться в Эдинбург.
Несмотря на домашнее образование, Джеймс удовлетворял высоким требованиям Эдинбургской академии и был зачислен туда в ноябре 1841 года. Его успехи в классе были далеко не блестящи. Он легко мог бы выполнять задания лучше, но дух соревнования в малоприятных занятиях был для него глубоко чуждым. После первого же школьного дня он не сошелся с одноклассниками, и, поэтому, больше всего на свете Джеймс любил бывать один и рассматривать окружающие предметы. Одним из самых ярких событий, несомненно, скрасившее унылые школьные дни, было посещение вместе с отцом Эдинбургского королевского общества, где были выставлены первые «электромагнетические машины».
Эдинбургское королевское общество изменило жизнь Джеймса: именно там он получил первые понятия о пирамиде, кубе, других правильных многогранниках. Совершенство симметрии, закономерные превращения геометрических тел изменили понятие Джеймса об учении – он увидел в учении зерно красоты и совершенства. Когда пришло время экзаменов, ученики академии поразились – «Дуралей», как они называли Максвелла, стал одним из первых.
Первое открытие
Если раньше отец изредка брал Джеймса на свое любимое развлечение – заседания Эдинбургского королевского общества, то теперь посещения этого общества, а также Эдинбургского общества искусств вместе с Джеймсом стали для него регулярными и обязательными. В заседаниях Общества искусств самым известным, собирающим толпы людей лектором был мистер Д.Р.Хей, художник-декоратор. Именно его лекции натолкнули Джеймса на его первое серьезное открытие – простой инструмент для рисования овалов. Джеймс нашел оригинальный и в тоже время очень простой способ, а главное, абсолютно новый. Принцип своего метода он описал в коротенькой «статье», которая была прочитана в Эдинбургском королевском обществе – честь, которой добивались многие, а удостоился четырнадцатилетний школьник.
Эдинбургский университет
Оптико-механические исследования
В 1847 году обучение в Эдинбургской академии заканчивается, Джеймс – один из первых, забыты обиды и треволнения первых лет.
После окончания академии Джеймс поступает в Эдинбургский университет. В это же время он всерьез начинает интересоваться оптическими исследованиями. Утверждения Брюстера натолкнули Джеймса на мысль, что изучение пути лучей можно использовать для определения упругости среды в разных направлениях, для обнаружения напряжений в прозрачных материалах. Таким образом,
Рис.1 картина напряжений в стелянном треугольнике, полученная Джеймсом при помощи поляризованного света.
исследование механических напряжений можно свести к оптическому исследованию. Два луча, разделившиеся в напряженном прозрачном материале, будут взаимодействовать, рождая характерные красочные картины. Джеймс показал, что цветные картины носят вполне закономерный характер и могут быть использованы для расчетов, для проверки выведенных ранее формул, для выведения новых. Оказалось, что некоторые формулы неверны, или неточны, или нуждаются в поправках.
Более того, Джеймсу удалось вскрыть закономерности в тех случаях, где раньше не удавалось ничего сделать из-за математических трудностей. Прозрачный и нагруженный треугольник из неотпущенного стекла (рис.1) дал Джеймсу возможность исследовать напряжения и в этом, неподдавашемся расчету случае.
Девятнадцатилетний Джеймс Клерк Максвелл впервые поднялся на трибуну Эдинбургского королевского общества. Его доклад не мог остаться незамеченным: слишком много нового и оригинального содержал он.
1850-1856 Кембридж
Занятия электричеством
Теперь уже никто не ставил под сомнение одаренность Джеймса. Он явно перерос уже Эдинбургский университет и, поэтому, осенью 1850 года поступил в Кембридж. В январе 1854 года Джеймс заканчивает с отличием университет со степнью бакалавра. Он решает остаться в Кембридже для подготовки к профессорскому званию. Теперь, когда не нужно готовиться к экзаменам, он получает долгожданную возможность тратить все свое время на эксперименты, продолжает свои исследования в области оптики. Особенно его интересует вопрос об основных цветах. Первая статья Максвелла называлась «Теория цветов в связи с цветовой слепотой» и была даже собственно не статьей, а письмом. Максвелл отправил его доктору Вильсону, а тот счел письмо настолько интересным, что позаботился об его публикации: поместил его целиком в свою книгу, посвященную цветовой слепоте. И все же Джеймса безотчетно влекут к себе тайны более глубокие, вещи куда более неочевидные, чем смешение цветов. Именно электричество в силу его интригующей непонятности, неизбежно, рано или поздно, должно было привлечь энергию его молодого ума. Джеймс довольно легко воспринял фундаментальные принципы напряженного электричества. Изучив теорию дальнодействия Ампера, он, несмотря на ее видимую неопровержимость, позволил себе в ней усомниться. Теория дальнодействия казалась несомненно справедливой, т.к. подтверждалась формальным сходством законов, математических выражений для, казалось бы, разных явлений – гравитационного и электрического взаимодействия. Но эта теория более математическая, нежели физическая, не убедила Джеймса, он все больше склонялся к фарадеевскому восприятию действием через посредство магнитных силовых линий, заполняющих пространство, к теории близкодействия.
Пытаясь создать теорию, Максвелл решил использовать для исследования метод физических аналогий. Прежде всего, нужно было найти правильную аналогию. Максвелл всегда восхищался, тогда еще только замеченной, аналогией существующей между вопросами притяжения электрически заряженных тел и вопросами установившейся теплопередачи. Это, а также фарадеевские идеи близкодействия, амперовское магнитное действие замкнутых проводников, Джеймс постепенно выстраивал в новую теорию, неожиданную и смелую.
В Кембридже Джеймса назначают читать труднейшие главы курсов гидростатики и оптики наиболее способным студентам. Кроме того, от электрических теорий его отвлекает работа над книгой по оптике. Максвелл скоро приходит к выводу, что оптика больше не интересует его, как раньше, а лишь отвлекает от изучения электромагнитных явлений.
Продолжая искать аналогию, Джеймс сравнивает силовые линии с течением какой-то несжимаемой жидкости. Теория трубок из гидродинамики позволила заменить силовые линии силовыми трубками, которые легко объясняли опыт Фарадея. В рамки теории Максвелла легко и просто укладывались понятия о сопротивлении, явления электростатики, магнитостатики и электрического тока. Но в эту теорию пока никак не укладывалось открытое Фарадеем явление электромагнитной индукции.
Джеймсу пришлось на некоторое время забросить свою теорию в связи с ухудшением состояния отца, требовавшего ухода. Когда же после смерти отца Джеймс вернулся в Кембридж, он из-за вероисповедания, не смог получить более высокую степень магистра. Поэтому в октябре 1856 года Джеймс Максвелл заступает на кафедру в Абердине.
Абердин 1856-1860
Трактат о кольцах Сатурна
Именно в Абердине была написана первая работа по электричеству – статья «О фарадеевских линиях силы», которая привела к обмену мнениями об электромагнитных явлениях с самим Фарадеем.
Когда Джеймс приступил к занятиям в Абердине, у него в голове уже созрела новая задача, которую пока никто не мог решить, новое явление, которое подлежало объяснению. Это были Сатурновы кольца. Определить их физическую природу, определить за миллионы километров, без каких бы то ни было приборов, пользуясь только бумагой и пером, — это была задача как будто для него. Гипотеза твердого жесткого кольца отпала сразу. Жидкое кольцо распалось бы под влиянием возникших бы в нем гигантских волн – и в результате, по мысли Джеймса Клерка Максвелла, вокруг Сатурна скорее всего витает сонм мелких спутников – «кирпичных обломков», по его восприятию. За трактат, посвященный кольцам Сатурна, в 1857 году Джеймсу была присуждена премия Адамса, а сам он признан одним из самых авторитетных английских физиков-теоретиков.
Рис.2 Сатурн. Фотография, сделанная с помощью 36-дюймового рефрактора в Ликской обсерватории.
Рис.3 Механические модели, иллюстрирующие движение колец Сатурна. Рисунки из эссе Максвелла «О стабильности вращения колец Сатурна»
Лондон – Гленлейр 1860-1871
Первая цветная фотография
В 1860 году начинается новый этап в жизни Максвелла. Он назначен на должность профессора кафедры натуральной философии в Кингс-колледж в Лондоне. Кингс-колледж по оснащенности своих физических лабораторий был впереди многих университетов мира. Здесь Максвелл не просто в 1864-1865 годах читал курс прикладной физики, здесь он пытался организовать учебный процесс по-новому. Студенты учились в процессе экспериментов. В Лондоне Джеймс Клерк Максвелл впервые вкусил плоды своего признания в качестве крупного ученого. За исследования по смешению цветов и оптике Королевское общество наградило Максвелла медалью Румфорда. 17 мая 1861 года Максвеллу была предложена высокая честь – прочесть лекцию перед Королевским институтом. Тема лекции – «О теории трех основных цветов». На этой лекции, в качестве доказательства этой теории, миру впервые была продемонстрирована цветная фотография!
Теория вероятностей
В конце абердинского периода и в начале лондонского, у Максвелла появилось наряду с оптикой и электричеством новое увлечение – теория газов. Работая над этой теорией, Максвелл вводит в физику такие понятия как «вероятно», «это событие может произойти с большей степенью вероятности».
В физике произошла революция, а многие слушатели докладов Максвелла на ежегодных встречах Британской ассоциации этого даже не заметили. С другой стороны Максвелл подошел к границам механического понимания материи. И переступил их. Вывод Максвелла о господстве в мире молекул законов теории вероятностей затрагивал самые фундаментальные основы мировоззрения. Заявление о том, что в мире молекул «господствует случай», было по своей смелости одним из величайших подвигов в науке.
Механическая модель Максвелла
Работа в Кингс-колледже требовала уже куда больше времени, чем в Абердине, — лекционный курс продолжался девять месяцев в году. Тем не менее, в это время тридцатилетний Джеймс Клерк Максвелл набрасывает план своей будущей книги по электричеству. Это зародыш будущего «Трактата». Первые главы его он посвящает своим предшественникам: Эрстеду, Амперу, Фарадею. Пытаясь объяснить Фарадеевскую теорию силовых линий, индукцию электрических токов и Эрстедовскую теорию вихреобразности характера магнитных явлений Максвелл создает свою механическую модель (рис.5).
Модель представляла собой ряды молекулярных вихрей, вращающихся в одном направлении, между которыми помещен слой мельчайших шарообразных частичек, способных к вращению. Несмотря на свою громоздкость, модель объясняла многие электромагнитные явления, в том числе электромагнитную индукцию. Сенсационность модели была в том, что она объясняла теорию о действии магнитного поля под прямым углом по отношению к направлению тока, сформулированную Максвеллом («правило буравчика»).
Рис.4 Максвелл устраняет взаимодействие вращающихся в одну сторону соседних вихрей А и В, вводя между ними «холостые шестеренки»
Рис.5 Механическая модель Максвелла для объяснения электромагнитных явлений.
Электромагнитные волны и электромагнитная теория света
Продолжая опыты с электромагнитами, Максвелл приблизился к теории о том, что любые изменения электрической и магнитной силы посылают волны, распространяющиеся в пространстве.
После серии статей «О физических линиях» у Максвелла был уже, по сути дела, весь материал для построения новой теории электромагнетизма. Теперь уже для теории электромагнитного поля. Начисто исчезли шестеренки, вихри. Уравнения поля были для Максвелла ничуть не менее реальны и ощутимы, чем результаты лабораторных опытов. Теперь и электромагнитная индукция Фарадея, и ток смещения Максвелла выводились не с помощью механических моделей, а с помощью математических операций.
По Фарадею изменение магнитного поля приводит к появлению электрического поля. Всплеск магнитного поля вызывает всплеск электрического поля.
Всплеск электрической волны рождает всплеск волны магнитной, так впервые из-под пера тридцатитрехлетнего пророка появились в 1864 году электромагнитные волны, но еще не в том виде, в котором мы их понимаем сейчас. Максвелл говорил в статье 1864 года только о магнитных волнах. Электромагнитная волна в полном смысле этого слова, включающая одновременно электрическое и магнитное возмущения, появилась у Максвелла позже, в его статье, в 1868 году.
В другой статье Максвелла — «Динамической теории электромагнитного поля» — приобрела чёткие очертания и доказательность намеченная еще раньше электромагнитная теория света. На основе собственных исследований и опыта других ученых (и в наибольшей степени Фарадея) Максвелл делает вывод, что оптические свойства среды связаны с ее электромагнитными свойствами, и свет представляет собой не что иное, как электромагнитные волны.
В 1865 году Максвелл решает оставить Кингс-колледж. Он поселяется в своем родовом поместье Гленмейр, где занимается основными трудами жизни – «Теорией теплоты» и «Трактатом об электричестве и магнетизме». Им посвящается все время. Это были годы отшельничества, годы полной отрешенности от суеты, служения одной только науке, годы наиболее плодотворные, светлые, творческие. Тем не менее, Максвелла вновь тянет работать при университете, и он принимает предложение, сделанное ему Кембриджским университетом.
Кембридж 1871-1879
Кавендишская лаборатория
В 1870 году герцог Девонширский заявил сенату университета о своем желании построить и оснастить физическую лабораторию. И возглавить ее должен был ученый с мировым именем. Этим ученым стал Джеймс Клерк Максвелл. В1871 году он начинает работу по оснащению знаменитой Кавендишской лаборатории. В эти годы наконец издается его «Трактат об электричестве и магнетизме». Более тысячи страниц, где Максвелл дает описание научных опытов, обзор всех, до тех пор созданных теорий электричества и магнетизма, а также «Основные уравнения электромагнитного поля». В целом в Англии не приняли основных идей «Трактата», даже друзья не поняли его. Идеи Максвелла подхватили молодые. Большое впечатление теория Максвелла произвела на русских ученых. Всем известна роль Умова, Столетова, Лебедева в развитии и укреплении Максвелловой теории.
16 июня 1874 года – день торжественного открытия Кавендишской лаборатории. Последующие годы ознаменовались се растущим признанием.
Мировое признание
В 1870 году Максвелл избран почетным доктором литературы Эдинбургского университета, в 1874 году – иностранным почетным членом Американской академии искусств и наук в Бостоне, в 1875 году – членом Американского философского общества в Филадельфии, а также становится почетным членом академий Нью-Йорка, Амстердама, Вены. Последующие пять лет Максвелл занимается редактированием и подготовкой к изданию двадцати пакетов манускриптов Генри Кавендиша.
В 1877 году Максвелл почувствовал первые признаки болезни, а в мае 1879 года прочел своим студентам последнюю лекцию.
Список использованной литературы:
«Жизнь замечательных людей»
Вл. Карцев «Максвелл»
Изд. Москва, «Молодая гвардия», 1974г.
www.ronl.ru
Джеймс Максвелл краткая биография | Kratkoe.com
Джеймс Максвелл краткая биография английского физика, создателя классической электродинамики, одного из основателей статистической физики изложена в этой статье.
Джеймс Клерк Максвелл биография кратко
Максвелл Джеймс Клерк родился 13 июня 1831 г. в Эдинбурге в семье шотландского дворянина. В 10 лет поступил в Эдинбургскую академию, где стал первым учеником.
Джеймс Максвелл интересные факты
С 1847 по 1850 учился в Эдинбургском университете. Здесь увлёкся опытами по химии, оптике, магнетизму, занимался математикой, физикой, механикой. Через три года для продолжения образования Джеймс перевёлся в Кембриджский Тринити-колледж и начал изучать электричество по книге М. Фарадея. Затем приступил к экспериментальным исследованиям по электричеству.
После успешного окончания колледжа (1854 г.) молодой учёный был приглашён на преподавательскую работу. Через два года он написал статью «О фарадеевых силовых линиях».
В это же время Максвелл разрабатывал кинетическую теорию газов. Он вывел закон, согласно которому молекулы газа распределяются по скоростям движения (распределение Максвелла).
В 1856—1860 гг. Максвелл — профессор Абердинского университета; в 1860— 1865 гг. он преподавал в Лондонском королевском колледже, где впервые встретился с Фарадеем. Именно в этот период создана его главная работа «Динамическая теория электромагнитного поля» (1864— 1865 гг.), в которой обнаруженные им закономерности выражены в виде систем из четырёх дифференциальных уравнений (уравнения Максвелла). Учёный утверждал, что изменяющееся магнитное поле образует в окружающих телах и в вакууме вихревое электрическое поле, а оно, в свою очередь, вызывает появление магнитного поля.
Это открытие стало новым этапом в познании мира. А. Пуанкаре считал теорию Максвелла вершиной математической мысли. Максвелл предположил, что должны существовать электромагнитные волны и что скорость их распространения равна скорости света. Значит, свет есть разновидность электромагнитных волн. Он теоретически обосновал такое явление, как давление света.
В 1871 г. Максвелл стал первым профессором экспериментальной физики в Кембридже. Под его руководством была основана знаменитая Кавендишская лаборатория, которую он возглавлял до конца жизни. Усилиями Максвелла увидели свет два тома работ Г. Кавендиша — гениального физика, намного опередившего своё время.
Умер ученый 5 ноября 1879 г.
kratkoe.com
Реферат — Джеймс Максвелл — Физика
Джеймс Максвелл
Биография
Содержание
Эдинбург. 1831-1850 ……………………………………………………………..3
Детство и школьные годы
Первое открытие
Эдинбургский университет …………………………………………………….4
Оптико-механические исследования
Кембридж. 1850-1856 ……………………………………………………………5
Занятия электричеством
Абердин. 1856-1860 ………………………………………………………………7 Трактат о кольцах Сатурна
Лондон – Гленлейр. 1860-1871 ………………………………………………….9
Первая цветная фотография
Теория вероятностей
Механическая модель Максвелла
Электромагнитные волны и электромагнитная теория света
Кембридж 1871-1879 ……………………………………………………………11
Кавендишская лаборатория
Мировое признание
Список использованной литературы ………………………………………..13
Эдинбург. 1831-1850
Детство и школьные годы
13 июня 1831г. в Эдинбурге в доме номер 14 по улице Индии Франсез Кей, дочь эдинбургского судьи, после замужества – миссис Клерк Максвелл, родила сына Джеймса. В этот день во всем мире не произошло ничего сколько-нибудь значительного, еще не свершилось главное событие 1831 года. Но уже одиннадцать лет гениальный Фарадей пытается постичь тайны электромагнетизма, и лишь сейчас, летом 1831 года, он напал на след ускользающей электромагнитной индукции, и Джеймсу будет всего лишь четыре месяца, когда Фарадей подведет итог своему эксперименту «по получению электричества из магнетизма». И тем самым откроет новую эпоху – эпоху электричества. Эпоху, для которой предстоит жить и творить маленькому Джеймсу, потомку славных родов шотландских Клерков и Максвеллов.
Отец Джеймса, Джон Клерк Максвелл, адвокат по профессии, ненавидел юриспруденцию и питал неприязнь, как сам он говорил, к «грязным адвокатским делишкам». Как только случалась возможность, Джон прекращал бесконечное шарканье по мраморным вестибюлям Эдинбургского суда и посвящал себя научным экспериментам, которыми он между делом, по-любительски занимался. Он был дилетантом, сознавал это и тяжело переживал. Джон был влюблен в науку, в ученых, в людей практической сметки, в своего ученого деда Джорджа. Именно опыты сконструировать воздуходувные мехи, которые проводились совместно с братом Франсез Кей, свели его с будущей женой; свадьба состоялась 4 октября 1826 года. Воздуходувные мехи так никогда и не заработали, зато на свет появился сын Джеймс.
Когда Джеймсу было восемь, скончалась его мать, и он остался жить с отцом. Его детство заполнено природой, общением с отцом, книгами, рассказами о родных, «научными игрушками», первыми «открытиями». Родных Джеймса беспокоило то, что он не получает систематического образования: случайное чтение всего того, что есть в доме, уроки астрономии на крыльце дома и в гостиной, где Джеймс вместе с отцом построил «небесный глобус». После неудачной попытки обучения у частного преподавателя, от которого Джеймс часто сбегал к более увлекательным занятиям, было решено отправить его учиться в Эдинбург.
Несмотря на домашнее образование, Джеймс удовлетворял высоким требованиям Эдинбургской академии и был зачислен туда в ноябре 1841 года. Его успехи в классе были далеко не блестящи. Он легко мог бы выполнять задания лучше, но дух соревнования в малоприятных занятиях был для него глубоко чуждым. После первого же школьного дня он не сошелся с одноклассниками, и, поэтому, больше всего на свете Джеймс любил бывать один и рассматривать окружающие предметы. Одним из самых ярких событий, несомненно, скрасившее унылые школьные дни, было посещение вместе с отцом Эдинбургского королевского общества, где были выставлены первые «электромагнетические машины».
Эдинбургское королевское общество изменило жизнь Джеймса: именно там он получил первые понятия о пирамиде, кубе, других правильных многогранниках. Совершенство симметрии, закономерные превращения геометрических тел изменили понятие Джеймса об учении – он увидел в учении зерно красоты и совершенства. Когда пришло время экзаменов, ученики академии поразились – «Дуралей», как они называли Максвелла, стал одним из первых.
Первое открытие
Если раньше отец изредка брал Джеймса на свое любимое развлечение – заседания Эдинбургского королевского общества, то теперь посещения этого общества, а также Эдинбургского общества искусств вместе с Джеймсом стали для него регулярными и обязательными. В заседаниях Общества искусств самым известным, собирающим толпы людей лектором был мистер Д.Р.Хей, художник-декоратор. Именно его лекции натолкнули Джеймса на его первое серьезное открытие – простой инструмент для рисования овалов. Джеймс нашел оригинальный и в тоже время очень простой способ, а главное, абсолютно новый. Принцип своего метода он описал в коротенькой «статье», которая была прочитана в Эдинбургском королевском обществе – честь, которой добивались многие, а удостоился четырнадцатилетний школьник.
Эдинбургский университет
Оптико-механические исследования
В 1847 году обучение в Эдинбургской академии заканчивается, Джеймс – один из первых, забыты обиды и треволнения первых лет.
После окончания академии Джеймс поступает в Эдинбургский университет. В это же время он всерьез начинает интересоваться оптическими исследованиями. Утверждения Брюстера натолкнули Джеймса на мысль, что изучение пути лучей можно использовать для определения упругости среды в разных направлениях, для обнаружения напряжений в прозрачных материалах. Таким образом,
Рис.1 картина напряжений в стелянном треугольнике, полученная Джеймсом при помощи поляризованного света.
исследование механических напряжений можно свести к оптическому исследованию. Два луча, разделившиеся в напряженном прозрачном материале, будут взаимодействовать, рождая характерные красочные картины. Джеймс показал, что цветные картины носят вполне закономерный характер и могут быть использованы для расчетов, для проверки выведенных ранее формул, для выведения новых. Оказалось, что некоторые формулы неверны, или неточны, или нуждаются в поправках.
Более того, Джеймсу удалось вскрыть закономерности в тех случаях, где раньше не удавалось ничего сделать из-за математических трудностей. Прозрачный и нагруженный треугольник из неотпущенного стекла (рис.1) дал Джеймсу возможность исследовать напряжения и в этом, неподдавашемся расчету случае.
Девятнадцатилетний Джеймс Клерк Максвелл впервые поднялся на трибуну Эдинбургского королевского общества. Его доклад не мог остаться незамеченным: слишком много нового и оригинального содержал он.
1850-1856 Кембридж
Занятия электричеством
Теперь уже никто не ставил под сомнение одаренность Джеймса. Он явно перерос уже Эдинбургский университет и, поэтому, осенью 1850 года поступил в Кембридж. В январе 1854 года Джеймс заканчивает с отличием университет со степнью бакалавра. Он решает остаться в Кембридже для подготовки к профессорскому званию. Теперь, когда не нужно готовиться к экзаменам, он получает долгожданную возможность тратить все свое время на эксперименты, продолжает свои исследования в области оптики. Особенно его интересует вопрос об основных цветах. Первая статья Максвелла называлась «Теория цветов в связи с цветовой слепотой» и была даже собственно не статьей, а письмом. Максвелл отправил его доктору Вильсону, а тот счел письмо настолько интересным, что позаботился об его публикации: поместил его целиком в свою книгу, посвященную цветовой слепоте. И все же Джеймса безотчетно влекут к себе тайны более глубокие, вещи куда более неочевидные, чем смешение цветов. Именно электричество в силу его интригующей непонятности, неизбежно, рано или поздно, должно было привлечь энергию его молодого ума. Джеймс довольно легко воспринял фундаментальные принципы напряженного электричества. Изучив теорию дальнодействия Ампера, он, несмотря на ее видимую неопровержимость, позволил себе в ней усомниться. Теория дальнодействия казалась несомненно справедливой, т.к. подтверждалась формальным сходством законов, математических выражений для, казалось бы, разных явлений – гравитационного и электрического взаимодействия. Но эта теория более математическая, нежели физическая, не убедила Джеймса, он все больше склонялся к фарадеевскому восприятию действием через посредство магнитных силовых линий, заполняющих пространство, к теории близкодействия.
Пытаясь создать теорию, Максвелл решил использовать для исследования метод физических аналогий. Прежде всего, нужно было найти правильную аналогию. Максвелл всегда восхищался, тогда еще только замеченной, аналогией существующей между вопросами притяжения электрически заряженных тел и вопросами установившейся теплопередачи. Это, а также фарадеевские идеи близкодействия, амперовское магнитное действие замкнутых проводников, Джеймс постепенно выстраивал в новую теорию, неожиданную и смелую.
В Кембридже Джеймса назначают читать труднейшие главы курсов гидростатики и оптики наиболее способным студентам. Кроме того, от электрических теорий его отвлекает работа над книгой по оптике. Максвелл скоро приходит к выводу, что оптика больше не интересует его, как раньше, а лишь отвлекает от изучения электромагнитных явлений.
Продолжая искать аналогию, Джеймс сравнивает силовые линии с течением какой-то несжимаемой жидкости. Теория трубок из гидродинамики позволила заменить силовые линии силовыми трубками, которые легко объясняли опыт Фарадея. В рамки теории Максвелла легко и просто укладывались понятия о сопротивлении, явления электростатики, магнитостатики и электрического тока. Но в эту теорию пока никак не укладывалось открытое Фарадеем явление электромагнитной индукции.
Джеймсу пришлось на некоторое время забросить свою теорию в связи с ухудшением состояния отца, требовавшего ухода. Когда же после смерти отца Джеймс вернулся в Кембридж, он из-за вероисповедания, не смог получить более высокую степень магистра. Поэтому в октябре 1856 года Джеймс Максвелл заступает на кафедру в Абердине.
Абердин 1856-1860
Трактат о кольцах Сатурна
Именно в Абердине была написана первая работа по электричеству – статья «О фарадеевских линиях силы», которая привела к обмену мнениями об электромагнитных явлениях с самим Фарадеем.
Когда Джеймс приступил к занятиям в Абердине, у него в голове уже созрела новая задача, которую пока никто не мог решить, новое явление, которое подлежало объяснению. Это были Сатурновы кольца. Определить их физическую природу, определить за миллионы километров, без каких бы то ни было приборов, пользуясь только бумагой и пером, — это была задача как будто для него. Гипотеза твердого жесткого кольца отпала сразу. Жидкое кольцо распалось бы под влиянием возникших бы в нем гигантских волн – и в результате, по мысли Джеймса Клерка Максвелла, вокруг Сатурна скорее всего витает сонм мелких спутников – «кирпичных обломков», по его восприятию. За трактат, посвященный кольцам Сатурна, в 1857 году Джеймсу была присуждена премия Адамса, а сам он признан одним из самых авторитетных английских физиков-теоретиков.
Рис.2 Сатурн. Фотография, сделанная с помощью 36-дюймового рефрактора в Ликской обсерватории.
Рис.3 Механические модели, иллюстрирующие движение колец Сатурна. Рисунки из эссе Максвелла «О стабильности вращения колец Сатурна»
Лондон – Гленлейр 1860-1871
Первая цветная фотография
В 1860 году начинается новый этап в жизни Максвелла. Он назначен на должность профессора кафедры натуральной философии в Кингс-колледж в Лондоне. Кингс-колледж по оснащенности своих физических лабораторий был впереди многих университетов мира. Здесь Максвелл не просто в 1864-1865 годах читал курс прикладной физики, здесь он пытался организовать учебный процесс по-новому. Студенты учились в процессе экспериментов. В Лондоне Джеймс Клерк Максвелл впервые вкусил плоды своего признания в качестве крупного ученого. За исследования по смешению цветов и оптике Королевское общество наградило Максвелла медалью Румфорда. 17 мая 1861 года Максвеллу была предложена высокая честь – прочесть лекцию перед Королевским институтом. Тема лекции – «О теории трех основных цветов». На этой лекции, в качестве доказательства этой теории, миру впервые была продемонстрирована цветная фотография!
Теория вероятностей
В конце абердинского периода и в начале лондонского, у Максвелла появилось наряду с оптикой и электричеством новое увлечение – теория газов. Работая над этой теорией, Максвелл вводит в физику такие понятия как «вероятно», «это событие может произойти с большей степенью вероятности».
В физике произошла революция, а многие слушатели докладов Максвелла на ежегодных встречах Британской ассоциации этого даже не заметили. С другой стороны Максвелл подошел к границам механического понимания материи. И переступил их. Вывод Максвелла о господстве в мире молекул законов теории вероятностей затрагивал самые фундаментальные основы мировоззрения. Заявление о том, что в мире молекул «господствует случай», было по своей смелости одним из величайших подвигов в науке.
Механическая модель Максвелла
Работа в Кингс-колледже требовала уже куда больше времени, чем в Абердине, — лекционный курс продолжался девять месяцев в году. Тем не менее, в это время тридцатилетний Джеймс Клерк Максвелл набрасывает план своей будущей книги по электричеству. Это зародыш будущего «Трактата». Первые главы его он посвящает своим предшественникам: Эрстеду, Амперу, Фарадею. Пытаясь объяснить Фарадеевскую теорию силовых линий, индукцию электрических токов и Эрстедовскую теорию вихреобразности характера магнитных явлений Максвелл создает свою механическую модель (рис.5).
Модель представляла собой ряды молекулярных вихрей, вращающихся в одном направлении, между которыми помещен слой мельчайших шарообразных частичек, способных к вращению. Несмотря на свою громоздкость, модель объясняла многие электромагнитные явления, в том числе электромагнитную индукцию. Сенсационность модели была в том, что она объясняла теорию о действии магнитного поля под прямым углом по отношению к направлению тока, сформулированную Максвеллом («правило буравчика»).
Рис.4 Максвелл устраняет взаимодействие вращающихся в одну сторону соседних вихрей А и В, вводя между ними «холостые шестеренки»
Рис.5 Механическая модель Максвелла для объяснения электромагнитных явлений.
Электромагнитные волны и электромагнитная теория света
Продолжая опыты с электромагнитами, Максвелл приблизился к теории о том, что любые изменения электрической и магнитной силы посылают волны, распространяющиеся в пространстве.
После серии статей «О физических линиях» у Максвелла был уже, по сути дела, весь материал для построения новой теории электромагнетизма. Теперь уже для теории электромагнитного поля. Начисто исчезли шестеренки, вихри. Уравнения поля были для Максвелла ничуть не менее реальны и ощутимы, чем результаты лабораторных опытов. Теперь и электромагнитная индукция Фарадея, и ток смещения Максвелла выводились не с помощью механических моделей, а с помощью математических операций.
По Фарадею изменение магнитного поля приводит к появлению электрического поля. Всплеск магнитного поля вызывает всплеск электрического поля.
Всплеск электрической волны рождает всплеск волны магнитной, так впервые из-под пера тридцатитрехлетнего пророка появились в 1864 году электромагнитные волны, но еще не в том виде, в котором мы их понимаем сейчас. Максвелл говорил в статье 1864 года только о магнитных волнах. Электромагнитная волна в полном смысле этого слова, включающая одновременно электрическое и магнитное возмущения, появилась у Максвелла позже, в его статье, в 1868 году.
В другой статье Максвелла — «Динамической теории электромагнитного поля» — приобрела чёткие очертания и доказательность намеченная еще раньше электромагнитная теория света. На основе собственных исследований и опыта других ученых (и в наибольшей степени Фарадея) Максвелл делает вывод, что оптические свойства среды связаны с ее электромагнитными свойствами, и свет представляет собой не что иное, как электромагнитные волны.
В 1865 году Максвелл решает оставить Кингс-колледж. Он поселяется в своем родовом поместье Гленмейр, где занимается основными трудами жизни – «Теорией теплоты» и «Трактатом об электричестве и магнетизме». Им посвящается все время. Это были годы отшельничества, годы полной отрешенности от суеты, служения одной только науке, годы наиболее плодотворные, светлые, творческие. Тем не менее, Максвелла вновь тянет работать при университете, и он принимает предложение, сделанное ему Кембриджским университетом.
Кембридж 1871-1879
Кавендишская лаборатория
В 1870 году герцог Девонширский заявил сенату университета о своем желании построить и оснастить физическую лабораторию. И возглавить ее должен был ученый с мировым именем. Этим ученым стал Джеймс Клерк Максвелл. В1871 году он начинает работу по оснащению знаменитой Кавендишской лаборатории. В эти годы наконец издается его «Трактат об электричестве и магнетизме». Более тысячи страниц, где Максвелл дает описание научных опытов, обзор всех, до тех пор созданных теорий электричества и магнетизма, а также «Основные уравнения электромагнитного поля». В целом в Англии не приняли основных идей «Трактата», даже друзья не поняли его. Идеи Максвелла подхватили молодые. Большое впечатление теория Максвелла произвела на русских ученых. Всем известна роль Умова, Столетова, Лебедева в развитии и укреплении Максвелловой теории.
16 июня 1874 года – день торжественного открытия Кавендишской лаборатории. Последующие годы ознаменовались се растущим признанием.
Мировое признание
В 1870 году Максвелл избран почетным доктором литературы Эдинбургского университета, в 1874 году – иностранным почетным членом Американской академии искусств и наук в Бостоне, в 1875 году – членом Американского философского общества в Филадельфии, а также становится почетным членом академий Нью-Йорка, Амстердама, Вены. Последующие пять лет Максвелл занимается редактированием и подготовкой к изданию двадцати пакетов манускриптов Генри Кавендиша.
В 1877 году Максвелл почувствовал первые признаки болезни, а в мае 1879 года прочел своим студентам последнюю лекцию.
Список использованной литературы:
«Жизнь замечательных людей»
Вл. Карцев «Максвелл»
Изд. Москва, «Молодая гвардия», 1974г.
www.ronl.ru
Джеймс Максвелл
       В 1841 г. отец отправил Джеймса в школу, которая называлась «Эдинбургская академия». В школе Максвелл увлекся математикой, и первой его научной работой, выполненной в пятнадцать лет, было открытие простого, но ранее неизвестного способа вычерчивания овальных фигур. За яркие математические способности Максвелла в школе прозвали «чокнутым».
        В 1847 г. он поступил в Эдинбургский университет, где проучился три года, и в 1850 г. перешел в Кембриджский университет. Одними из первых его работ были исследования по физиологии и физике цветного зрения и колориметрии, начатые в 1852 г. Примерно в 1854 году Джеймс Максвелл занялся электричеством. В этом же году он закончил Кембриджский университет. К этому времени Максвелл был первоклассным математиком с великолепно развитой интуицией физика.
      После окончания университета он согласился занять должность профессора в колледже г. Абердине в Шотландии, главным образом для того, чтобы быть поближе к больному отцу, который скончался, не дождавшись приезда сына. В работах 1857-59 гг. Максвелл теоретически исследовал устойчивость колец Сатурна и показал, что кольца Сатурна могут быть устойчивы лишь в том случае, если состоят из не связанных между собой частиц (тел). В 1855 г. Максвелл приступил к циклу своих основных работ по электродинамике.
       В 1858 г. Максвелл женился, но семейная жизнь, видимо, сложилась неудачно, обострила его нелюдимость, отдалила от прежних друзей.
        В 1859 году Джеймс Клерк Максвелл выступил с докладом «О динамической теории газов» на собрании Британской Ассоциации.
        В 1860 г. Максвелл был избран членом Лондонского королевского общества. В том же году переехал в Лондон, приняв предложение занять пост руководителя кафедры физики в Кинг-колледже Лондонского университета.
        В этот период времени Максвелл разрабатывает теорию электромагнитного поля. Максвелл полностью воспринял идеи Фарадея о существовании электромагнитного поля, то есть о реальности процессов в пространстве возле зарядов и токов. Результаты своих исследований он изложил в работе «О фарадеевских силовых линиях». Максвелл в данной работе интерпретирует основные положения электростатики с точки зрения представлений о силовых линиях. Следующая работа Максвелла «Динамическая теория электромагнитного поля» была опубликована в 1864 г. В этой работе он уже не строит конкретных моделей электрических и магнитных явлений. Последняя часть работы Максвелла посвящена электромагнитной теории света. Здесь уже Максвелл высказывается прямо за то, что свет есть распространяющиеся электромагнитные возмущения, электромагнитные волны.
        В 1865 г. он уходит в отставку и уезжает в свое фамильное поместье Гленлейр вблизи деревни Партон в Шотландии, чтобы посвятить все время научным исследованиям.
         В 1871 г. Максвелл соглашается вернуться к работе, чтобы заняться организацией первой физической лаборатории в Кембриджском университете. Эта лаборатория, получившая имя Кавендишской лаборатории, стала впоследствии одной из самых знаменитых физических лабораторий в мире. Максвелл становится первым ее директором. Максвелл исследования в различных областях физики. В 1871 г. году Джеймс Максвелл издал учебник «Теория тепла», который пользовался большой популярностью. В 1873 году вышла книга Джеймса Максвелла «Материя и движение» и двухтомное сочинение «Трактат по электричеству и магнетизму». В этой работе ученый подвел итог своей работы по электромагнетизму, включая электростатику и созданную им электромагнитную теорию света. Еще одной известной работой Максвелла этого времени является статья «О динамическом доказательстве молекулярного строения тел».
Нельзя не отметить вклад Максвелла в развитие молекулярно-кинетической теории газов. Максвелл первым высказал утверждение о статистическом характере законов природы. В 1866 им открыт первый статистический закон распределения молекул по скоростям. Кроме того, он рассчитал значения вязкости газов в зависимости от скоростей и длины свободного пробега молекул, вывел ряд соотношений термодинамики. Максвелл занимался исследованиями и в области оптики. В 1861 г. он впервые получил цветное изображение, спроецировав на экран одновременно красный, зеленый и синий диапозитивы. Этим была доказана справедливость трехкомпонентной теории зрения и намечены пути создания цветной фотографии.
         Джеймс Клерк Максвелл прожил, к сожалению, недолгую жизнь и умер от рака 5 ноября 1879 г. в возрасте 48 лет. Он похоронен в скромной могиле рядом с его любимой церковью в шотландской деревушке, недалеко от родового поместья.
        Максвелл внёс вклад в каждую отрасль физической науки. Его теоретическая работа в области магнетизма послужила созданию беспроволочного телеграфа и телефона.
      Максвелл был блестящим популяризатором науки. Он написал ряд статей для Британской энциклопедии и популярные книги: «Теория теплоты» (1870), «Материя и движение» (1873), «Электричество в элементарном изложении» (1881), которые были переведены на русский язык; читал лекции и доклады на физические темы для широкой аудитории. Максвелл проявлял также большой интерес к истории науки. В 1879 он опубликовал труды Г. Кавендиша по электричеству, снабдив их обширными комментариями.
       Исследование электромагнитного поля продолжил другой английский физик Джозеф Джон Томсон.
 
historyphysics.narod.ru
Джеймс Кларк Максвелл — доклад
Муниципальное общеобразовательное учреждение
Средняя
общеобразовательная школа №5
Доклад на тему:
«Джеймс
Кларк Максвелл»
Подготовила: Пахомова И.В.
ученица 8 класса А
Ефремов
2010
Джеймс
Клерк (Кларк) Максвелл родился 13 июня
1831 в Эдинбурге, в семье шотландского
дворянина из знатного рода Кларков.
Учился сначала в Эдинбургской академии,
Эдинбургском университете (1847-1850), затем
в Кембриджском (1850-1854) университете (Питерхауз
и Тринити-колледж).
В 1855 стал членом совета Тринити-
С 1860 возглавлял кафедру физики и астрономии в Кингз-колледже Лондонского университета.
В 1865 в связи с серьёзной болезнью (оспа) Максвелл отказался от кафедры и поселился в своем родовом поместье Гленлэр близ Эдинбурга. Продолжал заниматься наукой, написал несколько сочинений по физике и математике.
В
1871 в Кембриджском университете занял
кафедру экспериментальной
Свою
первую научную работу Максвелл выполнил
ещё в школе, придумав простой
способ вычерчивания овальных фигур. Эта
работа была доложена на заседании
Королевского общества и даже опубликована
в его «Трудах». В бытность членом
совета Тринити-колледжа занимался
экспериментами по теории цветов, выступая
как продолжатель теории Юнга, и теории
трёх основных цветов Гельмгольца. В экспериментах
по смешиванию цветов Максвелл применил
особый волчок, диск которого был разделен
на секторы, окрашенные в разные цвета
(диск Максвелла). При быстром вращении
волчка цвета сливались: если диск был
закрашен так, как расположены цвета спектра,
он казался белым; если одну его половину
закрашивали красным, а другую жёлтым,
он казался оранжевым; смешивание синего
и жёлтого создавало впечатление зелёного.
В 1860 году за работы по восприятию цвета
и оптике Максвелл был награждён медалью
Румфорда.
В 1857 году Кембриджский университет объявил
конкурс на лучшую работу об устойчивости
колец Сатурна. Эти образования были открыты
Галилеем в начале XVII века и представляли
удивительную загадку природы: планета
казалась окружённой тремя сплошными
концентрическими кольцами, состоящими
из вещества неизвестной природы. Лаплас
доказал, что они не могут быть твёрдыми.
Проведя математический анализ, Максвелл
убедился, что они не могут быть и жидкими,
и пришёл к заключению, что подобная структура
может быть устойчивой только в том случае,
если состоит из роя не связанных между
собой метеоритов. Устойчивость колец
обеспечивается их притяжением к Сатурну
и взаимным движением планеты и метеоритов.
За эту работу Максвелл получил премию
Дж. Адамса.
Одной из первых работ Максвелла стала его кинетическая теория газов. В 1859 году учёный выступил на заседании Британской ассоциации с докладом, в котором привёл распределение молекул по скоростям (максвелловское распределение).
В
1831, в год рождения Максвелла, М. Фарадей
проводил классические эксперименты,
которые привели его к открытию
электромагнитной индукции. Максвелл
приступил к исследованию электричества
и магнетизма примерно 20 лет спустя.
Он пришёл к выводу, что любые
изменения электрического и магнитного
полей должны вызывать изменения
в силовых линиях, пронизывающих
окружающее пространство, то есть должны
существовать импульсы (или волны),
распространяющиеся в среде.
Теория электромагнитного поля и, в особенности,
следующий из неё вывод о существовании
электромагнитных волн при жизни Максвелла
оставались чисто теоретическими положениями,
не имевшими никакого экспериментального
подтверждения, и современниками зачастую
воспринимались как «игра ума». В 1887г.
немецкий физик Генрих Герц поставил эксперимент,
полностью подтвердивший теоретические
выводы Максвелла.
Последние годы жизни Максвелл занимался
подготовкой к печати и изданием рукописного
наследия Кавендиша. Два больших тома
вышли в октябре 1879.
student.zoomru.ru