Клеточная мембрана, ее основные функции. Чудо творения.
Функции клеточной или плазматической мембраны
text_fields
text_fields
arrow_upward
Клетки отделены от внутренней среды организма клеточной или плазматической мембраной.
Мембрана обеспечивает:
1) Избирательное проникновение в клетку и из нее молекул и ионов, необходимых для выполнения специфических функций клеток;
2) Избирательный транспорт ионов через мембрану, поддерживая трансмембранную разницу электрического потенциала;
3) Специфику межклеточных контактов.
Благодаря наличию в мембране многочисленных рецепторов, воспринимающих химические сигналы — гормоны, медиаторы и другие биологически активные вещества, она способна изменять метаболическую активность клетки. Мембраны обеспечивают специфику иммунных проявлений, благодаря наличию на них антигенов — структур, вызывающих образование антител, способных специфически связываться с этими антигенами.
Структура мембраны клетки
text_fields
text_fields
arrow_upward
Мембрана клетки — эластичная структура, толщиной от 7 до 11 нм (рис.1.1). Она состоит, в основном, из липидоа и белков. От 40 до 90% всех липидов составляют фосфолипиды — фосфатидилхолин, фосфатидилэтаноламин, фосфатидилсерин, сфингомиелин и фосфатидилинозит. Важным компонентом мембраны являются гликолипиды, представленные цереброзидами, сульфатидами, ганглиозидами и холестерином.
Рис. 1.1 Организация мембраны. Основной структурой мембраны клетки является двойной слой фосфолипидных молекул. За счет гидрофобных взаимодействий углеводные цепочки липидных молекул удерживаются друг возле друга в вытянутом состоянии. Группы же фосфолипидных молекул обоих слоев взаимо действуют с белковыми молекулами, погруженными в липидную мембрану. Благодаря тому, что большинство липидных компонентов бислоя находится в жидком состоянии, мембрана обладает подвижностью, совершает волнообразные движения. Ее участки, а также белки, погруженные в липидный бислой, перемешаются из одной ее части в другую. Подвижность (текучесть) мембран клеток облегчает процессы транспорта веществ через мембрану.Белки мембраны клеток представлены, в основном, гликопротеинами. Различают:
• интегральные белки, проникающие через всю толщу мембраны и
• периферические белки, прикрепленные только к поверхности мембраны, в основном, к внутренней ее части.
Интегральные белки обеспечивают селективный обмен ионов через каналы мембран между экстрацеллюлярной и интрацеллюлярной жидкостью, а также действуют как белки — переносчики крупных молекул.
Рецепторы и антигены мембраны могут быть представлены как интегральными, так и периферическими белками.
Белки, примыкающие к мембране с цитоплазматической стороны, относятся к цитоскелету клетки. Они могут прикрепляться к мембранным белкам.
Так, белок полосы 3 (номер полосы при электрофорезе белков) эритроцитарных мембран объединяется в ансамбль с другими молекулами цитоскелета — спектрином через низкомолекулярный белок анкирин (рис. 1.2).
Рис. 1.2 Схема расположения белков в примембранном цитоскелете эритроцитов.1 — спектрин; 2 — анкирин; 3 — белок полосы 3; 4 — белок полосы 4,1; 5 — белок полосы 4,9; 6 — олигомер актина; 7 — белок 6; 8 — гпикофорин А; 9 — мембрана.
Спектрин является основным белком цитоскелета, составляющим двумерную сеть, к которой прикрепляется актин.
Актин образует микрофиламенты, представляющие собой сократительный аппарат цитоскелета.
Цитоскелет позволяет клетке проявлять гибкоэластические свойства, обеспечивает дополнительную прочность мембраны.
Большинство интегральных белков — гликопротеины. Их углеводная часть выступает из клеточной мембраны наружу. Многие гликопротеины обладают большим отрицательным зарядом из-за значительного содержания сиаловой кислоты (например, молекула гликофорина). Это обеспечивает поверхности большинства клеток отрицательный заряд, способствуя отталкиванию других отрицательно заряженных объектов. Углеводные выступы гликопротеинов являются носителями антигенов групп крови, других антигенных детерминант клетки, они действуют как рецепторы, связывающие гормоны. Гликопротеины образуют адгезивные молекулы, обуславливающие прикрепление клеток одна к другой, т.е. тесные межклеточные контакты.
Особенности обмена веществ в мембране
text_fields
text_fields
arrow_upward
Мембранные компоненты подвержены многим метаболическим превращениям под влиянием ферментов, расположенных на их мембране или внутри ее. К ним относятся окислительные ферменты, играющие важную роль в модификации гидрофобных элементов мембран — холестерина и др. В мембранах же при активации ферментов — фосфолипаз происходит образование из арахидоновой кислоты биологически активных соединений — простагландинов и их производных. В результате активации метаболизма фосфолипидов в мембране образуются тромбоксаны, лейкотриены, оказывающие мощное воздействие на адгезию тромбоцитов, процесс воспаления и др.
В мембране непрерывно протекают процессы обновления ее компонентов. Так, время жизни мембранных белков колеблется от 2 до 5 дней. Однако в клетке существуют механизмы, обеспечивающие доставку вновь синтезированных молекул белка к мембранным рецепторам, облегчающим встраивание белка в мембрану. «Узнавание» данного рецептора вновь синтезированным белком облегчается образованием сигнального пептида, помогающего найти на мембране рецептор.
Липиды мембраны отличаются также значительной скоростью обмена, что требует для синтеза этих компонентов мембраны большого количества жирных кислот.
На специфику липидного состава мембран клеток влияют изменения среды обитания человека, характера его питания.
Например, увеличение в пище жирных кислот с ненасыщенными связями
Избыток холестерина в мембранах, напротив, увеличивает микровязкость их бислоя фосфолипидных молекул, понижая скорость диффузии некоторых веществ через мембраны клеток.
Пища, обогащенная витаминами А, Е, С, Р улучшает обмен липидов в мембранах эритроцитов, снижает микровязкость мембран. Это повышает деформируемость эритроцитов, облегчает выполнение ими транспортной функции (глава 6).
Дефицит жирных кислот и холестерина в пище нарушает липидный состав и функции мембран клеток.
Например, дефицит жиров нарушает функции мембраны нейтрофилов, что угнетает их способность к движению и фагоцитозу (активный захват и поглощение микроскопических инородных живых объектов и твердых частиц одноклеточными организмами или некоторыми клетками).
В регулировании липидного состава мембран и их проницаемости, регуляции пролиферации клеток важную роль играют активные формы кислорода, образующиеся в клетке сопряженно с нормально протекающими метаболическими реакциями (микросомальным окислением и др.).
Образующиеся активные формы кислорода — супероксидный радикал (О2), перекись водорода (H2О2) и др. представляют собой чрезвычайно реакционноспособные вещества. Их основным субстратом в реакциях свободнорадикального окисления являются ненасыщенные жирные кислоты, входящие в состав фосфолипидов мембран клетки (так называемые реакции перекисного окисления липидов). Интенсификация этих реакций может вызвать повреждение мембраны клетки, ее барьерной, рецепторной и обменной функций, модификацию молекул нуклеиновых кислот и белков, что ведет к мутациям и инактивации ферментов.
В физиологических условиях интенсификация перекисного окисления липидов регулируется антиоксидазной системой клеток, представленной ферментами, инактивируюшими активные формы кислорода — супероксиддисмутазой, каталазой, пероксидазой и веществами, обладающими антиокислительной активностью — токоферолом (витамин Е), убихиноном и др. Выраженный защитный эффект на мембраны клетки (цитопротекторный эффект) при различных повреждающих воздействиях на организм оказывают простагландины Е и J2, «гася» активацию свободнорадикального окисления. Простагландины защищают слизистую желудка и гепатоциты от химических повреждений, нейроны, клетки нейроглии, кардиомиоциты — от гипоксических повреждений, скелетные мышцы — при тяжелой физической нагрузке. Простагландины, связываясь со специфическими рецепторами на клеточных мембранах стабилизируют бислой последних, уменьшают потерю мембранами фосфолипидов.
Функции рецепторов мембран
text_fields
text_fields
arrow_upward
Химический или механический сигнал вначале воспринимается рецепторами мембраны клетки. Следствием этого является химическая модификация мембранных белков, влекущая активацию «вторичных посредников», обеспечивающих быстрое распространение сигнала в клетке к ее геному, энзимам, сократительным элементам и т.д.Схематично трансмембранная передача сигнала в клетке может быть представлена следующим образом:
1) Возбужденный воспринятым сигналом рецептор активирует у — белки мембраны клетки. Это происходит при связывании ими гуанозинтрифосфата (ГТФ).
2) Взаимодействие комплекса «ГТФ-у- белки», в свою очередь, активирует фермент — предшественник вторичных посредников, расположенный на внутренней стороне мембраны.
• Предшественником одного вторичного посредника — цАМФ, образующегося из АТФ, является фермент аденилатциклаза;
• Предшественником других вторичных посредников — инозитолтрифосфата и диацилглицерина, образующихся из фосфатидилинозитол-4,5-дифосфата мембраны, является фермент фосфолипаза С. Кроме того, инозитолтрифосфат мобилизует в клетке еще один вторичный посредник — ионы кальция, участвующие практически во всех регуляторных процессах в клетке. Так, например, образовавшийся инозитолтрифосфат вызывает выброс кальция из эндоплазматического ретикулума и повышение его концентрации в цитоплазме, тем самым включая различные формы клеточного ответа. С помощью инозитолтрифосфата и диацилглицерина регулируется функция гладких мышц и В-клеток поджелудочной железы ацетилхолином, передней доли гипофиза тиреогропин-релизинг фактором, ответ лимфоцитов на антиген и т.д.
Читайте также:
doctor-v.ru
Функции клеточной мембраны — Науколандия
Среди основных функций клеточной мембраны можно выделить барьерную, транспортную, ферментативную и рецепторную. Клеточная (биологическая) мембрана (она же плазмалемма, плазматическая или цитоплазматическая мембрана) ограждает содержимое клетки или ее органоидов от окружающей среды, обеспечивает избирательную проницаемость для веществ, на ней располагаются ферменты, а также молекулы, способные «улавливать» различные химические и физические сигналы.
Такая функциональность обеспечивается особым строением клеточной мембраны.
В эволюции жизни на Земле клетка вообще могла образоваться лишь после появления мембраны, которая отделила и стабилизировала внутреннее содержимое, не дало ему распасться.
В плане поддержания гомеостаза (саморегуляции относительного постоянства внутренней среды) барьерная функция клеточной мембраны тесно связана с транспортной.
Малые молекулы способны проходить сквозь плазмалемму без всяких «помощников», по градиенту концентрации, т. е. из области с высокой концентрацией данного вещества в область с низкой концентрацией. Так, например, обстоит дело для газов, участвующих в дыхании. Кислород и углекислый газ диффундируют через клеточную мембрану в том направлении, где их концентрация в данный момент меньше.
Поскольку мембрана в основной своей части гидрофобна (из-за двойного липидного слоя), то полярные (гидрофильные) молекулы, даже малых размеров, зачастую не могут сквозь нее проникнуть. Поэтому ряд мембранных белков выполняет функцию переносчиков таких молекул, связываясь с ними и перенося через плазмалемму.
Интегральные (пронизывающие мембрану насквозь) белки часто работают по принципу открывающихся и закрывающихся каналов. Когда какая-либо молекула подходит к такому белку, то он соединяется с ней, и канал открывается. Это вещество или другое проходит через белковый канал, после чего его конформация меняется, и канал закрывается для этого вещества, но может открыться для пропускания другого. По такому принципу работает натрий-калиевый насос, закачивающий в клетку ионы калия и выкачивающий из нее ионы натрия.
Ферментативная функция клеточной мембраны в большей степени реализована на мембранах органоидов клетки. Большинство синтезируемых в клетке белков выполняют ферментативную функцию. «Усаживаясь» на мембрану в определенном порядке, они организуют конвейер, когда продукт реакции, катализируемый одним белком-ферментом, переходит к следующему. Такой «конвейер» стабилизируют поверхностные белки плазмалеммы.
Несмотря на универсальность строения всех биологических мембран (построены по единому принципу, почти одинаковы у всех организмов и у разных мембранных клеточных структур), их химический состав все же может отличаться. Бывают более жидкие и более твердые, на одних больше определенных белков, на других меньше. Кроме того, отличаются и разные стороны (внутренняя и наружная) одной и той же мембраны.
У мембраны, которая окружает клетку (цитоплазматической) на внешней стороне располагается множество углеводных цепей, прикрепленных к липидам или белкам (в результате образуются гликолипиды и гликопротеины). Многие из таких углеводов выполняют рецепторную функцию, будучи восприимчивыми к определенным гормонам, улавливая изменения физических и химических показателей в окружающей среде.
Если, например, гормон соединяется со своим клеточным рецептором, то углеводная часть молекулы-рецептора изменяет свое строение, вслед за ней изменяет строение и связанная с ней белковая часть, пронизывающая мембрану. На следующем этапе в клетке запускаются или приостанавливаются различные биохимические реакции, т. е. меняется ее метаболизм, начинается клеточный ответ на «раздражитель».
Кроме перечисленных четырех функций клеточной мембраны выделяют и другие: матричную, энергетическую, маркировачную, формирование межклеточных контактов и др. Однако их можно рассмотреть как «подфункции» уже рассмотренных.
scienceland.info
Структура, функции и роль клеточной мембраны
Клеточная мембрана (плазматическая мембрана) представляет собой тонкую полупроницаемую оболочку, которая окружает цитоплазму клетки.
Функция и роль клеточной мембраны
Ее функция заключается в том, чтобы защитить целостность внутренней части клетки, впуская некоторые необходимые вещества в клетку, и не позволяя проникать другим.
Он также служит основой привязанности к цитоскелету у одних организмов и к клеточной стенке у других. Таким образом, плазматическая мембрана также обеспечивает форму клетки. Еще одна функция мембраны заключается в регулировании роста клеток через баланс эндоцитоза и экзоцитоза.
При эндоцитозе липиды и белки удаляются из клеточной мембраны по мере усвоения веществ. При экзоцитозе везикулы, содержащие липиды и белки, сливаются с клеточной мембраной, увеличивая размер клеток. Животные, растительные и грибковые клетки имеют плазматические мембраны. Внутренние органеллы, например, ядро, также заключены в защитные мембраны.
Структура клеточной мембраны
Плазматическая мембрана в основном состоит из смеси белков и липидов. В зависимости от расположения и роли мембраны в организме, липиды могут составлять от 20 до 80 процентов мембраны, а остальная часть приходится на белки. В то время как липиды помогают придать мембране гибкость, белки контролируют и поддерживают химический состав клетки, а также помогают в переносе молекул сквозь мембрану.
Липиды мембран
Фосфолипиды являются основным компонентом плазматических мембран. Они образуют липидный бислой, в котором гидрофильные (притянутые к воде) участки «головы» спонтанно организуются, чтобы противостоять водному цитозолю и внеклеточной жидкости, тогда как гидрофобные (отталкиваемые водой) участки «хвоста» обращены от цитозоля и внеклеточной жидкости. Липидный бислой является полупроницаемым, позволяя только некоторым молекулам диффундировать через мембрану.
Холестерин является еще одним липидным компонентом мембран животных клеток. Молекулы холестерина избирательно диспергированы между мембранными фосфолипидами. Это помогает сохранить жесткость клеточных мембран, предотвращая слишком плотное расположение фосфолипидов. Холестерин отсутствует в мембранах растительных клеток .
Гликолипиды расположены с наружной поверхности клеточных мембран и соединяются с ними углеводной цепью. Они помогают клетке распознавать другие клетки организма.
Белки мембран
Клеточная мембрана содержит два типа ассоциированных белков. Белки периферической мембраны являются внешними и связаны с ней путем взаимодействия с другими белками. Интегральные мембранные белки вводятся в мембрану, и большинство проходит сквозь нее. Части этих трансмембранных белков расположены по обе ее стороны.
Белки плазматической мембраны имеют ряд различных функций. Структурные белки обеспечивают поддержку и форму клеток. Белки рецептора мембраны помогают клеткам контактировать со своей внешней средой с помощью гормонов, нейротрансмиттеров и других сигнальных молекул. Транспортные белки, такие как глобулярные белки, переносят молекулы через клеточные мембраны посредством облегченной диффузии. Гликопротеины имеют прикрепленную к ним углеводную цепь. Они встроены в клеточную мембрану, помогая в обмене и переносе молекул.
Мембраны органелл
Некоторые клеточные органеллы также окружены защитными мембранами. Ядро, эндоплазматический ретикулум, вакуоль, лизосома и аппарат Гольджи являются примерами окруженных мембраной органелл. Митохондрии и хлоропласты покрыты двойной мембраной. Мембраны различных органелл различаются по молекулярному составу и хорошо подходят для выполнения своей роли. Они важны для нескольких жизненно важных функций клеток, включая синтез белка, производство липидов и клеточное дыхание.
natworld.info
5.Клеточная мембрана, ее структурная организация, функции клеточной мембраны.
Плазматическая мембрана отделяет клетку и ее содержимое от окружающей среды. В настоящее время принята мозаичная модель строения клеточной мембраны. Согласно этой модели мембрана образована двумя слоями липидов, а белковые молекулы пронизывают толщу мембраны. Гидрофобные «хвосты» липидов, состоящие из остатков молекул жирных кислот, обращены внутрь двойного слоя. Снаружи располагаются гидрофильные «головки», состоящие из остатка молекулы спирта глицерина. Липиды являются основой мембраны, обеспечивают ее устойчивость и прочность, т.е. выполняют структурную (строительную) функцию. Эта функция возможна благодаря гидрофобности липидов.
Основная функция плазматической мембраны транспортная. Она обеспечивает поступление питательных веществ в клетку и выведение из нее продуктов обмена. Помимо этой функции, плазматическая мембрана выполняет следующие функции: барьерную, отграничивающую и рецепторную функции. Благодаря свойству избирательной проницаемости она регулирует химический состав внутренней среды клетки. В плазмалемме размещены молекулы рецепторов, которые избирательно распознают определенные биологически активные вещества. Наличие рецепторов в оболочке дает клеткам способность воспринимать сигналы извне, чтобы целесообразно реагировать на изменения в окружающей среде
6. Цитоплазма клетки, ее составные части и назначение
В цитоплазме различают основное вещество, органеллы и включения. Основное вещество цитоплазмы заполняет пространство между плазмалеммой, ядерной оболочкой и другими внутриклеточными структурами. Белковый состав гиалоплазмы разнообразен. Важнейшие из белков представлены ферментами гликолиза, обмена сахаров, азотистых оснований, аминокислот и липидов. Ряд белков гиалоплазмы служит субъединицами, из которых происходит сбор таких структур, как микротрубочки.
Основное вещество цитоплазмы образует истинную внутреннюю среду клетки, которая объединяет все внутриклеточные структуры и обеспечивает взаимодействие друг с другом. Выполнение матриксом объединяющей, а также каркасной функции может быть связана с помощью сверхмощного электронного микроскопа микротрабекулярной сети, образованной тонкими фибриллами. Также функционально цитоплазматический матрикс является местом осуществления внутриклеточного обмена. Через гиалоплазму осуществляется значительный объем внутриклеточных перемещений веществ и структур. Гиалоплазму следует рассматривать как сложную коллоидную систему, способную переходить из жидкого состояния в гелеобразное.
7. Органеллы общего назначения. Их структура и функции.
Органеллы общего назначения делят на мембранные и немембранные. Мембранные в свою очередь делятся на одномембранные и двумембранные. К одномембранным относят:
Эндоплазматический ретикулум (ЭПР). Представляет собой систему мембран, формирующих цистерны и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство — полости ЭПР.. Различают два вида ЭПР: шероховатый, содержащий на своей поверхности рибосомы и гладкий, мембраны которого рибосом не несут. Функции: разделяет цитоплазму клетки на изолированные отсеки, обеспечивая, тем самым пространственное отграничение друг от друга множества параллельно идущих различных реакций. Осуществляет синтез и расщепление углеводов и липидов (гладкий ЭПР) и обеспечивает синтез белка (шероховатый ЭПР), накапливает в каналах и полостях, а затем транспортирует к органоидам клетки продукты биосинтеза.
Аппарат Гольджи. Органоид, обычно расположенный около клеточного ядра (в животных клетках часто вблизи клеточного центра). Представляет собой стопку уплощенных цистерн с расширенными краями, состоит из 4-6 цистерн. Число стопок Гольджи в клетке колеблется от одной до нескольких сотен. Важнейшая функция комплекса Гольджи — выведение из клетки различных секретов (ферментов, гормонов), поэтому он хорошо развит в секреторных клетках. Здесь происходит синтез сложных углеводов из про-стых сахаров, созревание белков, образование лизосом.
Лизосомы. Самые мелкие одномембранные органоиды клетки, представляющие собой пузырьки диа-метром 0,2-0,8 мкм, содержащие до 60 гидролитических ферментов,. Образование лизосом происходит в аппарате Гольджи,. Расщепление веществ с помощью ферментов называют лизисом, отсюда и название органоида. Различают: первичные вторичные лизосомы — лизосомы, образовавшиеся в результате слияния первичных лизосом с пиноцитозными или фагоцитозными вакуолями; в них происходит переваривание и лизис поступивших в клетку веществ (поэтому часто их называют пищеварительными вакуолями): Иногда с участием лизосом происходит саморазрушение клетки. Этот процесс называют автолизом. Обычно это происходит при некоторых процессах дифференцировки Вакуоли — крупные мембранные пузырьки или полости в цитоплазме, заполненные клеточным соком. Вакуоли образуются в клетках растений и грибов из пузыревидных расширений эндоплазматического ретикулума или из пузырьков комплекса Гольджи. В меристематических клетках растений вначале возникает много мелких вакуолей. Увеличиваясь, они сливаются в центральную вакуоль, которая занимает до 70—90% объема клетки и может быть пронизана тяжами цитоплазмы Функции вакуолей. Вакуоли играют главную роль в поглощении воды растительными клетками. Вода путем осмоса через ее мембрану поступает в вакуоль, клеточный сок которой является более концентрированным, чем цитоплазма, и оказывает давление на цитоплазму, а следовательно, и на оболочку клетки. В результате в клетке развивается тургорное давление, В запасающих тканях растений вместо одной центральной часто бывает несколько вакуолей, в которых скапливаются запасные питательные вещества (жиры, белки). Сократительные (пульсирующие) вакуоли служат для осмотической регуляции, прежде всего, у пресноводных простейших, Сократительные вакуоли поглощают избыток воды и затем выводят ее наружу путем сокращений.
К двумембранным органоидам относятся
Пластиды — характерные органеллы клеток автотрофных эукариотических организмов. Их окраска, форма и размеры весьма разнообразны. Различают хло-ропласты, хромопласты и лейкопласты. Все типы пластид генетически родственны друг другу, и одни их виды могут превращаться в другие: Хлоропласты имеют зеленый цвет, обусловленный присутствием основного пигмента — хлорофилла. Хлоропласты ограничены двумя мембранами — наружной и внутренней. Наружная мембрана отграничивает жидкую внутреннюю гомогенную среду хлоропласта — строму (матрикс). В строме содержатся белки, липиды, ДНК (кольцевая молекула), РНК, рибосомы и запасные вещества (липиды, крахмальные и белковые зерна) а также ферменты, участвующие в фиксации углекислого газа. Внутренняя мембрана хлоропласта образует впячивания внутрь стромы —тилакоиды. Именно в мембранах тилакоидов локализованы светочувствительные пигменты, а также переносчики электронов и протонов, которые участвуют в поглощении и преобразовании энергии света. Хлоропласты в клетке осуществляют процесс фотосинтеза. Лейкопласты — мелкие бесцветные пластиды различной формы Лейкопласты в основном встречаются в клетках органов, скрытых от солнечного света (корней, корневищ, клубней, семян). Они осуществляют вторичный синтез и накопление запасных питательных веществ — крахмала, реже жиров и белков. Хромопласты отличаются от других пластид своеобразной формой и окраской (оранжевые, желтые, красные). Хромопласты лишены хлорофилла и поэтому не способны к фотосинтезу Митохондрии — неотъемлемые компоненты всех эукариотических клеток. толщиной 0,5 мкм и длиной до 7—10 мкм. Митохондрии ограничены двумя мембранами — наружной и внутренне. Наружная мембрана отделяет ее от гиалоплазмы. Внутренняя мембрана образует множество впячиваний внутрь митохондрий — так называемых крист. На мембране крист или внутри нее располагаются ферменты, которые участвуют в кислородном дыхании Ограниченное ею внутреннее содержимое митохондрии {матрикс) по составу близко к цитоплазме. Матрикс содержит различные белки, в том числе ферменты, ДНК (кольцевая молекула), все типы РНК, аминокислоты, рибосомы, ряд витаминов. ДНК обеспечивает некоторую генетическую автономность митохондрий, хотя в целом их работа координируется ДНК ядра. Митохондрии являются энергетической станцией клетки.
Немембранные органеллы:
Клеточный центр. В клетках большинства животных, а также некоторых грибов, водорослей, мхов и папоротников имеются центриоли. Расположены они обычно в центре клетки, что и определило их название . Центриоли представляют собой полые цилиндры длиной не более 0,5 мкм. Они располагаются парами перпендикулярно одна к другой. Каждая центриоль построена из девяти триплетов микротрубочек Основная функция центриолей — организация микротрубочек веретена деления клетки.
Рибосомы — это мельчайшие сферические гранулы, являющиеся местом синтеза белка из аминокислот. Они обнаружены в клетках всех организмов. Рибосомы представлены в клетке огромным числом: за клеточный цикл их образуется около 10 млн. штук. В состав рибосом входит множество молекул различных белков и несколько молекул РНК. Полная работающая рибосома состоит из двух неравных субъединиц. При объединении в рибосому малая субъединица ложится одним концом на один из выступов большой субъединицы. В состав малой субъединицы входит одна молекула РНК, в состав большой — три
Цитоскелет. Одной из отличительных особенностей эукариотической клетки является наличие в ее цитоплазме скелетных образований в виде микротрубочек и пучков белковых волокон. Элементы цитоскелета, тесно связанные с наружной цитоплазматической мембраной и ядерной оболочкой, образуют сложные переплетения в цитоплазме. Цитоскелет образован микротрубочками и микрофиламентами, определяет форму клетки, участвует в ее движениях, в делении и перемещениях самой клетки, во внутриклеточном транспорте органоидов и отдельных соединений.
8.Органеллы специального назначения. Их структура и функции. Органеллы специального назначения присутствуют в клетках, специализированных к выполнению определенной функции, но в незначительном количестве могут встречаться и в других типах клеток. К ним относят, например, микроворсинки всасывающей поверхности эпителиальной клетки кишечника, реснички эпителия трахеи и бронхов, синаптические пузырьки, транспортирующие переносчиков нервного возбуждения с одной нервной клетки на другую или клетку рабочего органа, миофибриллы, от которых зависит сокращение мышцы.
9.Химический состав клетки, ее физико-химическое состояние и осмотические свойства протоплазмы клетки. Из известных в настоящее время науке 105 химических элементов, свыше 70 входят в состав организмов. Допустимо предположить, что нет таких элементов в природе, которые в каком-то количестве не входят в состав тех или иных организмов. Около 40 химических элементов, которые принимают участие в процессах обмена веществ и обладают выраженной биологической активностью, называются биогенными. Элементный анализ протоплазмы растений и животных показывает, что в среднем она содержит: O около 70% общей массы, С около 18% и Н около 10%. Затем следуют Ca, N, K, и Si, входящие в состав живых организмов в десятых долях процента, а также P, Mg, S, Cl, Na, Al и Fe, составляющие сотые доли процента. Названные элементы вместе с О, Н и С составляют 99,99 % массы живого организма. Эти элементы называются макроэлементами.
В несколько меньшем количестве встречаются Mn, B, Cu, Zi, Ba, Li, I, Co, Cr. Они составляют тысячные, десятитысячные и стотысячные доли процента по отношению к массе тела и получили название микроэлементы. Помимо них имеются еще и ультрамикроэлементы: Hg, Au, Ra и др., составляющие миллионы доли процентов. Важность того или иного элемента определяется не только количеством. Многие микро- и ультрамикроэлементы оказались необходимыми.
studfiles.net
Биология для студентов — 05. Структура, химический состав и функции мембран в растительной клетке
Клеточная мембрана (также цитолемма, плазмалемма, или плазматическая мембрана) — эластическая молекулярная структура, состоящая из белков и липидов. Отделяет содержимое любой клетки от внешней среды, обеспечивая её целостность; регулирует обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определённые условия среды.
Клеточная стенка, если таковая у клетки имеется (обычно есть у растительных клеток), покрывает клеточную мембрану.
Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды — фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») части. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные — наружу. Биологическая мембрана включает и различные белки:
- интегральные (пронизывающие мембрану насквозь),
- полуинтегральные (погружённые одним концом во внешний или внутренний липидный слой),
- поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны).
Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки и клеточной стенкой снаружи.
Функции мембран:
- Барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой.
- Транспортная — через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального pH и концентрации ионов, которые нужны для работы клеточных ферментов.
- Матричная — обеспечивает определённое взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.
- Механическая — обеспечивает автономность клетки, её внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечении механической функции имеют клеточные стенки.
- Энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки.
Мембраны состоят из липидов трёх классов:
- фосфолипиды,
- гликолипиды,
- холестерол.
Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой».
Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим— более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку.
Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются. Рядом с белками находятся аннулярные липиды — они более упорядочены, менее подвижны, имеют в составе более насыщенные жирные кислоты и выделяются из мембраны вместе с белком. Без аннулярных липидов белки мембраны не работают.
Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, в наружном содержатся преимущественно фосфатидилинозитол, фосфатидилхолин, сфингомиелины и гликолипиды, во внутреннем — фосфатидилсерин, фосфатидилэтаноламин и фосфатидилинозитол. Переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп) затруднён, но может происходить спонтанно, примерно раз в 6 месяцев или с помощью белков-флиппаз и скрамблазыплазматической мембраны. Если в наружном слое появляется фосфатидилсерин, это является сигналом для макрофагов о необходимости уничтожения клетки.
Мембранные органеллы – это замкнутые одиночные или связанные друг с другом участки цитоплазмы, отделённые от гиалоплазмы мембранами. К одномембранным органеллам относятся эндоплазматическая сеть, аппарат Гольджи, лизосомы, вакуоли, пероксисомы; к двумембранным — ядро, митохондрии, пластиды. Строение мембран различных органелл отличается по составу липидов и мембранных белков.
Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза, аминокислоты, жирные кислоты, глицерол и ионы, причем сами мембраны в известной мере активно регулируют этот процесс — одни вещества пропускают, а другие нет. Существует четыре основных механизма для поступления веществ в клетку или вывода их из клетки наружу: диффузия, осмос, активный транспорт и экзо- или эндоцитоз. Два первых процесса носят пассивный характер, то есть не требуют затрат энергии; два последних — активные процессы, связанные с потреблением энергии.
Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами — интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход. Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия.
vseobiology.ru
12.Строение и функции клеточных мембран.
Клеточная мембрана (или цитолемма, или плазмолемма, или плазматическая мембрана) отделяет содержимое любой клетки от внешней среды, обеспечивая её целостность; регулирует обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки компартменты или органеллы, в которых поддерживаются определённые условия среды.
Все биологические мембраны имеют общие структурные особенности и свойства. В настоящее время общепринята жидкостно-мозаичная модель строения мембраны. Основу мембраны составляет липидный бислой, образованный в основном фосфолипидами. Фосфолипиды — триглицериды, у которых один остаток жирной кислоты замещен на остаток фосфорной кислоты; участок молекулы, в котором находится остаток фосфорной кислоты, называют гидрофильной головкой, участки, в которых находятся остатки жирных кислот — гидрофобными хвостами. В мембране фосфолипиды располагаются строго упорядоченно: гидрофобные хвосты молекул обращены друг к другу, а гидрофильные головки — наружу, к воде.
Помимо липидов в состав мембраны входят белки (в среднем ≈ 60%). Они определяют большинство специфических функций мембраны (транспорт определенных молекул, катализ реакций, получение и преобразование сигналов из окружающей среды и др.). Различают: 1) периферические белки (расположены на наружной или внутренней поверхности липидного бислоя), 2)полуинтегральные белки (погружены в липидный бислой на различную глубину), 3) интегральные, или трансмембранные, белки (пронизывают мембрану насквозь, контактируя при этом и с наружной, и с внутренней средой клетки). Интегральные белки в ряде случаев называют каналообразующими, или канальными, так как их можно рассматривать как гидрофильные каналы, по которым в клетку проходят полярные молекулы (липидный компонент мембраны их бы не пропустил).
В состав мембраны могут входить углеводы (до 10%). Углеводный компонент мембран представлен олигосахаридными или полисахаридными цепями, связанными с молекулами белков (гликопротеины) или липидов (гликолипиды). В основном углеводы располагаются на наружной поверхности мембраны. Углеводы обеспечивают рецепторные функции мембраны. В животных клетках гликопротеины образуют надмембранный комплекс — гликокаликс, имеющий толщину несколько десятков нанометров. В нем располагаются многие рецепторы клетки, с его помощью происходит адгезия клеток.
Молекулы белков, углеводов и липидов подвижны, способны перемещаться в плоскости мембраны. Толщина плазматической мембраны — примерно 7,5 нм.
Функции мембран
Мембраны выполняют такие функции:
1. отделение клеточного содержимого от внешней среды,
2. регуляция обмена веществ между клеткой и средой,
3. деление клетки на компартменты («отсеки»),
4. место локализации «ферментативных конвейеров»,
5. обеспечение связи между клетками в тканях многоклеточных организмов (адгезия),
6. распознавание сигналов.
Важнейшее свойство мембран — избирательная проницаемость, т.е. мембраны хорошо проницаемы для одних веществ или молекул и плохо проницаемы (или совсем непроницаемы) для других. Это свойство лежит в основе регуляторной функции мембран, обеспечивающей обмен веществ между клеткой и внешней средой. Процесс прохождения веществ через клеточную мембрану называют транспортом веществ. Различают: 1) пассивный транспорт — процесс прохождения веществ, идущий без затрат энергии; 2) активный транспорт — процесс прохождения веществ, идущий с затратами энергии.
studfiles.net
§ 18. Клеточные мембраны. Транспортировки веществ через мембраны. Поверхностный аппарат клетки, его функции.
Клеточные мембраны.
Биологические мембраны — это тонкие смежные структуры молекулярных размеров, расположенные на поверхности клеток и субклеточных частей, а также канальцев и пузырьков, пронизывающих протоплазму. Функция биологических мембран — регулирование транспортировки ионов, сахаров, аминокислот и других продуктов обмена веществ.
В основе любой мембраны лежит двойной слой фосфолипидов.
Однако билипидный слой — это еще не готова мембрана, а лишь ее основа. С билипидного слоем должны связаться белки, называемые мембранными белками. Именно мембранные белки определяют многие свойства мембран. Входят в состав мембран и углеводы, образуют комплексы с белками или липидами. Мембрана состоит из слоя билипидив, в котором плавают (или закреплены) белковые молекулы, образуя в нем своеобразную мозаику.
Строение мембраны соответствует ее функциям: транспортной, барьерной и рецепторной.
1) Барьерная функция. Мембрана является барьером, который предотвращает поступление в клетки различных химических веществ и других агентов.
2) Рецепторные функции. Поверхность мембраны имеет большой набор рецепторов, делающих возможными специфические реакции с различными агентами.
3) Транспортная функция. Через мембрану идет транспорт ионов и веществ.
Покрывая клетку и отделяя ее от окружающей среды, биологические мембраны обеспечивают целостность клеток и органелл. Она поддерживает неравномерное распределение ионов калия, натрия, хлора и других ионов между протоплазмой и окружающей средой.
Особенно важной мембраной в клетке является плазмалемма — поверхностная мембрана. Она выполняет барьерную, транспортную, рецепторную, сигнальную функции.
Транспортировки веществ через мембраны.
Существуют два активных процесса: экзоцитоз и эндоцитоз.
Из клетки вещества выводятся с помощью экзоцитоза — слияние внутриклеточных пузырьков с плазматической мембраной. В клетку вещества могут попадать посредством эндоцитоза. В процессе эндоцитоза плазматическая мембрана образует вогнутости и вырасти, которые потом, отслаивая, превращаются в пузырьки или вакуоли.
Различают два типа эндоцитоза:
— Пиноцитоз — поглощение жидкости и растворенных веществ с помощью небольших пузырьков;
— Фагоцитоз — поглощение крупных частиц, таких как микроорганизмы или остатки клеток.
В случае фагоцитоза образуются большие пузыри, которые называются вакуолями.
Молекулы проходят через мембраны благодаря процессам: простой диффузии, облегченной диффузии, активному транспортировке.
Простая диффузия — это пример пассивного транспортировки, проходит из зоны с большей концентрацией молекул в зону с меньшей концентрацией. Путем простой диффузии в клетку проникают неполярные (гидрофобные) вещества, растворимые в липидах, и мелкие незаряженные молекулы (например, вода). Однако большинство веществ переносится через мембрану с помощью погруженных в нее транспортных белков. Различают две формы обращения: облегченная диффузия и активное транспортировки.
Облегченная диффузия обусловлена градиентом концентрации, и молекулы движутся согласно этому градиента. Однако молекула заряжена, то на ее транспортировку влияет как градиент концентрации, так и мембранный потенциал.
Активное транспортировки — это перенос растворенных веществ против градиента концентрации с использованием энергии АТФ. Энергия необходима потому, что вещество должно двигаться, вопреки своему естественному стремлению двигаться по диффузией, в противоположном направлении. Примером может служить натрий-калиевый насос. По законам диффузии ионы Nа постоянно движутся внутрь клетки, а ионы К + — из клетки. Нарушение необходимой концентрации этих ионов влечет за-гибель клетки.
Поверхностный аппарат клетки.
Разновидность клеток прокариот и эукариот состоит из частей: поверхностного аппарата, цитоплазмы, ядерного аппарата.
Поверхностный аппарат клетки выполняет три функции, универсальные для всех видов клеток: барьерную, транспортную, рецепторную. Он может осуществлять и ряд специфических функций (например, механическая тургорного функция клеточной стенки в растительных клетках). Поверхностный аппарат клеток состоит из систем: плазматической мембраны, надмембранный комплекса и субмембранного (т.е. пидмембранного) опорно-сократительного аппарата.
Плазматическая мембрана, или плазмалемма, — это основная, универсальная для всех клеток система поверхностного аппарата. Под ней расположена субмембранна система, которая участвует в трансмембранному транспортировке и рецепции и является частью цитоплазмы.
Надмембранная структура поверхностного аппарата осуществляют взаимодействие клеток с внешней средой или с другими клетками. У клеток животных надмембранный комплекс, или гликокаликс, играет важную роль в рецепторной функции клеток. Гликокаликс состоит из углеводов, он сравнительно тонкий и эластичный.
К производным надмембранным структурам принадлежит клеточная стенка. Ее должны клетки растений, грибов и бактерий. Клеточная стенка растений содержит целлюлозу, грибов — хитин, бактерий — муреин. Она достаточно жесткая, не сжимается. Через клеточную стенку проходит вода, соли, молекулы многих органических веществ. Явление плазмолиза и деплазмолиза в клетках растений.
Плазмолиз — это отделение цитоплазмы от оболочки при погружении клетки в гипертонический, т.е. концентрированные извне, раствор. Если животные клетки погрузить в гипертонический раствор, то они сжимаются. Иногда плазмолизованые клетки остаются живыми. Если погрузить такие клетки в воду, в которой концентрация солей ниже, чем в клетке, происходит деплазмолиз.
Деплазмолиз — это возвращение цитоплазмы клеток растений из состояния плазмолиза в исходное состояние.
4
studfiles.net