Содержание

Клеточная мембрана | Биология

Клеточная мембрана также называется плазматической (или цитоплазматической) мембраной и плазмалеммой. Данная структура не только отделяет внутреннее содержимое клетки от внешней среды, но также входит с состав большинства клеточных органелл и ядра, в свою очередь отделяя их от гиалоплазмы (цитозоля) — вязко-жидкой части цитоплазмы. Договоримся называть цитоплазматической мембраной ту, которая отделяет содержимое клетки от внешней среды. Остальными терминами обозначать все мембраны.

Строение клеточной мембраны

В основе строения клеточной (биологической) мембраны лежит двойной слой липидов (жиров). Формирование такого слоя связано с особенностями их молекул. Липиды не растворяются в воде, а по-своему в ней конденсируются. Одна часть отдельно взятой молекулы липида представляет собой полярную головку (она притягивается водой, т. е. гидрофильна), а другая — пару длинных неполярных хвостов (эта часть молекулы отталкивается от воды, т. е. гидрофобна). Такое строение молекул заставляет их «прятать» хвосты от воды и поворачивать к воде свои полярные головки.

В результате образуется двойной липидный слой, в котором неполярные хвосты находятся внутри (обращены друг к другу), а полярные головки обращены наружу (к внешней среде и цитоплазме). Поверхность такой мембраны гидрофильна, а внутри она гидрофобна.

В клеточных мембранах среди липидов преобладают фосфолипиды (относятся к сложным липидам). Их головки содержат остаток фосфорной кислоты. Кроме фосфолипидов есть гликолипиды (липиды + углеводы) и холестерол (относится к стеролам). Последний придает мембране жесткость, размещаясь в ее толще между хвостами остальных липидов (холестерол полностью гидрофобный).

За счет электростатического взаимодействия, к заряженным головкам липидов присоединяются некоторые молекулы белков, которые становятся поверхностными мембранными белками. Другие белки взаимодействуют с неполярными хвостами, частично погружаются в двойной слой или пронизывают его насквозь.

Таким образом, клеточная мембрана состоит из двойного слоя липидов, поверхностных (периферических), погруженных (полуинтегральных) и пронизывающих (интегральных) белков. Кроме того, некоторые белки и липиды с внешней стороны мембраны связаны с углеводными цепями.

Это жидкостно-мозаичная модель строения мембраны была выдвинута в 70-х годах XX века. До этого предполагалась бутербродная модель строения, согласно которой липидный бислой находится внутри, а с внутренней и наружной стороны мембрана покрыта сплошными слоями поверхностных белков. Однако накопление экспериментальных данных опровергло эту гипотезу.

Толщина мембран у разных клеток составляет около 8 нм. Мембраны (даже разные стороны одной) отличаются между собой по процентному соотношению различных видов липидов, белков, ферментативной активности и др. Какие-то мембраны более жидкие и более проницаемые, другие более плотные.

Разрывы клеточной мембраны легко сливаются из-за физико-химических особенностей липидного бислоя. В плоскости мембраны липиды и белки (если только они не закреплены цитоскелетом) перемещаются.

Функции клеточной мембраны

Большинство погруженных в клеточную мембрану белков выполняют ферментативную функцию (являются ферментами). Часто (особенно в мембранах органоидов клетки) ферменты располагаются в определенной последовательности так, что продукты реакции, катализируемые одним ферментом, переходят ко второму, затем третьему и т. д. Образуется конвейер, который стабилизируют поверхностные белки, т. к. не дают ферментам плавать вдоль липидного бислоя.

Клеточная мембрана выполняет отграничивающую (барьерную) от окружающей среды и в то же время транспортную функции.

Можно сказать, это ее самое главное назначение. Цитоплазматическая мембрана, обладая прочностью и избирательной проницаемостью, поддерживает постоянство внутреннего состава клетки (ее гомеостаз и целостность).

При этом транспорт веществ происходит различными способами. Транспорт по градиенту концентрации предполагает передвижение веществ из области с их большей концентрацией в область с меньшей (диффузия). Так, например, диффундируют газы (CO2, O2).

Бывает также транспорт против градиента концентрации, но с затратой энергии.

Транспорт бывает пассивным и облегченным (когда ему помогает какой-нибудь переносчик). Пассивная диффузия через клеточную мембрану возможна для жирорастворимых веществ.

Есть особые белки, делающие мембраны проницаемыми для сахаров и других водорастворимых веществ. Такие переносчики соединяются с транспортируемыми молекулами и протаскивают их через мембрану. Так переносится глюкоза внутрь эритроцитов.

Пронизывающие белки, объединяясь, могут образовывать пору для перемещения некоторых веществ через мембрану. Такие переносчики не перемещаются, а образуют в мембране канал и работают аналогично ферментам, связывая определенное вещество. Перенос осуществляется благодаря изменению конформации белка, благодаря чему в мембране образуются каналы. Пример — натрий-калиевый насос.

Транспортная функция клеточной мембраны эукариот также реализуется за счет эндоцитоза (и экзоцитоза). Благодаря этим механизмам в клетку (и из нее) попадают крупные молекулы биополимеров, даже целые клетки. Эндо- и экзоцитоз характерны не для всех клеток эукариот (у прокариот его вообще нет). Так эндоцитоз наблюдается у простейших и низших беспозвоночны; у млекопитающих лейкоциты и макрофаги поглощают вредные вещества и бактерии, т. е. эндоцитоз выполняет защитную функцию для организма.

Эндоцитоз делится на фагоцитоз

(цитоплазма обволакивает крупные частицы) и пиноцитоз (захват капелек жидкости с растворенными в ней веществами). Механизм этих процессов приблизительно одинаков. Поглощаемые вещества на поверхности клеток окружаются мембраной. Образуется пузырек (фагоцитарный или пиноцитарный), который затем перемещается внутрь клетки.

Экзоцитоз — это выведение цитоплазматической мембраной веществ из клетки (гормонов, полисахаридов, белков, жиров и др.). Данные вещества заключаются в мембранные пузырьки, которые подходят к клеточной мембране. Обе мембраны сливаются и содержимое оказывается за пределами клетки.

Цитоплазматическая мембрана выполняет рецепторную функцию. Для этого на ее внешней стороне располагаются структуры, способные распознавать химический или физический раздражитель. Часть пронизывающих плазмалемму белков с наружней стороны соединены с полисахаридными цепочками (образуя гликопротеиды). Это своеобразные молекулярные рецепторы, улавливающие гормоны. Когда конкретный гормон связывается со своим рецептором, то изменяет его структуру. Это в свою очередь запускает механизм клеточного ответа. При этом могут открываться каналы, и в клетку могут начать поступать определенные вещества или выводиться из нее.

Рецепторная функция клеточных мембран хорошо изучена на основе действия гормона инсулина. При связывании инсулина с его рецептором-гликопротеидом происходит активация каталитической внутриклеточной части этого белка (фермента аденилатциклазы). Фермент синтезирует из АТФ циклическую АМФ. Уже она активирует или подавляет различные ферменты клеточного метаболизма.

Рецепторная функция цитоплазматической мембраны также включает распознавание соседних однотипных клеток. Такие клетки прикрепляются друг к другу различными межклеточными контактами.

В тканях с помощью межклеточных контактов клетки могут обмениваться между собой информацией с помощью специально синтезируемых низкомолекулярных веществ. Одним из примеров подобного взаимодействия является контактное торможение, когда клетки прекращают рост, получив информацию, что свободное пространство занято.

Межклеточные контакты бывают простыми (мембраны разных клеток прилегают друг к другу), замковыми (впячивания мембраны одной клетки в другую), десмосомы (когда мембраны соединены пучками поперечных волокон, проникающих в цитоплазму). Кроме того, есть вариант межклеточных контактов за счет медиаторов (посредников) — синапсы. В них сигнал передается не только химическим, но и электрическим способом. Синапсами передаются сигналы между нервными клетками, а также от нервных к мышечным.

biology.su

Особенности строения клеточной мембраны растения — журнал «Рутвет»

  1. Строение клеточной мембраны растительной клетки
  2. Функции клеточной мембраны растения
  3. Значение цитолеммы для организма

Клеточная мембрана растения представляет собой один из органоидов, который обволакивает цитоплазму, служит специфическим барьером между внутренним содержимым и внешней средой. Данный органоид также имеет другие названия, принятые в биологической науке: плазматическая мембрана, плазмалемма и цитолемма. Он был полностью изучен лишь сравнительно недавно – в семидесятых годах прошлого века, прорыв в изучении связан с появлением первых электронных микроскопов, которые существенно облегчили работу исследователям. Первые же научные эксперименты, которые касались плазмалеммы, и получили немаловажные результаты, были проведены в 1925 году. Клеточная мембрана растительной клетки обладает свойствами, отличающими ее от аналогичного органоида животных. В данном материале будут подробно рассмотрены эти особенности.

Строение клеточной мембраны растительной клетки

Клеточная мембрана, ее строение и функции не сильно отличаются у различных организмов. Большинству видов присуща следующая структура плазмалеммы:

  1. Внешний слой. Состоит из белков, не является сплошным, имеет в своем строении специальные каналы, состоящие из ионов, которые служат для транспортировки внутрь веществ, не способных самостоятельно преодолеть средний слой.
  2. Средний слой. Иначе – билипидный или жировой. Является жидким и относительно однородным, так как разные виды белков, присутствующие во внешних слоях, способны проникать внутрь него. В нем присутствуют липиды нескольких видов: фосфолипиды, холестерол и гликолипиды. Холестерол присутствует не всегда. Липиды имеют головку, которая считается гидрофильной, а также два длинных окончания, которые, напротив, гидрофобны.
  3. Внутренний слой. Аналогичен внешнему слою, состоит из белков. Также у белковых слоев присутствуют специальные аннулярные липиды, служащие для них защитной пленкой, обеспечивающей их работу.

Белковые слои клеточной мембраны растений состоят из:

  • интегральных белков. Распространены по всей ширине плазмалеммы;
  • полуинтегральных. Встраиваются внутрь, но не проходят насквозь цитолеммы;
  • периферических. Присутствуют только на поверхности.

Рассмотренная выше мембрана плазматическая, строение которой преимущественно одинаковое у разных видов, имеет всё же небольшие отличия у таких организмов, как растения, грибы и бактерии. Для того, чтобы понять суть этих отличий, необходимо рассмотреть задачи, которые решает в организмах растений плазмалемма.

Смотрите видео о строении клетки и клеточной мембраны.

Функции клеточной мембраны растения

Клеточная мембрана растения выполняет следующие функции:

  1. Транспортировочная. Способствует попаданию внутрь необходимых питательных веществ. Регулирует в целом обмен клетки с внешней средой.
  2. Матрикс. Отвечает за расположение других внутренних органоидов, фиксирует их положение и способствует их взаимодействию между собой.
  3. Регуляция энергетического обмена. Обеспечивает протекание различных процессов, от фотосинтеза до дыхания клетки. Данные процессы были бы невозможны без белковых каналов плазмалеммы.
  4. Выработка ферментов. Ферменты вырабатываются именно в белковых слоях плазмалемм некоторых клеток.

У животной и растительной клетки строение клеточной мембраны идентично, а функции, которые они выполняют, различные. Это можно объяснить тем, что у растений присутствуют клеточная мембрана и клеточная стенка. Данная стенка представляет собой дополнительный органоид, покрывающий цитолемму снаружи, и, как следствие, принимающий на себя часть ее функций.

Функции, принятые на себя клеточной стенкой:

  • защитная. Данная стенка является прочной, что способствует предотвращению механических повреждений. Также она выборочно пропускает внутрь молекулы, не допуская попадания тех из них, которые являются болезнетворными;
  • формирование запасов. Некоторые полезные вещества откладываются в стенке для использования в случае наступления неблагоприятных условий, а также для обеспечения роста и развития;
  • регулирует внутреннее давление. Выполнение этой функции напрямую связано с прочностью организма;
  • взаимодействие с другими клетками. Наличие специальных каналов в стенке позволяет совершать обмен информацией о состоянии внешней среды.

Читайте о том, что изучает цитология.
А также об особенностях клеточной мембраны.

Рассматриваемая стенка берет на себя ряд функций, выполняемых в организмах животных цитолеммой. Именно из-за этого строение мембраны растений и некоторых других видов может отличаться.

Значение цитолеммы для организма

Несмотря на то, что у растений множество функций были делегированы от цитолеммы к другому органоиду, она по-прежнему играет очень большую роль в жизнедеятельности организма.

Именно с помощью плазмалеммы происходят основные процессы обмена, выраженные следующими реакциями:

  1. Экзоцитоз. Выделение наружу веществ, которые уже были переработаны ранее, либо были сформированы специально для попадания во внешнюю среду (например, гормоны или ферменты). Для их выведения на внутренней поверхности цитолеммы образуются специальные пузырьки, которые проходят сквозь ряды липидов, а затем их содержимое выделяется наружу.
  2. Фагоцитоз. Поглощение цитолеммой частиц некоторых питательных веществ и дальнейшая их обработка. За этот процесс ответственны специальные клетки, называемые фагоцитами, которые прикреплены к цитолемме.
  3. Пиноцитоз. Поглощение плазмалеммой молекул жидкости, которые находятся в непосредственной близости от нее. Этому служат специальные жгутики, находящиеся на поверхности плазмалеммы, благодаря которым жидкость, попадающая на поверхность, принимает форму капли, и может быть захвачена.

Благодаря наличию ионных каналов внутрь через цитолемму попадает ряд необходимых для жизни веществ. Значение этих каналов трудно переоценить, об их важности говорит, как минимум, тот факт, что, если каналы теряют тонус и перестают корректно выполнять свои функции, у клетки начинается кислородное голодание, из-за чего она, спустя некоторое время, может переродиться в раковую.

В растительной клетке за процессы питания отвечает не только цитолемма, но и клеточная стенка, поэтому так важно, чтобы комбинация этих органоидов была в надлежащем состоянии, от этого напрямую зависит жизнь.

Как вы считаете, все ли функции клеточной мембраны были указаны в материале? Быть может среди вас есть самые внимательные, которые знают еще одну малозначительную функцию? Делитесь своими наблюдениями в комментариях! А также смотрите видео о веществах клеточной стенки растения.

www.rutvet.ru

Плазматическая мембрана растительной клетки (плазмалемма). Её структура

Общая характеристика.

Плазматическая (цитоплазматическая) мембрана — обязательный компонент любой клетки. Она отграничивает клетку и обеспечивает сохранение существующих различий между клеточным содержимым и окружающей средой. Мембрана служит высокоизбирательным «входным» селективным фильтром и отвечает за активный транспорт веществ в клетку и из нее. Цитоплазматическую мембрану растительной клетки обычно называют плазмалеммой. Как и любая биологическая мембрана, она представляет собой липидный бислой с большим количеством белков. Основу липидного бислоя составляют фосфолипиды. Помимо них в состав липидного слоя входят гликолипиды и стерины. Липиды достаточно активно перемещаются в пределах своего монослоя, но возможны и их переходы из одного монослоя в другой. Такой переход, называемый «флип-флоп» (от англ. flip-flop), осуществляется ферментом флипазой. Кроме липидов и белков в плазмалемме присутствуют углеводы. Соотношение липидов, белков и углеводов в плазматической мембране растительной клетки составляет приблизительно 40:40: 20. Мембранные белки связаны с липидным бислоем различными способами. Первоначально белки мембран разделяли на два основных типа: периферийные и интегральные. Периферийные белки ассоциированы с мембраной за счет присоединения к интегральным белкам или липидному бислою слабыми связями: водородными, электростатическими, солевыми мостиками. Они в основном растворимы в воде и легко отделяются от мембраны без ее разрушения. Некоторые периферийные белки обеспечивают связь между мембранами и цитоскелетом. Интегральные белки мембран нерастворимы в воде.

Как минимум один из доменов интегрального белка встроен в гидрофобную часть бислоя мембраны, поэтому интегральный белок, как правило, не может быть удален из мембраны без ее разрушения. В последнее время показано существование третьей группы белков, так называемых «заякоренных» в мембране белков). Эти белки фиксируются в мембране за счет специальной молекулы, в качестве которой могут выступать жирная кислота (ЖК), стерин, изопреноид или фосфатидилинозитол. Белки, связанные с изопреноидами (пренилированные белки) или жирной кислотой, обратимо соединяются с эндоплазматической (внутренней) поверхностью мембраны. Из жирных кислот чаще используется миристиновая (С14) или пальмитиновая (C16). В первом случае образуется амидная связь с терминальной аминогруппой глицина. К остаткам пальмитиновой кислоты белки присоединяются за счет тиоэфирных связей с цистеинами в С-конце полипептид­ной цепи. Для пренилирования белков обычно используется фарнезил или геранилгеранил, которые также присоединяются к остаткам цистеина в карбоксильном конце полипептида. В отличие от этих двух групп белков фосфати-дилинозитолсвязанные белки находятся с внешней (экстрацеллюлярной, или люменальной) стороны мембраны. Подобным образом, по-видимому, связаны с плазматической мембраной большинство арабиногалактановых белков. Холестеринсвязанные белки недавно были обнаружены в плазматической мембране животных клеток, но в растительных клетках подобные белки пока не найдены.

Особенностью липидного состава плазмалеммы по сравнению с другими мембранами растительной клетки является высокое содержание стеринов, но в отличие от плазматической мембраны животной клетки для плазмалеммы характерна высокая вариабельность их состава в зависимости от вида растения, органа и ткани. Например, у ячменя (Hordeum vulgaris) в клетках корня количество свободных стеринов превышает количество фосфолипидов более чем в два раза, тогда как в листьях фосфолипидов больше, чем стеринов почти в 1,5 раза. В листьях шпината (Spinacia oleracia) соотношение фосфолипиды: свободные стерины почти на порядок выше — 9:1.

Структурные особенности плазмалеммы. Помимо высокой степени вариабельности плазматическая мембрана растительной клетки имеет ряд структурных особенностей, отличающих ее от других эукариотических клеток.

Жирнокислотный состав.

Основными жирными кислотами плазмалеммы являются пальмитиновая (16:0), олеиновая (18:1; Δ9), линолевая (18 : 2; Δ9,12) и линоленовая (18 :3; Δ9,12,15). Практически отсутствует стеариновая кислота (18:0) и полностью — арахидоновая (20:4; Δ5’8,11,14), характерные для мембран клеток животных и грибов. Известно, что арахидоновая кислота в очень низких концентрациях является мощным стимулятором фитоиммунитета для некоторых видов растений (например, обеспечивает устойчивость картофеля к фитофторе).

Набор стероидов.

В плазмалемме, как и во всех мембранах растительной клетки, почти нет холестерина. Его заменяют фитостерины, которые являются С-24-замещенными стеринами. Основные фитостерины — ситостерин, стигмастерин и кампестерин. Помимо свободных фитостеринов присутствуют значительные количества эфиров, гликозидов и ацилгликозидов стеринов, что не характерно для клеток животных.

Набор белков.

Наличие специфических белков, прежде всего арабиногалактанов (AGPs), обеспечивающих структурное и функциональное взаимодействие плазмалеммы с клеточной стенкой.

fizrast.ru

Клеточная мембрана — строение и функции органоида

Снаружи клетка покрыта плазматической мембраной (или наружной клеточной мембраной) толщиной около 6-10нм.

Строение клеточной мембраны

Клеточная мембрана это плотные пленки из белков и липидов (в основном, фосфолипидов). Молекулы липидов расположены упорядоченно — перпендикулярно к поверхности, в два слоя, так, что их части, интенсивно взаимодействующие с водой (гидрофильные), направлены наружу, а части, инертные к воде (гидрофобные) — внутрь.

Строение клеточной мембраны

Молекулы белка расположены несплошным слоем на поверхности липидного каркаса с обеих его сторон. Часть их погружена в липидный слой, а некоторые проходят через него насквозь, образуя участки, проницаемые для воды. Эти белки выполняют различные функции — одни из них являются ферментами, другие — транспортными белками, участвующими в переносе некоторых веществ из окружающей среды в цитоплазму и в обратном направлении.

Основные функции клеточной мембраны

Одним из основных свойств биологических мембран является избирательная проницаемость (полупроницаемость) — одни вещества проходят через них с трудом, другие легко и даже в сторону большей концентрации Так, для большинства клеток концентрация ионов Na внутри значительно ниже, чем в окружающей среде. Для ионов K характерно обратное соотношение: их концентрация внутри клетки выше, чем снаружи. Поэтому ионы Na всегда стремятся проникнуть в клетку, а ионы K — выйти наружу. Выравниванию концентраций этих ионов препятствует присутствие в мембране особой системы, играющей роль насоса, который откачивает ионы Na из клетки и одновременно накачивает ионы K внутрь.

Стремление ионов Na к перемещению снаружи внутрь используется для транспорта сахаров и аминокислот внутрь клетки. При активном удалении ионов Na из клетки создаются условия для поступления глюкозы и аминокислот внутрь ее.

Транспорт через клеточную мембрану

У многих клеток поглощение веществ происходит также путем фагоцитоза и пиноцитоза. При фагоцитозе гибкая наружная мембрана образует небольшое углубление, куда попадает захватываемая частица. Это углубление увеличивается, и, окруженная участком наружной мембраны, частица погружается в цитоплазму клетки. Явление фагоцитоза свойственно амебам и некоторым другим простейшим, а также лейкоцитам (фагоцитам). Аналогично происходит и поглощение клетками жидкостей, содержащих необходимые клетке вещества. Это явление было названо пиноцитозом.

Наружные мембраны различных клеток существенно отличаются как по химическому составу своих белков и липидов, так и по их относительному содержанию. Именно эти особенности определяют разнообразие в физиологической активности мембран различных клеток и их роль, в жизнедеятельности клеток и тканей.

С наружной мембраной связана эндоплазматическая сеть клетки. При помощи наружных мембран осуществляются различные типы межклеточных контактов, т.е. связь между отдельными клетками.

Для многих типов клеток характерно наличие на их поверхности большого количества выступов, складок, микроворсинок. Они способствуют как значительному увеличению площади поверхности клеток и улучшению обмена веществ, так и более прочным связям отдельных клеток друг с другом.

У растительных клеток снаружи клеточной мембраны имеются толстые, хорошо различимые в оптический микроскоп оболочки, состоящие из клетчатки (целлюлозы). Они создают прочную опору растительным тканям (древесина).

Некоторые клетки животного происхождения тоже имеют ряд внешних структур, находящихся поверх клеточной мембраны и имеющих защитный характер. Примером может быть хитин покровных клеток насекомых.

Функции клеточной мембраны (кратко)

ФункцияОписание
Защитный барьерОтделяет внутренние органеллы клетки от внешней среды
РегулирующаяПроизводит регуляцию обмена веществ между внутренним содержимым клетки и наружной средой
Разграничивающая (компартментализация)Разделение внутреннего пространства клетки на независимые блоки (компартменты)
Энергетическая— Накопление и трансформация энергии;
— световые реакции фотосинтеза в хлоропластах;
— Всасывание и секреция.
Рецепторная (информационная)Участвует в формировании возбуждения и его проведения.
ДвигательнаяОсуществляет движение клетки или отдельных ее частей.

animals-world.ru

Клеточная оболочка растительной клетки

Характерной особенностью растительной клетки является наличие жесткой (твердой) клеточной стенки. Клеточная оболочка определяет форму клетки, придает клеткам и тканям растений механическую прочность и опору, защищает цитоплазматическую мембрану от разрушения под влиянием гидростатического давления, развиваемого внутри клетки. Однако такую оболочку нельзя рассматривать только как механический каркас. Клеточная оболочка обладает такими свойствами, которые позволяют противостоять давлению воды внутри клетки, и в то же время обладает растяжимостью и способностью к росту. Она является противоинфекционным барьером, принимает участие в поглощении минеральных веществ, являясь своеобразным ионообменником. Появились данные, что углеводные компоненты клеточной оболочки, взаимодействуя с гор­монами, вызывают ряд физиологических изменений. Для молодых растущих клеток характерна первичная клеточная оболочка. По мере их старения образуется вторичная структура. Первичная клеточная оболочка, как правило, малоспециализирована, имеет более простое строение и меньшую толщину, чем вторичная. В состав клеточной оболочки входят целлюлоза, гемицеллюлозы, пектиновые вещества, липиды и небольшое количество белка. Компоненты клеточной оболочки являются продуктами жизнедеятельности клетки. Они выделяются из цитоплазмы и претерпевают превращения на поверхности плазмалеммы. Первичные клеточные стенки содержат из расчета на сухое вещество: 25% целлюлозы, 25% гемицеллюлозы, 35% пектиновых веществ и 1—8% структурных белков. Однако цифры весьма колеблются. Так, в состав клеточных стенок колеоптилей злаков входит до 60—70% гемицеллюлоз, 20—25 % целлюлозы, 10% пектиновых веществ. Вместе с тем клеточные стенки эндосперма содержат до 85% гемицеллюлоз. Во вторичных клеточных стенках больше целлюлозы. Остов клеточной оболочки составляют переплетенные микро- и макрофибриллы целлюлозы. Целлюлоза, или клетчатка (С6Н10О5)n, представляет собой длинные неразветвленные цепочки, состоящие из 3—10 тыс. остатков D-глюкозы, соединенных b-1,4-гликозидными связями. Молекулы целлюлозы объединены в мицеллу, мицеллы объединены в микрофибриллу, микрофибриллы объединены в макрофибриллу. Макрофибриллы, мицеллы и микрофибриллы соединены в пучки водородными связями. Диаметр мицеллы составляет 5 нм, диаметр микрофибриллы — 25—30 нм, макрофибриллы — 0,5 мкм. Структура микро- и макрофибрилл неоднородна. Наряду с хорошо организованными кристаллическими участками имеются паракристаллические, аморфные.

Микро- и макрофибриллы целлюлозы в клеточной оболочке погружены в аморфную желеобразную массу — матрикс. Матрикс состоит из гемицеллюлоз, пектиновых веществ и белка. Гемицеллюлозы, или полуклетчатки,— это производные пентоз и гексоз. Степень полимеризации у этих соединений меньше по сравнению с клетчаткой (150—300 мономеров, соединенные b-1,3- и b-1,4-гли-козидными связями). Из гемицеллюлоз наибольшее значение имеют ксило-глюканы, которые входят в состав матрикса первичной клеточной стенки. Это цепочки остатков D-глюкозы, соединенных b-1,4-гликозидными связями, у которых от шестого углеродного атома глюкозы отходят боковые цепи, главным образом из остатков D-ксилозы. К ксилозе могут присоединяться остатки галактозы и фукозы. Гемицеллюлозы способны связываться с целлюлозой, поэтому они формируют вокруг микрофибрилл целлюлозы оболочку, скрепляя их в сложную цепь.

Пектиновые вещества — это полимерные соединения углеводного типа. Они обусловливают высокую оводненность клеточной оболочки. Важнейшим представителем пектиновых веществ являются рамногалактуронаны, представляющие собой цепочку остатков oc-D-галактуроновой кислоты (Гк), к которой в ряде мест присоединяются остатки рамнозы. Рамноза (С6Н1205) — производное глюкозы. Вследствие внедрения рамнозы основная цепь этого полисахарида при­обретает зигзагообразную форму. В некоторых случаях четвертый углеродный атом рамнозы замещен на галактозу. Пектиновые вещества содержат большое количество карбоксильных групп и могут эффективно связывать ионы двухвалентных металлов, например, Са+2, что играет роль в объединении компонентов клеточной стенки. Ионы Са+2 могут обмениваться на такие ионы как К+ и Н+, что обеспечивает катионообменную способность.

Клеточные стенки содержат также белок экстенсии (до 10%). Это гликопро-теид, у которого около 30% всех аминокислот белковой части предстаачено оксипролином. К оксипролину присоединяются углеводные цепочки, состоящие из четырех остатков моносахара арабинозы. По исследованиям Д. Лампорта, именно цепочки арабинозы придают устойчивость структуре экстенсина. Вместе с тем экстенсии является связующим звеном между полисахаридами, входящими в состав клеточной оболочки, соединяя их в единый каркас. Наряду с этим в состав клеточной оболочки входят специфические углевод-связывающие белки пектины, согласно современным представлениям участвующие в обеспечении узнавания и взаимодействия клеток, рецепторных свойств, защиты от инфекций. В клеточных оболочках локализован ряд ферментов, по преимуществу гидролаз (глюкозидазы, гликозидазы и др.). Эти ферменты, расщепляя соответствующие связи, могут участвовать в растяжении клеточной оболочки.

Клеточная оболочка способна к утолщению и видоизменению. В результате этого образуется ее вторичная структура. Утолщение оболочки происходит путем наложения новых слоев на первичную оболочку. Ввиду того, что наложение идет уже на твердую оболочку, фибриллы целлюлозы в каждом слое лежат параллельно, а в соседних слоях — под углом друг к другу. Предполагается, что за ориентацию микрофибрилл целлюлозы ответственны микротрубочки. Этим достигается значительная прочность (и твердость) вторичной оболочки. По мере того как число слоев фибрилл целлюлозы становится больше, и толщина стенки увеличивается, она теряет эластичность и способность к росту. Во вторичной клеточной стенке содержание целлюлозы значительно возрастает (в некоторых случаях до 60% и более). По мере дальнейшего старения клеток матрикс оболочки может заполняться различными веществами — лигнином, суберином. Лиг­нин — это полимер, образующийся путем конденсации ароматических спиртов. Включение лигнина сопровождается одревеснением, увеличением прочности и уменьшением растяжимости. Мономерами суберина являются насыщенные и ненасыщенные оксожирные кислоты. Пропитанные суберином клеточные стенки (опробковение оболочки) становятся труднопроницаемыми для воды и растворов. На поверхности клеточной стенки могут откладываться кутин и воск. Кутин состоит из оксожирных кислот и их солей, выделяется через клеточную стенку на поверхность эпидермальной клетки и участвует в образовании кутикулы. В состав кутикулы могут входить воска, которые также секретирует цитоплазма. Кутикула препятствует испарению воды, регулирует водно-тепловой режим тканей растений.

Исследования позволили дать предположительную модель взаимосвязи и взаиморасположения всех перечисленных веществ в клеточной стенке. Согласно этой модели в первичной клеточной оболочке микрофибриллы целлюлозы располагаются либо беспорядочно, либо перпендикулярно (в основном) продольной оси клетки. Между микрофибриллами целлюлозы находятся молекулы гемицеллюлозы, которые, в свою очередь, связаны через пектиновые вещества с белком. При этом последовательность веществ следующая: целлюлоза — гемицеллюлозы — пектиновые вещества — белок — пектиновые вещества — гемицеллюлозы — целлюлоза. Микрофибриллы целлюлозы и вещества матрикса оболочки связаны между собой. Единственными нековалентными связями являются водородные между целлюлозными микрофибриллами и гемицеллюлозой (по преимуществу ксилоглюканом). Между ксилоглюканом и пектиновыми веществами, так же как и между пектиновыми веществами и белком экстенсином, возникают ковалентные связи.

Клеточная стенка растительной клетки пронизана плазмодесмами. В клеточной стенке они могут располагаться равномерно или группами. Плазмодесмы обнаружены в клетках всех групп растений, за исключением репродуктивных клеток. На каждые 100 мкм2 клеточной оболочки имеется примерно 10—30 плазмодесм. Плазмодесма представляет собой канал (пору) шириной до 1 мкм, выстланный плазмалеммой. В центре поры имеется десмотрубка, которая образована мембранами эндоплазматической сети соседних клеток. Десмотрубка окружена белками и слоем цитоплазмы, которая соединяется с цитоплазмами соседних клеток. Благодаря плазмодесмам цитоплазма всех объединена в единое целое — симпласт. Взаимосвязанная система клеточных стенок и межклеточных промежутков называется апопласт (свободное пространство). Симпласт и апопласт являются важнейшими путями передвижения воды и минеральных веществ между клетками. Одним из путей регуляции транспортной функции является подвижность структуры плазмодесм (Ю.В. Гамалей) и объем свободного пространства. Толщина клеточной стенки колеблется у разных видов растений от десятых долей до 10 мкм. Так, клетки кортикальной паренхимы более тонкие, а специализированные клетки эпидермиса, ксилемы, флоэмы и другие — более толстые. У клетки отдельные стороны клеточной стенки могут различаться по толщине, количеству плазмодесм. Клеточная стенка внешней стороны клетки эпидермиса толще, имеет меньше плазмодесм, чем внутренняя сторона этой клетки.

Между клеточными оболочками двух соседних клеток в местах их соприкосновения имеется так называемая срединная пластинка; в состав срединной пластинки входят пектиновые вещества, главным образом в виде пектатов кальция (кальциевая соль пектиновой кислоты). Эти вещества как бы цементируют, склеивают растущие клетки. При недостатке кальция пектиновые вещества превращаются в слизь, наблюдается ослизнение ткани, и клетки разъединяются (мацерация ткани). При созревании плодов пектиновые вещества срединных пластинок, склеивающие клетки, переходят в растворимую форму и благодаря этому плоды становятся мягкими. Срединная пластинка является первым слоем, образующимся при делении клетки. Клеточная оболочка способна к эластическому (обратимому) и пластическому (необратимому) растяжению. Эластическое растяжение происходит под влиянием развивающегося в клетке давления воды (тургорного давления). Макрофибриллы целлюлозы не связаны между собой и скреплены только матриксом. Они под влиянием давления как бы раздвигаются, клеточная оболочка становится тоньше. Пластическое необратимое растяжение это собственно рост клеточной оболочки. Рост клеточной оболочки начинается с ее разрыхления. Поскольку микрофибриллы практически не растягиваются в длину, то для того, чтобы произошло растяжение оболочки, они должны скользить вдоль оси растяжения, удаляясь друг от друга. Способность микрофибрилл скользить друг около друга очень важна для обеспечения роста растяжением. Чем это скольжение проходит легче, тем пластичнее клеточная стенка. Легкость скольжения обусловлена водородными связями между микрофибриллами целлюлозы и ксилоглюканом (пектиновыми веществами). Особенностью этих связей является их лабильность — легкое разрушение и возобновление, не требующее значитель­ных энергетических затрат. После того как растяжение клетки произошло, между вновь образовавшимися микрофибриллами целлюлозы и веществами матрикса возникают связи. Подкисление увеличивает растяжимость клеток. В этом важную роль играет экстенсии. Показано, что этот белок катализирует зависимое от рН растяжение клеточных стенок. На размягчение клеточных стенок также влияют ферменты глюканазы, которые вызывают распад ксилоглюкана. Клеточные стенки неактивны и достаточно устойчивы, что и обеспечивает выполнение механической и защитной функции. Однако под влиянием патогенов они могут в течение секунд модифицироваться. Причем, молекулы, образующиеся при распаде материала клеточных стенок, играют роль сигналов, информируя растительный организм об инфекции и выполняя защитную роль. Показано, что разрушение клеточных стенок может приводить к накоплению олигосахаридов, способных стимулировать синтез сигнальных молекул (фито-алексинов, этилена и др.), которые в соединении с патогеном обусловливают дальнейший сигнал, рост и морфогенез у изолированных частей (И.А. Тарчевский).

fizrast.ru

Строение растительной клетки

Строение растительной клетки изучает наука — физиология растений. Клетка является основной структурной единицей как растительного, так и животного организма. Она представляет собой наименьшую часть организма, обладающую свойствами живого

Одноклеточные и многоклеточные растения

Есть растения одноклеточные и многоклеточные. К первым относятся некоторые водоросли, состоящие только из одной клетки, и в этом случае такая клетка несет в себе все присущие ей функции.

Многоклеточные растения представляют собой не простую сумму клеток, а единый организм, в котором они образуют различные ткани и органы, находящиеся во взаимодействии друг с другом.

Структурные элементы растительной клетки

Клетки растений весьма разнообразны как по размерам и форме, так и по выполняемым ими функциям, но в основном состоят из одних и тех же частей.

Строение взрослой растительной клетки
  1. — оболочка,
  2. — срединная пластинка,
  3. — межклетник,
  4. — плазмодесмы,
  5. — плазмалемма,
  6. — тонопласт,
  7. — вакуоля,
  8. — цитоплазма,
  9. — капелька масла,
  10. — митохондрия,
  11. — хлоропласт,
  12. — граны в хлоропласте,
  13. — крахмальное зерно в хлоропласте,
  14. — ядро,
  15. — ядерная оболочка,
  16. — ядрышко,
  17. — хроматин.

Каждая взрослая живая клетка состоит из:

  • оболочки,
  • протоплазмы,
  • вакуоли.

Оболочка придает растительной клетке определенную форму. Под оболочкой находится протоплазма, обычно плотно прижатая к оболочке. Центральную часть клетки занимает вакуоля, наполненная клеточным соком. У молодых клеток вакуоли нет и протоплазма заполняет всю полость клетки.

Протоплазма

Протоплазма — это живое вещество организма; в ней протекают сложнейшие реакции обмена, характерные для жизни.

В протоплазме находится большое количество мембран-пленок, в образовании которых большую роль играют соединения белков с фосфатидами (жироподобными веществами). Благодаря наличию мембран у протоплазмы имеются огромные внутренние поверхности, на которых и протекают процессы адсорбции (поглощения) и десорбции (выделения) веществ и их передвижение, происходящие с большой скоростью.

Большое количество мембран, разделяющих содержимое клетки, позволяет различным веществам, находящимся в клетке, не перемешиваться и передвигаться одновременно в противоположных направлениях.

Однако физико-химические свойства мембран непостоянны; они непрерывно изменяются в зависимости от внутренних и внешних условий, что дает возможность саморегулирования биохимических процессов.

Химический состав протоплазмы

Химический состав протоплазмы очень сложен. Она состоит из органических и неорганических соединений, находящихся как в коллоидном, так и в растворенном состоянии.

Удобным объектом для изучения химического состава протоплазмы является плазмодий фикомицетов, представляющий собой голую, лишенную оболочки протоплазму.

Ниже приведен суммарный состав протоплазмы фикомицетов (в % от сухого веса):

Водорастворимые органические вещества…………………………………………………   40,7

Из них: сахара………………………………………………………………………………………………..   14,2
белки……………………………………………………………………………………………………………….  22
аминокислоты, органические основания и другие азотные соединения…..  24,3

Не растворимые в воде органические вещества ………………………………………..   55,9

Из них: нуклеопротеиды………………………………………………………………………………..   32,2
свободные нуклеиновые кислоты ………………………………………………………………..   2,5
глобулины (простые белки) ……………………………………………………………………………   0,5
липопротеиды…………………………………………………………………………………………………   4,8
нейтральные жиры…………………………………………………………………………………………   6,8
фитостеролы (высокомолекулярные спирты) ……………………………………………….  3.2
фосфатиды………………………………………………………………………………………………………..  1,3
другие органические вещества……………………………………………………………………….  4,6

Минеральные вещества…………………………………………………………………………………..  3,4

Химический состав протоплазмы высших растений близок к приведенному выше, но он может изменяться в зависимости от вида, возраста и органа растения.

В протоплазме содержится до 80% воды (в протоплазме покоящихся семян — 5—15%). Она пропитывает всю коллоидную систему протоплазмы, являясь ее структурным элементом. В протоплазме все время происходят химические реакции, для протекания которых необходимо, чтобы реагирующие соединения были в растворе.

Цитоплазма

Основной частью протоплазмы является цитоплазма, представляющая собой полужидкое содержимое клетки и заполняющее ее внутреннее пространство.

В цитоплазме расположены ядро, пластиды, митохондрии (хондриосомы), рибосомы и аппарат Гольджи.

Наружная мембрана цитоплазмы, граничащая с клеточной оболочкой, называется плазмалеммой. Плазмалемма легко пропускает воду и многие ионы, но задерживает крупные молекулы.

На границе цитоплазмы с вакуолью тоже образуется мембрана, называемая тонопластом.

В цитоплазме расположена эндоплазматическая сеть, представляющая собой систему ветвящихся мембран, соединенных с наружной мембраной. Мембраны эндоплазматической сети образуют каналы и расширения, на поверхности которых и протекают все химические реакции.

Важнейшие свойства цитоплазмы — вязкость и эластичность. Вязкость цитоплазмы изменяется в зависимости от температуры: при повышении температуры вязкость уменьшается и, наоборот, при понижении — увеличивается. При большой вязкости обмен веществ в клетке снижается, при малой — возрастает.

Эластичность цитоплазмы проявляется в ее способности возвращаться к исходной форме после деформации, что указывает на определенную структуру цитоплазмы.

Цитоплазма способна к движению, которое тесно связано с окружающими условиями. Основу движения составляет сократимость белков цитоплазмы клеток. Повышение температуры ускоряет движение цитоплазмы, отсутствие кислорода останавливает его. Вероятно, движение цитоплазмы тесно связано с превращением веществ и энергии в растении.

Способность цитоплазмы реагировать на внешние условия и приспосабливаться к ним называется раздражимостью.

Наличие раздражимости характеризует живой организм. Ответная реакция цитоплазмы на воздействие температуры, света и влаги требует затраты энергии, которая выделяется в процессе дыхания. Листочки стыдливой мимозы при механическом раздражении быстро складываются, но при частом повторении раздражения перестают на него реагировать; последнее, по-видимому, объясняется недостатком энергии. Раздражимость цитоплазмы— основа всех видов движения и других явлений жизнедеятельности раст.

Ядро

Ядро — важнейший и самый крупный органоид клетки. Размеры ядра зависят от вида растения и состояния клетки (у высших растений в среднем от 5 до 25 мк). Форма ядра чаще всего шаровидная, у вытянутых клеток — овальная.

Живая клетка обычно имеет только одно ядро, но у высших растений сильно вытянутые клетки (из которых образуются лубяные волокна) содержат по нескольку ядер. В молодых клетках, не имеющих вакуоли, ядро обычно занимает центральное положение, у взрослых при образовании вакуолей оно отодвигается к периферии.

Ядро представляет собой коллоидную систему, но более вязкую, чем цитоплазма. Оно отличается от цитоплазмы и по химическому составу; в ядре содержатся основные и кислые белки и различные ферменты, а также большое количество нуклеиновых кислот, дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). ДНК преобладает в ядре и обычно не содержится в цитоплазме.

Ядро отделяется от цитоплазмы тонкой оболочкой, или ядерной мембраной, в которой находятся отверстия — поры. Через поры осуществляется обмен между ядром и цитоплазмой. Под мембраной находится ядерный сок, в который погружены одно или несколько ядрышек и хромосомы. В ядрышке содержатся рибонуклеиновая кислота (РНК), которая принимает участие в синтезе белка, и фосфорсодержащие белки.

Ядро принимает участие во всех жизненных процессах клетки; при его удалении клетка отмирает.

Пластиды

Пластиды имеются только в растительных клетках. Они хорошо видны в обычный микроскоп, так как более плотные и иначе преломляют свет, чем цитоплазма.
Во взрослой растительной клетке различают 3 типа пластид:

  • хлоропласты, имеющие зеленую окраску,
  • хромопласты желтые или оранжевые,
  • лейкопласты — бесцветные.

Размеры пластид зависят от вида растения и колеблются от 3—4 до 15—30 мк. Лейкопласты обычно мельче хлоропластов и хромопластов.

Митохондрии

Митохондрии встречаются во всех живых клетках и расположены в цитоплазме. Форма их весьма разнообразна и изменчива, размеры 0,2—5 мк. Количество митохондрий в клетке колеблется от десятков до нескольких тысяч. Они более плотны, чем цитоплазма, и имеют иной химический состав; в них содержится 30—40% белка, 28—38% липоидов и 1 — .6% рибонуклеиновой кислоты.

Митохондрии передвигаются в клетке вместе с цитоплазмой, но в некоторых клетках, по-видимому, они способны и к самостоятельному движению. Роль митохондрий в обмене веществ клетки очень велика.

Митохондрии являются центрами, в которых происходит дыхание и образование макроэргических связей, заключенных в аденозинтрифосфорной кислоте (АТФ) и имеющих большой запас энергии (стр. 70, 94—96).

Освобождение и перенос образующейся энергии происходят с участием большого числа ферментов, находящихся в митохондриях.

Аппарат Гольджи

В цитоплазме находится аппарат Гольджи, форма которого различна в разных клетках. Он может быть в виде дисков, палочек, зернышек. Аппарат Гольджи имеет много полостей, окруженных двухслойной оболочкой. Роль его сводится к накоплению и выведению из клетки различных веществ, вырабатываемых клеткой.

Рибосомы

Рибосомы — это субмикроскопические частицы, имеющие форму зернышек размером до 0,015 мк. Рибосомы содержат много белка (до 55%) и богаты рибонуклеиновой кислотой (35%), что составляет 65% всей рибонуклеиновой кислоты (РНК), находящейся в клетке.

В рибосомах из аминокислот синтезируются белки, что возможно только при наличии РНК. Рибосомы находятся в цитоплазме, ядре, пластидах и, возможно, в митохондриях.

Химический состав органоидов. В настоящее время благодаря созданию центрифуг, имеющих огромную скорость вращения (десятки тысяч оборотов в минуту), можно отделять различные части клетки друг от друга, так как они имеют разный удельный вес. Поэтому стало возможным изучать биохимические свойства каждой части клетки.

Для сравнения химического состава органоидов клетки приводим данные (табл. 1).

Химический состав органоидов растительной клетки
(в °/о от сухого вещества)

ОрганоидБелки Липоиды Нуклеиновые кислоты Примечание
 Цитоплазма 80—95 2—3 1—2  Большая часть нуклеиновых кислот — ДНК
 Ядра 50—80 8—40 10—30
 Пластиды 30—45 20—40 0,5—3,0
 Митохондрии 30—40 25—38 1—6
 Рибосомы 50—57 3—4 35

Клеточная оболочка

Характерный признак растительной клетки — наличие прочной оболочки, которая придает клетке определенную форму и предохраняет протоплазму от повреждений. Оболочка может расти только при участии протоплазмы. Клеточная оболочка молодых клеток состоит в основном из целлюлозы (клетчатки), гемицеллюлоз и пектиновых веществ.

Молекулы целлюлозы имеют вид длинных цепочек, собранных в мицеллы, расположение которых неодинаково у разных клеток. У волокон льна, конопли и других, представляющих собой вытянутые в длину клетки, мицеллы целлюлозы расположены вдоль клетки под некоторым углом. У клеток с одинаковым диаметром мицеллы расположены по всем направлениям в виде сетки. В межмицеллярных пространствах оболочки находится вода.

В процессе жизни растительного организма в строении клеточной оболочки могут происходить изменения: оболочка может утолщаться и химически изменяться. Утолщение оболочки идет изнутри за счет жизнедеятельности протоплазмы, причем оно происходит не по всей внутренней поверхности клетки; всегда остаются не утолщенные места — поры, состоящие только из тонкой целлюлозной оболочки.

Через поры, расположенные в соседних клетках друг против друга, проходят тончайшие нити цитоплазмы — плазмодесмы, благодаря которым осуществляется обмен между клетками. Однако при очень сильном утолщении оболочек резко затрудняется обмен, в клетке остается очень мало протоплазмы, и такие клетки отмирают, например лубяные волокна льна и конопли.

В оболочке клетки могут происходить также химические изменения в зависимости от характера растительной ткани. В покровных тканях — эпидермисе — происходит кутинизация. При этом в межмицеллярных пространствах целлюлозной оболочки накапливается кутин — жироподобное вещество, трудно проницаемое для газов и воды.

Однако кутинизация не приводит к отмиранию клеток, так как отложения кутина не захватывают всей поверхности клетки. В клетках покровной ткани кутинизируется только наружная стенка, образуя так называемую кутикулу.

В оболочках клеток может также откладываться суберин — пробковое вещество, тоже жироподобное и непроницаемое для воды и газов. Отложение суберина, или опробковение, происходит быстро по всей поверхности оболочки, это нарушает обмен клетки и приводит к ее отмиранию. Может происходить и одревеснение оболочки. В этом случае она пропитывается лигнином, который приводит к остановке роста клетки, а в дальнейшем, при более сильном одревеснении, и к ее отмиранию.

Клеточный сок

Молодая растительная клетка полностью заполнена протоплазмой, но по мере роста клетки в ней появляются вакуоли, заполненные клеточным соком. Вначале вакуоли возникают в большом количестве в виде мелких капелек, затем отдельные вакуоли начинают сливаться в одну центральную и протоплазма оттесняется к стенкам клетки.

Изменения происходящие в растительной клетке при ее росте
  1. — молодая клетка,
  2. — образование вакуолей,
  3. — слияние вакуолей и оттеснение  протоплазмы к оболочке.

Клеточный сок, заполняющий вакуолю, представляет собой водный раствор органических и минеральных веществ. В нем могут находиться сахара, органические и минеральные кислоты и их соли, ферменты, растворимые белки и пигменты. Весьма часто в клеточном соке встречается пигмент антоциан, окраска которого меняется в зависимости от реакции среды.

Загрузка…

libtime.ru

Особенности, строение и функции клеточных мембран

В 1972 году была выдвинута теория, согласно которой частично проницаемая мембрана окружает клетку и выполняет ряд жизненно важных задач, а строение и функции клеточных мембран являются значимыми вопросами касательно правильного функционирования всех клеток в организме. Клеточная теория получила широкое распространение в 17 веке, вместе с изобретением микроскопа. Стало известно, что растительные и животные ткани состоят из клеток, но из-за низкой разрешающей способности прибора невозможно было увидеть какие-то барьеры вокруг животной клетки. В 20-м веке химическая природа мембраны исследовалась более детально, было выяснено, что ее основу составляют липиды.

Строение и функции клеточных мембран

Клеточная мембрана окружает цитоплазму живых клеток, физически отделяя внутриклеточные компоненты от внешней среды. Грибы, бактерии и растения также имеют клеточные стенки, которые обеспечивают защиту и препятствуют прохождению крупных молекул. Клеточные мембраны также играют роль в становлении цитоскелета и прикреплении к внеклеточному матриксу других жизненно важных частиц. Это нужно для того, чтобы удерживать их вместе, формируя ткани и органы организма. Особенности строения клеточной мембраны включают проницаемость. Основной функцией является защита. Мембрана состоит из фосфолипидного слоя со встроенными белками. Эта часть участвует в таких процессах, как клеточная адгезия, ионная проводимость и сигнальные системы и служит в качестве поверхности крепления для нескольких внеклеточных структур, в том числе стенки, гликокаликса и внутреннего цитоскелета. Мембрана также сохраняет потенциал клетки, работая как селективный фильтр. Она является селективно проницаемой для ионов и органических молекул и управляет перемещением частиц.

Биологические механизмы с участием клеточной мембраны

1. Пассивная диффузия: некоторые вещества (малые молекулы, ионы), такие как двуокись углерода (СО2) и кислорода (О2), могут проникать через плазматическую мембрану путем диффузии. Оболочка действует как барьер для определенных молекул и ионов, они могут концентрироваться по обе стороны.

2. Трансмембранный белок каналов и транспортеров: питательные вещества, такие как глюкоза или аминокислоты, должны попасть в клетку, а некоторые продукты обмена веществ должны ее покинуть.

3. Эндоцитоз — это процесс, при котором поглощаются молекулы. В плазматической мембране создается небольшая деформация (инвагинация), в которой вещество, подлежащее транспортировке, заглатывается. Это требует энергии и, таким образом, является формой активного транспорта.

4. Экзоцитоз: происходит в различных клетках для удаления непереваренных остатков веществ, принесенных эндоцитозом, чтобы секретировать вещества, такие как гормоны и ферменты, и транспортировать вещество полностью через клеточный барьер.

Молекулярная структура

Клеточная мембрана — это биологическая оболочка, состоящая преимущественно из фосфолипидов и отделяющая содержание всей клетки от внешней среды. Процесс образования происходит самопроизвольно при нормальных условиях. Чтобы понять этот процесс и правильно описать строение и функции клеточных мембран, а также свойства, необходимо оценить характер фосфолипидных структур, для которых является свойственной структурная поляризация. Когда фосфолипиды в водной среде цитоплазмы достигают критической концентрации, они объединяются в мицеллы, которые являются более стабильными в водной среде.

Мембранные свойства

  • Стабильность. Это значит, что после образования распад мембраны является маловероятным.
  • Прочность. Липидная оболочка достаточно надежная, чтобы предотвратить прохождение полярного вещества, через образованную границу не могут пройти как растворенные вещества (ионы, глюкоза, аминокислоты), так и гораздо более крупные молекулы (белки).
  • Динамичный характер. Это, пожалуй, наиболее важное свойство, если рассматривать строение клетки. Клеточная мембрана может подвергаться различным деформациям, может складываться и сгибаться и при этом не разрушиться. При особых обстоятельствах, например, при слиянии везикул или бутонизации, она может быть нарушена, но только на время. При комнатной температуре ее липидные составляющие находятся в постоянном, хаотическом движении, образуя стабильную текучую границу.

Жидкая мозаичная модель

Говоря про строение и функции клеточных мембран, важно отметить, что в современном представлении мембрана как жидкая мозаичная модель, была рассмотрена в 1972 году учеными Сингером и Николсоном. Их теория отражает три основные особенности структуры мембраны. Интегральные мембранные белки способствуют мозаичным шаблоном для мембраны, и они способны на боковое движение в плоскости из-за изменчивой природы липидной организации. Трансмембранные белки являются также потенциально мобильными. Важной особенностью структуры мембраны является ее асимметрия. Что представляет собой строение клетки? Клеточная мембрана, ядро, белки и так далее. Клетка является основной единицей жизни, и все организмы состоят из одной или многих клеток, каждая их которых имеет естественный барьер, отделяющий ее от окружающей среды. Эта внешняя граница ячейки также называется плазматической мембраной. Она состоит из четырех различных типов молекул: фосфолипиды, холестерин, белки и углеводы. Жидкая мозаичная модель описывает структуру клеточной мембраны следующим образом: гибкая и эластичная, по консистенции напоминает растительное масло, так что все отдельные молекулы просто плавают в жидкой среде, и они все способные двигаться вбок в пределах этой оболочки. Мозаика представляет собой что-то, что содержит много разных деталей. В плазматической мембране она представлена фосфолипидами, молекулами холестерина, белками и углеводами.

Фосфолипиды

Фосфолипиды составляют основную структуру клеточной мембраны. Эти молекулы имеют два различных конца: голову и хвост. Головной конец содержит фосфатную группу и является гидрофильным. Это значит, что он притягивается к молекулам воды. Хвост состоит из водорода и атомов углерода, называемых цепочками жирных кислот. Эти цепи гидрофобны, они не любят смешиваться с молекулами воды. Этот процесс напоминает то, что происходит, когда вы льете растительное масло в воду, то есть оно в ней не растворяется. Особенности строения клеточной мембраны связаны с так называемым липидным бислоем, который состоит из фосфолипидов. Гидрофильные фосфатные головы всегда располагаются там, где есть вода в виде внутриклеточной и внеклеточной жидкости. Гидрофобные хвосты фосфолипидов в мембране организованы таким образом, что держат их подальше от воды.


Холестерин, белки и углеводы

Услышав слово «холестерин», люди обычно думают, что это плохо. Однако на самом деле холестерин является очень важным компонентом клеточных мембран. Его молекулы состоят из четырех колец водорода и атомов углерода. Они гидрофобны и встречаются среди гидрофобных хвостов в липидном би-слое. Их важность заключается в поддержании консистенции, они укрепляют мембраны, предотвращая пересечение. Молекулы холестерина также держат фосфолипидные хвосты от вступления в контакт и твердевания. Это гарантирует текучесть и гибкость. Мембранные белки выполняют функции ферментов по ускорению химических реакций, выступают в качестве рецепторов для специфических молекул или транспортируют вещества через клеточную мембрану.

Углеводы, или сахариды, встречаются только на внеклеточной стороне мембраны клетки. Вместе они образуют гликокаликс. Он обеспечивает амортизацию и защиту плазматической мембраны. На основе структуры и типа углеводов в гликокаликсе организм может распознавать клетки и определять, должны ли они быть там или нет.

Мембранные белки

Строение клеточной мембраны животной клетки невозможно представить без такого значимого компонента, как белок. Несмотря на это, они могут значительно уступать по размерам другой важной составляющей – липидам. Существует три вида основных мембранных белков.

  • Интегральные. Они полностью охватывают би-слой, цитоплазму и внеклеточную среду. Они выполняют транспортную и сигнализирующую функцию.
  • Периферические. Белки прикрепляются к мембране при помощи электростатических или водородных связей в их цитоплазматических или внеклеточных поверхностях. Они участвуют в основном как средство крепления для интегральных белков.
  • Трансмембранные. Они выполняют ферментативную и сигнальную функции, а также модулируют основную структуру липидного би-слоя мембраны.

Функции биологических мембран

Гидрофобный эффект, который регламентирует поведение углеводородов в воде, контролирует структуры, образованные посредством мембранных липидов и мембранных белков. Многие свойства мембран даруются носителями липидных би-слоев, образующими базовую структуру для всех биологических мембран. Интегральные мембранные белки частично спрятаны в липидном би-слое. Трансмембранные белки имеют специализированную организацию аминокислот в их первичной последовательности.

Периферические мембранные белки очень похожи на растворимые, но они также привязаны к мембранам. Специализированные клеточные мембраны имеют специализированные функции клеток. Как строение и функции клеточных мембран оказывают влияние на организм? От того, как устроены биологические мембраны, зависит обеспечение функциональности всего организма. Из внутриклеточных органелл, внеклеточного и межклеточных взаимодействий мембран создаются структуры, необходимых для организации и выполнения биологических функций. Многие структурные и функциональные особенности являются общими для бактерий, эукариотических клеток и оболочечных вирусов. Все биологические мембраны построены на липидном би-слое, что обуславливает наличие ряда общих характеристик. Мембранные белки обладают множеством специфических функций.

  • Контролирующая. Плазматические мембраны клеток определяют границы взаимодействия клетки с окружающей средой.
  • Транспортная. Внутриклеточные мембраны клеток разделены на несколько функциональных блоков с различной внутренней композицией, каждая из которых поддерживается необходимой транспортной функцией в сочетании с проницаемостью управления.
  • Сигнальная трансдукция. Слияние мембран обеспечивает механизм внутриклеточного везикулярного оповещения и препятствования разного рода вирусам свободно проникать в клетку.

Значение и выводы

Строение наружной клеточной мембраны оказывает влияние на весь организм. Она играет важную роль в защите целостности, позволяя проникновение только выбранных веществ. Это также хорошая база для крепления цитоскелета и клеточной стенки, что помогает в сохранении формы клетки. Липиды составляют около 50% массы мембраны большинства клеток, хотя этот показатель варьируется в зависимости от типа мембраны. Строение наружной клеточной мембраны млекопитающих являются более сложным, там содержатся четыре основных фосфолипида. Важным свойством липидных би-слоев является то, что они ведут себя как двумерные жидкости, в которой отдельные молекулы могут свободно вращаться и перемещаться в боковых направлениях. Такая текучесть — это важное свойство мембран, которое определяется в зависимости от температуры и липидного состава. Благодаря углеводородной кольцевой структуре холестерин играет определенную роль в определении текучести мембран. Избирательная проницаемость биологических мембран для малых молекул позволяет клетке контролировать и поддерживать ее внутреннюю структуру.

Рассматривая строение клетки (клеточная мембрана, ядро и так далее), можно сделать вывод о том, что организм – это саморегулирующая система, которая без посторонней помощи не сможет себе навредить и всегда будет искать пути для восстановления, защиты и правильного функционирования каждой клеточки.

fb.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *