Фотосинтез | Биология

Фотосинтез — это преобразование энергии света в энергию химических связей органических соединений.

Фотосинтез характерен для растений, в том числе всех водорослей, ряда прокариот, в том числе цианобактерий, некоторых одноклеточных эукариот.

В большинстве случаев при фотосинтезе в качестве побочного продукта образуется кислород (O2). Однако это не всегда так, поскольку существует несколько разных путей фотосинтеза. В случае выделения кислорода его источником является вода, от которой на нужды фотосинтеза отщепляются атомы водорода.

Фотосинтез состоит из множества реакций, в которых участвуют различные пигменты, ферменты, коферменты и др. Основными пигментами являются хлорофиллы, кроме них — каротиноиды и фикобилины.

В природе распространены два пути фотосинтеза растений: C3 и С4. У других организмов есть своя специфика реакций. Все, что объединяет эти разные процессы под термином «фотосинтез», – во всех них в общей сложности происходит преобразование энергии фотонов в химическую связь. Для сравнения: при хемосинтезе происходит преобразование энергии химической связи одних соединений (неорганических) в другие — органические.

Выделяют две фазы фотосинтеза — световую и темновую. Первая зависит от светового излучения (hν), которое необходимо для протекания реакций. Темновая фаза является светонезависимой.

У растений фотосинтез протекает в хлоропластах. В результате всех реакций образуются первичные органические вещества, из которых потом синтезируются углеводы, аминокислоты, жирные кислоты и др. Обычно суммарную реакцию фотосинтеза пишут в отношении глюкозы — наиболее распространенного продукта фотосинтеза:

6CO2 + 6H2O → C6H12O6 + 6O2

Атомы кислорода, входящие в молекулу O2, берутся не из углекислого газа, а из воды. Углекислый газ – источник углерода, что более важно. Благодаря его связыванию у растений появляется возможность синтеза органики.

Представленная выше химическая реакция есть обобщенная и суммарная. Она далека от сути процесса. Так глюкоза не образуется из шести отдельных молекул углекислоты. Связывание CO2 происходит по одной молекуле, которая сначала присоединяется к уже существующему пятиуглеродному сахару.

Для прокариот характерны свои особенности фотосинтеза. Так у бактерий главный пигмент — бактериохлорофилл, и не выделяется кислород, так как водород берется не из воды, а часто из сероводорода или других веществ. У сине-зеленых водорослей основным пигментом является хлорофилл, и при фотосинтезе выделяется кислород.

Световая фаза фотосинтеза

В световой фазе фотосинтеза происходит синтез АТФ и НАДФ·H2 за счет лучистой энергии. Это происходит на тилакоидах хлоропластов, где пигменты и ферменты образуют сложные комплексы для функционирования электрохимических цепей, по которым передаются электроны и отчасти протоны водорода.

Электроны в конечном итоге оказываются у кофермента НАДФ, который, заряжаясь отрицательно, притягивает к себе часть протонов и превращается в НАДФ·H2. Также накопление протонов по одну сторону тилакоидной мембраны и электронов по другую создает электрохимический градиент, потенциал которого используется ферментом АТФ-синтетазой для синтеза АТФ из АДФ и фосфорной кислоты.

Главными пигментами фотосинтеза являются различные хлорофиллы. Их молекулы улавливают излучение определенных, отчасти разных спектров света. При этом некоторые электроны молекул хлорофилла переходят на более высокий энергетический уровень. Это неустойчивое состояние, и по-идее электроны путем того же излучения должны отдать в пространство полученную из вне энергию и вернуться на прежний уровень. Однако в фотосинтезирующих клетках возбужденные электроны захватываются акцепторами и с постепенным уменьшением своей энергии передаются по цепи переносчиков.

На мембранах тилакоидов существуют два типа фотосистем, испускающих электроны при действия света. Фотосистемы представляют собой сложный комплекс большей частью хлорофильных пигментов с реакционным центром, от которого и отрываются электроны. В фотосистеме солнечный свет ловит множество молекул, но вся энергия собирается в реакционном центре.

Электроны фотосистемы I, пройдя по цепи переносчиков, восстанавливают НАДФ.

Энергия электронов, оторвавшихся от фотосистемы II, используется для синтеза АТФ. А сами электроны фотосистемы II заполняют электронные дырки фотосистемы I.

Дырки второй фотосистемы заполняются электронами, образующимися в результате фотолиза воды. Фотолиз также происходит при участии света и заключается в разложении H2O на протоны, электроны и кислород. Именно в результате фотолиза воды образуется свободный кислород. Протоны участвуют в создании электрохимического градиента и восстановлении НАДФ. Электроны получает хлорофилл фотосистемы II.

Примерное суммарное уравнение световой фазы фотосинтеза:

H2O + НАДФ + 2АДФ + 2Ф → ½O2 + НАДФ · H2 + 2АТФ

 

Циклический транспорт электронов

Выше описана так называемый нецикличная световая фаза фотосинтеза. Есть еще циклический транспорт электронов, когда восстановления НАДФ не происходит. При этом электроны от фотосистемы I уходят на цепь переносчиков, где идет синтез АТФ. То есть эта электрон-транспортная цепь получает электроны из фотосистемы I, а не II. Первая фотосистема как бы реализует цикл: в нее возвращаются ей же испускаемые электроны. По дороге они тратят часть своей энергии на синтез АТФ.

Фотофосфорилирование и окислительное фосфорилирование

Световую фазу фотосинтеза можно сравнить с этапом клеточного дыхания — окислительным фосфорилированием, которое протекает на кристах митохондрий. Там тоже происходит синтез АТФ за счет передачи электронов и протонов по цепи переносчиков. Однако в случае фотосинтеза энергия запасается в АТФ не для нужд клетки, а в основном для потребностей темновой фазы фотосинтеза. И если при дыхании первоначальным источником энергии служат органические вещества, то при фотосинтезе – солнечный свет. Синтез АТФ при фотосинтезе называется фотофосфорилированием, а не окислительным фосфорилированием.

Темновая фаза фотосинтеза

Впервые темновую фазу фотосинтеза подробно изучили Кальвин, Бенсон, Бэссем. Открытый ими цикл реакций в последствии был назван циклом Кальвина, или C3-фотосинтезом. У определенных групп растений наблюдается видоизмененный путь фотосинтеза – C

4, также называемый циклом Хэтча-Слэка.

В темновых реакциях фотосинтеза происходит фиксация CO2. Темновая фаза протекает в строме хлоропласта.

Восстановление CO2 происходит за счет энергии АТФ и восстановительной силы НАДФ·H2, образующихся в световых реакциях. Без них фиксации углерода не происходит. Поэтому хотя темновая фаза напрямую не зависит от света, но обычно также протекает на свету.

Цикл Кальвина

Первая реакция темновой фазы – присоединение CO2 (карбоксилирование) к 1,5-рибулезобифосфату (рибулезо-1,5-дифосфат) – РиБФ. Последний представляет собой дважды фосфорилированную рибозу. Данную реакцию катализирует фермент рибулезо-1,5-дифосфаткарбоксилаза, также называемый рубиско.

В результате карбоксилирования образуется неустойчивое шестиуглеродное соединение, которое в результате гидролиза распадается на две трехуглеродные молекулы фосфоглицериновой кислоты (ФГК) – первый продукт фотосинтеза. ФГК также называют фосфоглицератом.

РиБФ + CO2 + H2O → 2ФГК

ФГК содержит три атома углерода, один из которых входит в состав кислотной карбоксильной группы (-COOH):

Из ФГК образуется трехуглеродный сахар (глицеральдегидфосфат) триозофосфат (ТФ), включающий уже альдегидную группу (-CHO):

ФГК (3-кислота) → ТФ (3-сахар)

На данную реакцию затрачивается энергия АТФ и восстановительная сила НАДФ · H2. ТФ — первый углевод фотосинтеза.

После этого большая часть триозофосфата затрачивается на регенерацию рибулозобифосфата (РиБФ), который снова используется для связывания CO2. Регенерация включает в себя ряд идущих с затратой АТФ реакций, в которых участвуют сахарофосфаты с количеством атомов углерода от 3 до 7.

В таком круговороте РиБФ и заключается цикл Кальвина.

Из цикла Кальвина выходит меньшая часть образовавшегося в нем ТФ. В перерасчете на 6 связанных молекул углекислого газа выход составляет 2 молекулы триозофосфата. Суммарная реакция цикла с входными и выходными продуктами:

6CO2 + 6H2O → 2ТФ

При этом в связывании участвую 6 молекул РиБФ и образуется 12 молекул ФГК, которые превращаются в 12 ТФ, из которых 10 молекул остаются в цикле и преобразуются в 6 молекул РиБФ. Поскольку ТФ — это трехуглеродный сахар, а РиБФ — пятиуглеродный, то в отношении атомов углерода имеем: 10 * 3 = 6 * 5. Количество атомов углерода, обеспечивающих цикл не изменяется, весь необходимый РиБФ регенерируется. А шесть вошедших в цикл молекул углекислоты затрачиваются на образование двух выходящих из цикла молекул триозофосфата.

На цикл Кальвина в расчете на 6 связанных молекул CO2 затрачивается 18 молекул АТФ и 12 молекул НАДФ · H2, которые были синтезированы в реакциях световой фазы фотосинтеза.

Расчет ведется на две выходящие из цикла молекулы триозофосфата, так как образующаяся в последствии молекула глюкозы, включает 6 атомов углерода.

Триозофосфат (ТФ) — конечный продукт цикла Кальвина, но его сложно назвать конечным продуктом фотосинтеза, так как он почти не накапливается, а, вступая в реакции с другими веществами, превращается в глюкозу, сахарозу, крахмал, жиры, жирные кислоты, аминокислоты. Кроме ТФ важную роль играет ФГК. Однако подобные реакции происходят не только у фотосинтезирующих организмов. В этом смысле темновая фаза фотосинтеза – это то же самое, что цикл Кальвина.

Из ФГК путем ступенчатого ферментативного катализа образуется шестиуглеродный сахар фруктозо-6-фосфат, который превращается в глюкозу. В растениях глюкоза может полимеризоваться в крахмал и целлюлозу. Синтез углеводов похож на процесс обратный гликолизу.

Фотодыхание

Кислород подавляет фотосинтез. Чем больше O2 в окружающей среде, тем менее эффективен процесс связывания CO2. Дело в том, что фермент рибулозобифосфат-карбоксилаза (рубиско) может реагировать не только с углекислым газом, но и кислородом. В этом случае темновые реакции несколько иные.

Содержащая пять атомов углерода молекула рибулозобифосфата реагирует уже не с CO2, а с O2. В результате чего образуются по одной молекуле фосфогликолата (C2) и фосфоглицериновой кислоты (C3), а не две ФГК как обычно.

Фосфогликолат — это фосфогликолевая кислота. От нее сразу отщепляется фосфатная группа, и она превращается в гликолевую кислоту (гликолат). Для его «утилизации» снова нужен кислород. Поэтому чем больше в атмосфере кислорода, тем больше он будет стимулировать фотодыхание и тем больше растению будет требоваться кислорода, чтобы избавиться от продуктов реакции.

Фотодыхание — это зависимое от света потребление кислорода и выделение углекислого газа. То есть обмен газов происходит как при дыхании, но протекает в хлоропластах и зависит от светового излучения. От света фотодыхание зависит лишь потому, что рибулозобифосфат образуется только при фотосинтезе.

При фотодыхании происходит возврат атомов углерода из гликолата в цикл Кальвина в виде фосфоглицериновой кислоты (фосфоглицерата).

2 Гликолат (С2) → 2 Глиоксилат (С2) →2 Глицин (C2) - CO2 → Серин (C3) →Гидроксипируват (C3) → Глицерат (C3) → ФГК (C3)

Как видно, возврат происходит не полный, так как один атом углерода теряется при превращении двух молекул глицина в одну молекулу аминокислоты серина, при этом выделяется углекислый газ.

Кислород необходим на стадиях превращения гликолата в глиоксилат и глицина в серин.

Превращения гликолата в глиоксилат, а затем в глицин происходят в пероксисомах, синтез серина в митохондриях. Серин снова поступает в пероксисомы, где из него сначала получается гидрооксипируват, а затем глицерат. Глицерат уже поступает в хлоропласты, где из него синтезируется ФГК.

Фотодыхание характерно в основном для растений с C3-типом фотосинтеза. Его можно считать вредным, так как энергия бесполезно тратится на превращения гликолата в ФГК. Видимо фотодыхание возникло из-за того, что древние растения были не готовы к большому количеству кислорода в атмосфере. Изначально их эволюция шла в атмосфере богатой углекислым газом, и именно он в основном захватывал реакционный центр фермента рубиско.

C4-фотосинтез, или цикл Хэтча-Слэка

Если при C3-фотосинтезе первым продуктом темновой фазы является фосфоглицериновая кислота, включающая три атома углерода, то при C4-пути первыми продуктами являются кислоты, содержащие четыре атома углерода: яблочная, щавелевоуксусная, аспарагиновая.

С4-фотосинтез наблюдается у многих тропических растений, например, сахарного тростника, кукурузы.

С4-растения эффективнее поглощают оксид углерода, у них почти не выражено фотодыхание.

Растения, в которых темновая фаза фотосинтеза протекает по C4-пути, имеют особое строение листа. В нем проводящие пучки окружены двойным слоем клеток. Внутренний слой — обкладка проводящего пучка. Наружный слой — клетки мезофилла. Хлоропласты клеток слоев отличаются друг от друга.

Для мезофильных хлоропласт характерны крупные граны, высокая активность фотосистем, отсутствие фермента РиБФ-карбоксилазы (рубиско) и крахмала. То есть хлоропласты этих клеток адаптированы преимущественно для световой фазы фотосинтеза.

В хлоропластах клеток проводящего пучка граны почти не развиты, зато высока концентрация РиБФ-карбоксилазы. Эти хлоропласты адаптированы для темновой фазы фотосинтеза.

Углекислый газ сначала попадает в клетки мезофилла, связывается с органическими кислотами, в таком виде транспортируется в клетки обкладки, освобождается и далее связывается также, как у C3-растений. То есть C4-путь дополняет, а не заменяет C3.

В мезофилле CO2 присоединяется к фосфоенолпирувату (ФЕП) с образованием оксалоацетата (кислота), включающего четыре атома углерода:

Реакция происходит при участии фермента ФЕП-карбоксилазы, обладающего более высоким сродством к CO2, чем рубиско. К тому же ФЕП-карбоксилаза не взаимодействует с кислородом, а значит не затрачивается на фотодыхание. Таким образом, преимущество C4-фотосинтеза заключается в более эффективной фиксации углекислоты, увеличению ее концентрации в клетках обкладки и следовательно более эффективной работе РиБФ-карбоксилазы, которая почти не расходуется на фотодыхание.

Оксалоацетат превращается в 4-х углеродную дикарбоновую кислоту (малат или аспартат), которая транспортируется в хлоропласты клеток обкладки проводящих пучков. Здесь кислота декарбоксилируется (отнятие CO2), окисляется (отнятие водорода) и превращается в пируват. Водород восстанавливает НАДФ. Пируват возвращается в мезофилл, где из него регенерируется ФЕП с затратой АТФ.

Оторванный CO2 в хлоропластах клеток обкладки уходит на обычный C3-путь темновой фазы фотосинтеза, т. е. в цикл Кальвина.

Фотосинтез по пути Хэтча-Слэка требует больше энергозатрат.

Считается, что C4-путь возник в эволюции позже C3 и во многом является приспособлением против фотодыхания.

biology.su

Фазы фотосинтеза – описание и таблица

Как понятно из названия, фотосинтез по своей сути являет собой природный синтез органических веществ, превращая СО2 из атмосферы и воду в глюкозу и свободный кислород.

При этом необходимо наличие энергии солнечного света.

Химическое уравнение процесса фотосинтеза в общем можно представить в следующем виде:

Фотосинтез имеет две фазы: темную и световую. Химические реакции темной фазы фотосинтеза существенно отличаются от реакций световой фазы, однако темная и световая фаза фотосинтеза зависят друг от друга.

Световая фаза может происходить в листьях растений исключительно при солнечном свете. Для темной же необходимо наличие углекислого газа, именно поэтому растение все время должно поглощать его из атмосферы. Все сравнительные характеристики темной и световой фаз фотосинтеза будут предоставлены ниже. Для этого была создана сравнительная таблица «Фазы фотосинтеза».

Световая фаза фотосинтеза

Основные процессы в световой фазе фотосинтеза происходят в мембранах тилакоидов. В ней участвуют хлорофилл, белки-переносчики электронов, АТФ-синтетаза (фермент, ускоряющий реацию) и солнечный свет.

Далее механизм реакции можно описать так: когда солнечный свет попадает на зеленые листья растений, в их структуре возбуждаются электроны хлорофилла (заряд отрицательный), которые перейдя в активное состояние, покидают молекулу пигмента и оказываются на внешней стороне тилакоида, мембрана которого заряжена также отрицательно. В то же время молекулы хлорофилла окисляются и уже окисленные они восстанавливаются, отбирая таким образом электроны у воды, которая находится в структуре листа.

Этот процесс приводит к тому, что молекулы воды распадаются, а созданные в результате фотолиза воды ионы, отдают свои электроны и превращаются в такие радикалы ОН, которые способны проводить дальнейшие реакции. Далее эти реакционноспособные радикалы ОН объединяются, создавая полноценные молекулы воды и кислород. При этом свободный кислород выходит во внешнюю среду.

В результате всех этих реакций и превращений, мембрана тилакоида листа с одной стороны заряжается положительно (за счет иона Н+), а с другой — отрицательно (за счет электронов). Когда разность между этими зарядами в двух сторонах мембраны достигает больше 200 мВ, протоны проходят через специальные каналы фермента АТФ-синтетазы и за счет этого происходит превращение АДФ до АТФ (в результате процесса фосфорилизации). А атомный водород, который освобождается из воды, восстанавливает специфический переносчик НАДФ+ до НАДФ·Н2. Как видим, в результате световой фазы фотосинтеза происходит три основных процесса:

  1. синтез АТФ;
  2. создание НАДФ·Н2;
  3. образование свободного кислорода.

Последний освобождается в атмосферу, а НАДФ·Н2 и АТФ берут участие в темной фазе фотосинтеза.

Темная фаза фотосинтеза

Темная и световая фазы фотосинтеза характеризуются большими затратами энергии со стороны растения, однако темная фаза протекает быстрее и требует меньше энергии. Для реакций темной фазы не нужен солнечный свет, поэтому они могут происходить и днем и ночью.

Все основные процессы этой фазы протекают в строме хлоропласта растения и являют собой своеобразную цепочку последовательных превращений углекислого газа из атмосферы. Первая реакция в такой цепи – фиксация углекислого газа. Чтобы она проходила более плавно и быстрее, природой был предусмотрен фермент РиБФ-карбоксилаза, который катализирует фиксацию СО2.

Далее происходит целый цикл реакций, завершением которого является преобразование фосфоглицериновой кислоты в глюкозу (природный сахар). Все эти реакции используют энергию АТФ и НАДФ•Н2, которые были созданы в световой фазе фотосинтеза. Помимо глюкозы в результате фотосинтеза образуются также и другие вещества. Среди них разные аминокислоты, жирные кислоты, глицерин, а также нуклеотиды.

Фазы фотосинтеза: таблица сравнений

  Критерии сравнения   Световая фаза Темная фаза  
Солнечный свет   Обязателен   Необязателен
Место протекание реакций   Граны хлоропласта   Строма хлоропласта
Зависимость от источника энергии Зависит от солнечного света   Зависит от АТФ и НАДФ•Н2, образованных в световой фазе и от количества СО2 из атмосферы
Исходные вещества Хлорофилл, белки-переносчики электронов, АТФ-синтетаза   Углекислый газ
Суть фазы и что образуется   Выделяется свободный О2, образуется АТФ и НАДФ•Н2   Образование природного сахара (глюкозы) и поглощение СО2 из атмосферы

Фотосинтез — видео

life-students.ru

Темновая фаза фотосинтеза — Науколандия

Темновая фаза фотосинтеза заключается в синтезе органических веществ за счет АТФ и НАДФ·H2, полученных в световую фазу. Более точно: в темновую фазу происходит связывание углекислого газа (CO2).

Процесс этот многоступенчатый, в природе существуют два основных пути: C3-фотосинтез и C4-фотосинтез. Латинская буква C обозначает атом углерода, цифра после нее — количество атомов углерода в первичном органическом продукте темновой фазы фотосинтеза. Так в случае C3-пути первичным продуктом считается трехуглеродная фосфоглицериновая кислота, обозначаемая как ФГК. В случае C4-пути первым органическим веществом при связывание углекислого газа является четырехуглеродная щавелевоуксусная кислота (оксалоацетат).

C3-фотосинтез также называется циклом Кальвина в честь изучившего его ученого. C4-фотосинтез включает в себя цикл Кальвина, однако состоит не только из него и называется циклом Хэтча-Слэка. В умеренных широтах обычны C3-растения, в тропических — C4.

Темновые реакции фотосинтеза протекают в строме хлоропласта.

Цикл Кальвина

Первой реакцией цикла Кальвина является карбоксилирование рибулозо-1,5-бифосфата (РиБФ). Карбоксилирование — это присоединение молекулы CO2, в результате чего образуется карбоксильная группа -COOH. РиБФ — это рибоза (пятиуглеродный сахар), у которой к концевым атомам углерода присоединены фосфатные группы (образуемые фосфорной кислотой):

Химическая формула РиБФ

Реакция катализируется ферментом рибулозо-1,5-бифосфат-карбоксилаза-оксигеназа (РуБисКО). Он может катализировать не только связывание углекислого газа, но и кислорода, о чем говорит слово «оксигеназа» в его названии. Если РуБисКО катализирует реакцию присоединения кислорода к субстрату, то темновая фаза фотосинтеза идет уже не по пути цикла Кальвина, а по пути фотодыхания, что в принципе является вредным для растения.

Катализ реакции присоединения CO2 к РиБФ происходит в несколько шагов. В результате образуется неустойчивое шестиуглеродное органическое соединение, которое тут же распадается на две трехуглеродные молекулы фосфоглицериновой кислоты (ФГК).

Химическая формула фосфоглицериновой кислоты

Далее ФГК за несколько ферментативных реакций, протекающих с затратой энергии АТФ и восстановительной силы НАДФ·H2, превращается в фосфоглицериновый альдегид (ФГА), также называемый триозофосфатом.

Меньшая часть ФГА выходит из цикла Кальвина и используется для синтеза более сложных органических веществ, например глюкозы. Она, в свою очередь, может полимеризоваться до крахмала. Другие вещества (аминокислоты, жирные кислоты) образуются при участии различных исходных веществ. Такие реакции наблюдаются не только в растительных клетках. Поэтому, если рассматривать фотосинтез как уникальное явление содержащих хлорофилл клеток, то он заканчивается синтезом ФГА, а не глюкозы.

Большая часть молекул ФГА остается в цикле Кальвина. С ним происходит ряд превращений, в результате которых ФГА превращается в РиБФ. При этом также используется энергия АТФ. Таким образом, РиБФ регенерируется для связывания новых молекул углекислого газа.

Цикл Хэтча-Слэка

У многих растений жарких мест обитания темновая фаза фотосинтеза несколько сложнее. В процессе эволюции C4-фотосинтез возник как более эффективный способ связывания углекислого газа, когда в атмосфере возросло количество кислорода, и РуБисКО стал тратиться на неэффективное фотодыхание.

У C4-растений существует два типа фотосинтезирующих клеток. В хлоропластах мезофилла листьев происходит световая фаза фотосинтеза и часть темновой, а именно связывание CO2 с фосфоенолпируватом (ФЕП). В результате образуется четырехуглеродная органическая кислота. Далее эта кислота транспортируется в хлоропласты клеток обкладки проводящего пучка. Здесь от нее ферментативно отщепляется молекула CO2, которая далее поступает в цикл Кальвина. Оставшаяся после декарбоксилирования трехуглеродная кислота — пировиноградная — возвращается в клетки мезофилла, где снова превращается в ФЕП.

Хотя цикл Хэтча-Слэка более энергозатратный вариант темновой фазы фотосинтеза, но фермент связывающий CO2 и ФЕП более эффективный катализатор, чем РуБисКО. Кроме того, он не вступает в реакцию с кислородом. Транспорт CO2 с помощью органической кислоты в более глубоколежащие клетки, к которым затруднен приток кислорода, приводит к тому, что концентрация углекислого газа здесь увеличивается, и РуБисКО почти не расходуется на связывание молекулярного кислорода.

scienceland.info

22. Две фазы фотосинтеза. Общая характеристика темновой фазы.

Фотосинтез – синтез органических веществ из углекислого газа и воды с обязательным использованием энергии света: 6СО2+6Н2О + Qсвета→С6Н12О6+6О2. Фотосинтез – сложный многоступенчатый процесс; реакции фотосинтеза подразделяют на две группы: реакции световой фазы и реакции темновой фазы.

Световая фаза. Происходит только в присутствии света в мембранах тилакоидов при участии хлорофилла, белков-переносчиков электронов и фермента – АТФ-синтетазы. Под действием кванта света электроны хлорофилла возбуждаются, покидают молекулу и попадают на внешнюю сторону мембраны тилакоида, которая в итоге заряжается отрицательно. Окисленные молекулы хлорофилла восстанавливаются, отбирая электроны у воды, находящеёся во внутритилакоидном пространстве. Это приводит к распаду и фотолизу воды: Н2О+ Qсвета→Н++ОН-. Ионы гидроксида отдают свои электроны, превращаясь в реакционноспособные радикалы ∙ОН: ОН-→∙ОН+е-. Радикалы ∙ОН объединяются, образуя воду и свободный кислород: 4НО∙→ 2Н2О+О2. Кислород при этом удаляется во внешнюю среду, а протоны накапливаются внутри тилакоида в «протонном резервуаре». В результате мембрана тилакоида с одной стороны за счет Н+ заряжается положительно, с другой за счет электронов – отрицательно. Когда разность потенциалов между наружной и внутренней сторонами мембраны тилакоида достигает 200мВ, протоны проталкиваются через каналы АТФ-синтетазы и происходит фосфорилирование АДФ до АТФ; атомарный водород идёт на восстановление специфицеского переносчика НАДФ + до НАДФ∙Н2 : 2Н++2 е-+ НАДФ→ НАДФ∙Н2 . Таким образом , в световую фазу происходит фотолиз воды, который сопровождается тремя важнейшими процессами: 1)синтез АТФ; 2) образование НАДФ∙Н2; 3) образование кислорода. Кислород диффундирует в атмосферу, АТФ и НАДФ∙Н2 транспортируются в строму хлоропласта и участвуют в процессах темновой фазы.

Темновая фаза. Происходит в строме хлоропласта. Для её реакций нужна энергия света, поэтому они происходят не только на свету, но и в темноте. Реакции темновой фазы представляют цепочку последовательных преобразований углекислого газа (из воздуха), приводящую к образованию глюкозы и других органических веществ. Сначала происходит фиксация СО2 , акцептором является сахар рибулозобифосфат, катализируется рибулозобифосфаткарбоксилазой. В результате карбоксилирования рибулозобифосфата образуется неустойчивое шестиуглеродное соединение, которое сразу же распадается на две молекулы фосфоглицериновой кислоты. Затем происходит цикл реакций, в которых через ряд промежуточных продуктов ФГК преобразуется в глюкозу. Используется энергия АТФ и и НАДФ·Н2 образованых в световую фазу. (Цикл Кальвина).

23. Реакции ассимиляции со2 в темновой фазе фотосинтеза.

Цикл Кальвина – главный путь ассимиляции СО2. Фаза декарбоксилирования - углекислый газ, связываясь с рибулозобифосфатом, образует две молекулы фосфоглицерата. Эту реакцию катализирует рибулозобифосфат карбосилаза.

studfiles.net

Биология для студентов - 14. Темновая фаза фотосинтеза. Исследования Кальвина

Темновая фаза фотосинтеза связана с реакциями фиксации углерода, которые проходят в строме хлоропласта и продолжаются в цитоплазме без непосредственного поглощения света. В процессе световой фазы фотосинтеза накапливается достаточно высокий уровень АТФ и НАДФ·Н. Однако сами по себе эти макроэргические соединения не способны синтезировать углеводы из CO2. Становится очевидным, что и темновая фаза фотосинтеза – сложный процесс, включающий большое количество последовательно идущих реакций, возможных только после осуществления световой фазы.

Существует несколько разных путей связывания CO2 в углеводы, встречающихся у растений разных экологических и систематических групп, но основным, характерным для всех растений, является так называемый C3-путь фотосинтеза, или цикл Кальвина.

Способ ассимиляции СО2 в углеводы, присущий всем растениям, был расшифрован только в середине XX века американским биохимиком Мэлвином Кальвином и его коллегами на примере одноклеточных зеленых водорослей (хлореллы и др.) и зеленых листьев шпината. Исследование этой проблемы продолжалось 10 лет – с 1946 по 1966 год. Вначале ученые вели поиск первичного акцептора CO2. После ряда экспериментов они установили, что первичную фиксацию CO2 осуществляет пятиуглеродный сахар – рибулозо-1,5-дифосфат РуДФ). Фиксация осуществляется следующим образом: сначала происходит присоединение CO2 к молекуле РуДФ. При этом образуется промежуточный продукт – очень неустойчивое шестиуглеродное соединение, из которого в присутствии воды образуются две молекулы трехуглеродного соединения – 3-фосфоглицериновой кислоты (3-ФГК). В этой реакции для связывания одной молекулы CO2 затрачивается три молекулы АТФ и две молекулы НАДФ·Н.

Схема первичной фиксации CO2

Реакцию фиксации углерода, открытую в 1948 году, катализирует очень крупный фермент из стромы хлоропласта – рибулозобисфосфаткарбоксилазаоксигеназа (сокращенно – РУБИСКО). Так как фермент РУБИСКО работает весьма медленно, необходимо, чтобы его молекул в хлоропластах было много. Действительно, этот фермент обычно составляет более 50 % общего количества белков хлоропластов. Многие исследователи утверждают, что это самый распространенный белок в живой природе.

Дальнейшие исследования лаборатории Кальвина способствовали установлению всех последующих реакций C3-пути фотосинтеза, обеспечивающих синтез углеводов. За расшифровку механизма фиксации CO2 в процессе фотосинтеза М. Кальвин в 1961 году стал лауреатом Нобелевской премии по химии.

Цикл Кальвина состоит из трех стадий:

  • карбоксилирования,
  • восстановления,
  • превращения.

Упрощенная схема цикла Кальвина – пути фиксации углерода при фотосинтезе

На первой стадии (карбоксилирование) фиксация углерода идет с участием ферментов и АТФ, полученной на световой фазе фотосинтеза; при этом образуются молекулы 3-фосфоглицериновой кислоты (3-ФГК). На второй стадии (восстановление) помимо АТФ используется НАДФ·Н. Здесь 3-ФГК восстанавливается до 3-фосфоглицеринового альдегида (З-ФГА), часть молекул которого идет на синтез 6-углеродного моносахарида (глюкозы или фруктозы). На третьей стадии (превращение) при повторении цикла другая часть молекул 3-ФГА используется для синтеза шестиатомного фосфорилированного моносахарида – фруктозо-1,5-дифосфата. Трехуглеродные фосфосахара вместе с множеством других продуктов метаболизма хлоропластов транспортируются в цитоплазму клетки, где образуют ди- и полисахариды (сахара, крахмал, целлюлозу или другие соединения).

В процессах темновой фазы фотосинтеза образуются углеводы – первичные органические вещества. На определенном этапе темновой фазы фотосинтеза судьба трехуглеродных молекул 3-фосфоглицериновой кислоты может оказаться различной. Одни из них соединяются друг с другом и образуют шестиуглеродные сахара, которые, в свою очередь, могут полимеризоваться в крахмал, целлюлозу и др. Некоторые могут использоваться для синтеза аминокислот, карбоновых кислот, спиртов и пр. Но целый ряд молекул ФГК вовлекается в длинный ряд реакций, приводящих к превращению трехуглеродных молекул в молекулы пятиуглеродного сахара (РуДФ), которые могут снова ассимилировать углекислый газ и многократно повторять этот цикл до тех пор, пока растение живет и получает световую энергию. Все процессы темновой фазы фотосинтеза идут без непосредственного потребления света, но в них большую роль играют макроэргические соединения (АТФ и НАДФ·Н), образующиеся во время световой фазы фотосинтеза. Доказано, что для синтеза одной молекулы глюкозы в цикле Кальвина необходимы 12 молекул НАДФ·Н и 18 молекул АТФ, которые поставляются с тилакоидных мембран в результате фотохимических реакций световой фазы фотосинтеза.

Схема синтеза 3-фосфоглицеринового альдегида (ФГА) в хлоропласте

В процессе темновой фазы энергия макроэргических связей АТФ преобразуется в химическую энергию органических соединений – молекул углеводов. Это означает, что энергия солнечного света как бы консервируется в химических связях между атомами органических веществ, что имеет огромное значение для энергетики биосферы и жизнедеятельности всего населения нашей планеты.

В настоящее время известны и другие пути ассимиляции углекислого газа наряду с системой его фиксации в цикле Кальвина (C3-пути фотосинтеза). Существует так называемый C4-путь ассимиляции углерода в фотосинтезе. Он может протекать при низких концентрациях CO2. Этот тип фиксации углекислого газа в фотосинтезе выработался в процессе эволюции у растений жарких, засушливых мест и наблюдается у кукурузы, сахарного тростника, проса, сорго, амаранта, лебеды, баклажанов и др., а также у растений, устойчивых к засолению почвы.

Существует и особый тип фотосинтеза у таких растений, как кактусы, молочаи, крассулы, каланхое, седумы и другие суккуленты, произрастающие в засушливых, безводных условиях. Эти растения запасают CO2 в виде органических кислот ночью, так как он поступает в клетки только тогда, когда открыты их устьица (днем они закрыты для предотвращения потери воды).

vseobiology.ru

определение, фазы, условия и значение

Каждое живое существо на планете нуждается в пище или энергии, чтобы выжить. Некоторые организмы питаются другими существами, тогда как другие могут производить свои собственные питательные элементы. Растения сами производят продукты питания, глюкозу, в процессе, который называется фотосинтезом.

Фотосинтез и дыхание взаимосвязаны. Результатом фотосинтеза является глюкоза, которая хранится как химическая энергия в растительных клетках. Эта накопленная химическая энергия получается в результате превращения неорганического углерода (углекислого газа) в органический углерод. Процесс дыхания высвобождает накопленную химическую энергию.

Помимо продуктов, которые они производят, растениям также необходим углерод, водород и кислород, чтобы выжить. Вода, поглощенная из почвы, обеспечивает водород и кислород. Во время фотосинтеза, углерод и вода используются для синтеза пищи. Растения также нуждаются в нитратах, чтобы производить аминокислоты (аминокислота - ингредиент для выработки белка). В дополнение к этому, они нуждаются в магнии для производства хлорофилла.

Заметка: Живые существа, которые зависят от других продуктов питания называются гетеротрофами. Травоядные, такие как коровы, а также растения, питающиеся насекомыми, являются примерами гетеротрофов. Живые существа, производящие собственную пищу, называются автотрофами. Зеленые растения и водоросли - примеры автотрофов.

В этой статье вы узнаете больше о том, как происходит фотосинтез у растений и об необходимы для этого процесса условиях.

Определение фотосинтеза

Фотосинтез - это химический процесс, посредством которого растения, некоторые бактерии и водоросли производят глюкозу и кислород из углекислого газа и воды, используя только свет в качестве источника энергии.

Этот процесс чрезвычайно важен для жизни на Земле, поскольку благодаря ему выделяется кислород, от которого зависит вся жизнь.

Зачем растениям нужна глюкоза (пища)?

Подобно людям и другим живым существам, растения также нуждаются в питании для поддержания жизнедеятельности. Значение глюкозы для растений заключается в следующем:

  • Глюкоза, полученная в результате фотосинтеза, используется во время дыхания для высвобождения энергии, необходимой растению для других жизненно важных процессов.
  • Растительные клетки также превращают часть глюкозы в крахмал, который используют по мере необходимости. По этой причине мертвые растения используются в качестве биомассы, ведь в них хранится химическая энергия.
  • Глюкоза также необходима, чтобы производить другие химические вещества, такие как белки, жиры и растительные сахара, необходимые для обеспечения роста и других важных процессов.

Фазы фотосинтеза

Процесс фотосинтеза разделен на две фазы: световую и темновую.

Световая фаза фотосинтеза

Как следует из названия, световые фазы нуждаются в солнечном свете. В светозависимых реакциях энергия солнечного света поглощается хлорофиллом и преобразуется в запасенную химическую энергию в виде молекулы электронного носителя НАДФН (никотинамидадениндинуклеотидфосфат) и молекулы энергии АТФ (аденозинтрифосфат). Световые фазы протекают в тилакоидных мембранах в пределах хлоропласта.

Темновая фаза фотосинтеза или цикл Кальвина

В темновой фазе или цикле Кальвина возбужденные электроны из световой фазы обеспечивают энергию для образования углеводов из молекул углекислого газа. Не зависящие от света фазы иногда называют циклом Кальвина из-за цикличности процесса.

Хотя темновые фазы не используют свет в качестве реагента (и, как результат, могут происходить днем или ночью), им необходимо, чтобы продукты светозависимых реакций функционировали. Независимые от света молекулы зависят от молекул энергоносителей - АТФ и НАДФН - для создания новых молекул углеводов. После передачи энергии молекулы энергоносители возвращаются к световым фазам для получения более энергичных электронов. Кроме того, несколько ферментов темновой фазы активируются с помощью света.

Схема фаз фотосинтеза

Заметка: Это означает, что темновые фазы не будут продолжаться, если растения будут лишены света слишком долго, так как они используют продукты световых фаз.

Строение листьев растений

Мы не можем полностью изучить фотосинтез, не зная больше о строении листа. Лист адаптирован для того, чтобы играть жизненно важную роль в процессе фотосинтеза.

Внешнее строение листьев

Одной из самых главных особенностей растений является большая площадь поверхности листьев. Большинство зеленых растений имеют широкие, плоские и открытые листья, которые способны захватывать столько солнечной энергии (солнечного света), сколько необходимо для фотосинтеза.

  • Центральная жилка и черешок

Центральная жилка и черешок соединяются вместе и являются основанием листа. Черешок располагает лист таким образом, чтобы он получал как можно больше света.

  • Листовая пластинка

Простые листья имеют одну листовую пластину, а сложные - несколько. Листовая пластинка - одна из самых главных составляющих листа, которая непосредственно участвует в процессе фотосинтеза.

Сеть жилок в листьях переносит воду от стеблей к листьям. Выделяемая глюкоза также направляется в другие части растения из листьев через жилки. Кроме того, эти части листа поддерживают и удерживают листовую пластину плоской для большего захвата солнечного света. Расположение жилок (жилкование) зависит от вида растения.

  • Основание листа

Основанием листа выступает самая нижняя его часть, которая сочленена со стеблем. Зачастую, у основания листа располагается парное количество прилистников.

В зависимости от вида растения, край листа может иметь различную форму, включая: цельнокрайнюю, зубчатую, пильчатую, выемчатую, городчатую и т.п.

  • Верхушка листа

Как и край листа, верхушка бывает различной формы, включая: острую, округлую, туповатую, вытянутую, оттянутою и т.д.

Внутреннее строение листьев

Ниже представлена ​​близкая схема внутреннего строения тканей листьев:

Кутикула выступает главным, защитным слоем на поверхности растения. Как правило, она толще на верхней части листа. Кутикула покрыта веществом, похожим на воск, благодаря которому защищает растение от воды.

Эпидермис - слой клеток, который является покровной тканью листа. Его главная функция - защита внутренних тканей листа от обезвоживания, механических повреждений и инфекций. Он также регулирует процесс газообмена и транспирации.

Мезофилл - это основная ткань растения. Здесь происходит процесс фотосинтеза. У большинства растений мезофилл разделен на два слоя: верхний - палисадный и нижний - губчатый.

  • Защитные клетки

Защитные клетки - специализированные клетки в эпидермисе листьев, которые используются для контроля газообмена. Они выполняют защитную функцию для устьица. Устьичные поры становятся большими, когда вода есть в свободном доступе, в противном случае, защитные клетки становятся вялыми.

Фотосинтез зависит от проникновения углекислого газа (CO2) из воздуха через устьица в ткани мезофилла. Кислород (O2), полученный как побочный продукт фотосинтеза, выходит из растения через устьица. Когда устьица открытые, вода теряется в результате испарения и должна быть восполнена через поток транспирации, водой, поглощенной корнями. Растения вынуждены уравновешивать количество поглощенного СО2 из воздуха и потерю воды через устьичные поры.

Условия, необходимые для фотосинтеза

Ниже приведены условия, которые необходимы растениям для осуществления процесса фотосинтеза:

  • Углекислый газ. Бесцветный природный газ без запаха, обнаруженный в воздухе и имеет научное обозначение CO2. Он образуется при горении углерода и органических соединений, а также возникает в процессе дыхания.
  • Вода. Прозрачное жидкое химическое вещество без запаха и вкуса (в нормальных условиях).
  • Свет. Хотя искусственный свет также подходит для растений, естественный солнечный свет, как правило, создает лучшие условия для фотосинтеза, потому что в нем присутствует природное ультрафиолетовое излучение, которое оказывает положительное влияние на растения.
  • Хлорофилл. Это зеленый пигмент, найденный в листьях растений.
  • Питательные вещества и минералы. Химические вещества и органические соединения, которые корни растений поглощают из почвы.

Что образуется в результате фотосинтеза?

  • Глюкоза;
  • Кислород.

(Световая энергия показана в скобках, поскольку она не является веществом)

Заметка: Растения получают CO2 из воздуха через их листья, и воду из почвы через корни. Световая энергия исходит от Солнца. Полученный кислород выделяется в воздух из листьев. Получаемую глюкозу можно превратить в другие вещества, такие как крахмал, который используется как запас энергии.

Если факторы, способствующие фотосинтезу, отсутствуют или присутствуют в недостаточном количестве, это может негативно повлиять на растение. Например, меньшее количество света создает благоприятные условия для насекомых, которые едят листья растения, а недостаток воды замедляет.

Где происходит фотосинтез?

Фотосинтез происходит внутри растительных клеток, в мелких пластидах, называемых хлоропластами. Хлоропласты (в основном встречающиеся в слое мезофилла) содержат зеленое вещество, называемое хлорофиллом. Ниже приведены другие части клетки, которые работают с хлоропластом, чтобы осуществить фотосинтез.

Строение растительной клетки

Функции частей растительной клетки

  • Клеточная стенка: обеспечивает структурную и механическую поддержку, защищает клетки от патогенов, фиксирует и определяет форму клетки, контролирует скорость и направление роста, а также придает форму растениям.
  • Цитоплазма: обеспечивает платформу для большинства химических процессов, контролируемых ферментами.
  • Мембрана: действует как барьер, контролируя движение веществ в клетку и из нее.
  • Хлоропласты: как было описано выше, они содержат хлорофилл, зеленое вещество, которое поглощает световую энергию в процессе фотосинтеза.
  • Вакуоль: полость внутри клеточной цитоплазмы, которая накапливает воду.
  • Клеточное ядро: содержит генетическую марку (ДНК), которая контролирует деятельность клетки.

Хлорофилл поглощает световую энергию, необходимую для фотосинтеза. Важно отметить, что поглощаются не все цветовые длины волны света. Растения в основном поглощают красную и синюю волны - они не поглощают свет в зеленом диапазоне.

Углекислый газ в процессе фотосинтеза

Растения получают углекислый газ из воздуха через их листья. Углекислый газ просачивается через маленькое отверстие в нижней части листа - устьицу.

Нижняя часть листа имеет свободно расположенные клетки, чтобы углекислый газ достиг других клеток в листьях. Это также позволяет кислороду, образующемуся при фотосинтезе, легко покидать лист.

Углекислый газ присутствует в воздухе, которым мы дышим, в очень низких концентрациях и служит необходимым фактором темновой фазы фотосинтеза.

Свет в процессе фотосинтеза

Лист обычно имеет большую площадь поверхности, поэтому он может поглощать много света. Его верхняя поверхность защищена от потери воды, болезней и воздействия погоды восковым слоем (кутикулой). Верх листа находится там, где падает свет. Этот слой мезофилла называется палисадным. Он приспособлен для поглощения большого количества света, ведь в нем находится много хлоропластов.

В световых фазах, процесс фотосинтеза увеличивается с большим количеством света. Больше молекул хлорофилла ионизируется, и больше генерируется АТФ и НАДФН, если световые фотоны сосредоточены на зеленом листе. Хотя свет чрезвычайно важен в световых фазах, необходимо отметить, что чрезмерное его количество может повредить хлорофилл, и уменьшить процесс фотосинтеза.

Световые фазы не слишком сильно зависят от температуры, воды или углекислого газа, хотя все они нужны для завершения процесса фотосинтеза.

Вода в процессе фотосинтеза

Растения получают воду, необходимую для фотосинтеза через свои корни. Они имеют корневые волоски, которые разрастаются в почве. Корни характеризуются большой площадью поверхности и тонкими стенками, что позволяет воде легко проходить сквозь них.

На изображении представлены растения и их клетки с достаточным количеством воды (слева) и ее нехваткой (справа).

Заметка: Корневые клетки не содержат хлоропластов, поскольку они, как правило, находятся в темноте и не могут фотосинтезировать.

Если растение не впитывает достаточное количество воды, оно увядает. Без воды, растение будет не способно фотосинтезировать достаточно быстро, и может даже погибнуть.

Какое значение имеет вода для растений?

  • Обеспечивает растворенными минералами, которые поддерживают здоровье растений;
  • Является средой для транспортировки минеральных ресурсов;
  • Поддерживает устойчивость и прямостояние;
  • Охлаждает и насыщает влагой;
  • Дает возможность проводить различные химические реакции в растительных клетках.

Значение фотосинтеза в природе

Биохимический процесс фотосинтеза использует энергию солнечного света для преобразования воды и углекислого газа в кислород и глюкозу. Глюкоза используется в качестве строительных блоков в растениях для роста тканей. Таким образом, фотосинтез - это способ, благодаря которому формируются корни, стебли, листья, цветы и плоды. Без процесса фотосинтеза растения не смогут расти или размножаться.

Из-за фотосинтетической способности, растения известны как продуценты и служат основой почти каждой пищевой цепи на Земле. (Водоросли являются эквивалентом растений в водных экосистемах). Вся пища, которую мы едим, происходит от организмов, являющихся  фотосинтетиками. Мы питаемся этими растениями напрямую или едим животных, таких как коровы или свиньи, которые потребляют растительную пищу.

  • Основа пищевой цепи

Внутри водных систем, растения и водоросли также составляют основу пищевой цепи. Водоросли служат пищей для беспозвоночных, которые, в свою очередь, выступают источником питания для более крупных организмов. Без фотосинтеза в водной среде жизнь была бы невозможна.

  • Удаление углекислого газа

Фотосинтез превращает углекислый газ в кислород. Во время фотосинтеза углекислый газ из атмосферы поступает в растение, а затем выделяется в виде кислорода. В сегодняшнем мире, где уровни двуокиси углерода растут ужасающими темпами, любой процесс, который устраняет углекислый газ из атмосферы, является экологически важным.

  • Круговорот питательных веществ

Растения и другие фотосинтезирующие организмы играют жизненно важную роль в круговороте питательных веществ. Азот в воздухе фиксируется в растительных тканях и становится доступным для создания белков. Микроэлементы, находящиеся в почве, также могут быть включены в растительную ткань и стать доступными для травоядных животных, дальше по пищевой цепи.

  • Фотосинтетическая зависимость

Фотосинтез зависит от интенсивности и качества света. На экваторе, где солнечный свет обилен весь год и вода не является ограничивающим фактором, растения имеют высокие темпы роста, и могут стать довольно большими. И наоборот, фотосинтез в более глубоких частях океана встречается реже, поскольку свет не проникает в эти слои, и в результате эта экосистема оказывается более бесплодной.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

natworld.info

Фазы фотосинтеза. Механизмы и связь между световой и темновой фазами фотосинтеза

Фотосинтез у зеленых растений - это процесс преобразования света в химическую энергию органических соединений, синтезируемых из диоксида углерода и воды. Процесс фотосинтеза представляет собой цепь окислительно-восстановительных реакций, совокупность которых принято подразделять на две фазы - световую и темновую.

Во время световой фазы фотосинтеза энергия солнечной радиации, поглощенная пигментными системами хлоропластов, преобразуется в электрохимическую. Преобразование осуществляется путем переноса электронов и ионов водорода с помощью специальных переносчиков через мембрану тилакоидов. Такой перенос ионов Н+ и электронов выяснен еще не до конца. С позиции хемиосмотической теории П. Митчелла в общих чертах его можно представить следующим образом.

При попадании кванта света на молекулу хлорофилла один из его электронов переходит на более высокий энергетический уровень, т. е. оказывается в возбужденном состоянии. Возбужденный электрон может вернуться в основное состояние, и в этом случае его избыточная энергия выделяется в виде флуоресценции (красное свечение) или тепла, или же он передается в качестве энергии возбуждения другим молекулам. Кроме того, электрон может отрываться от молекулы хлорофилла. В последнем случае электроны, обладающие запасом энергии, захватываются переносчиками, встроенными в мембрану, и парами переносятся на внешнюю сторону мембраны тилакоида.

Здесь электроны акцептируются коферментом НАДФ (никотинамидадениндинуклеотидфосфат), к которому присоединяется два протона из стромы и образуется НАДФ-восстановленный НАДФ ∙ H + H+:

НАДФ+ + 2e- + 2H+ → НАДФ ∙ H + H-.

Связывание протонов приводит к формированию отрицательного поля вокруг тилакоида.

Молекулы хлорофилла, утратившие электроны, являются сильными окислителями и заполняют «электронные дырки» электронами из молекул воды, находящихся внутри тилакоидов. Молекулы воды при этом разрушаются:

2H2O - 4e- → 4H+ + O2.

Этот процесс называется фотолизом, или фотоокислением воды. Благодаря фотолизу внутри тилакоида накапливаются положительно заряженные протоны H+ и образуется молекулярный кислород, который диффундирует в атмосферу.

Увеличение концентрации протонов внутри тилакоида осуществляется также благодаря активному закачиванию их из стромы, что сопряжено с транспортом электронов.

Таким образом, в результате поглощения хлорофиллом световой энергии и вызванного ею транспорта электронов на внутренней стороне мембраны тилакоидов создается электрохимический потенциал водорода (ΔμH+), имеющий две составляющие: концентрационную (ΔpH+), возникающую в результате неравномерного распределения H+ по разные стороны мембраны, и электрохимическую, обусловленную противоположными зарядами разных сторон мембраны тилакоида.

По мере накопления протонов на внутренней стороне тилакоида нарастает разность потенциалов и при достижении критической величины (150 мв) протоны начинают двигаться в строму через каналы фермента АТФ-синтетазы, встроенного в мембрану тилакоида. Энергия перехода H+ по протонному каналу используется для фосфорилирования имеющихся в матриксе молекул АДФ:

АДФ + Фн → АТФ.

Образовавшиеся молекулы АТФ переходят в строму, где участвуют в реакциях фиксации CO2.

Таким образом, в результате переноса электронов и протонов через мембрану тилакоида происходит превращение световой энергии в химическую энергию макроэргических связей молекулы АТФ, а также образование сильного восстановителя НАДФ ∙ H + H+ и выделение свободного кислорода. Кислород, образующийся при фотолизе воды, является побочным продуктом фотосинтеза. Он может использоваться дальше растительными клетками для дыхания или выделяться в атмосферу.

Темновая фаза осуществляется в строме хлоропластов без непосредственного участия света. Это восстановление CO2 до уровня органических веществ за счет использования энергии АТФ и НАДФ ∙ H + H+, синтезированных во время световой фазы. Восстановление молекул CO2 начинается с их фиксации молекулами пятиуглеродного сахара рибулозодифосфата. При взаимодействии рибулозодифосфата и CO2 образуется сначала нестойкое шестиуглеродное соединение, которое затем ферментативным путем распадается на две трехуглеродные молекулы фосфоглицериновой кислоты (ФГК). Дальнейшее превращение ФГК требует участия продуктов световой фазы фотосинтеза - АТФ и НАДФ ∙ H + H+. При восстановлении фосфоглицериновой кислоты образуется фосфоглицериновый альдегид (триозофосфат) - первый сахар. В конечном итоге через ряд промежуточных соединений образуются шестиуглеродные сахара, а затем другие органические вещества (амино- и органические кислоты, нуклеотиды, спирты, в том числе глицерол и др.):

CO2 + C5 → C6 → 2C3

2C3 + АТФ + НАДФ ∙ H + H+ → 2C3 + АДФ + НАДФ + H3PO4.

Следует учесть, что в этих реакциях одновременно участвуют многие однотипные молекулы. На определенном этапе судьба трехуглеродных молекул ФГА может оказаться различной. Одни из них соединяются друг с другом и образуют шестиуглеродные сахара (C6H12O6), которые, в свою очередь, могут полимеризоваться в крахмал, целлюлозу и другие макромолекулы или использоваться на энергетические нужды клетки. Другие молекулы ФГА идут на синтез аминокислот путем присоединения аминогрупп или на синтез карбоновых кислот, спиртов и т. д. Наконец, третьи вовлекаются в длинный ряд реакций, которые приводят к превращению трехуглеродных молекул в молекулы исходного пятиуглеродного сахара - рибулозодифосфата, которые снова могут акцептировать диоксид углерода. Поскольку часть трехуглеродных конечных продуктов превращается в новые молекулы рибулозодифосфата, процесс фиксации углерода, по существу представляет собой цикл. Его называют C3-циклом (по C3-продуктам) или циклом Кальвина - в честь ученого, открывшего этот процесс. Следует также отметить, что неорганические соединения, используемые в цикле Кальвина, поглощаются корнями растений в виде нитратов, фосфатов и сульфатов из почвы.

В темновой фазе фотосинтеза энергия макроэргических связей АТФ преобразуется в химическую энергию органических веществ, т. е. энергия как бы консервируется в химических связях между атомами органических соединений.

Если объединить реакции световой и темновой фазы, исключив все промежуточные этапы, то получается суммарное уравнение процесса фотосинтеза:

6CO2 + 6H2O → C6H12O6 + 6O2.

В изучение процесса фотосинтеза, раскрытие его механизма большой вклад внесли русский ученый К. А. Тимирязев, американцы М. Кальвин и Д. Арнон, австралийцы М. Д. Хетч и К. Р. Слэйк, белорусские ученые Т. Н. Годнев, А. А. Шлык.

Читать далее

ed-lib.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *