Уровни организации жизни — Электронный учебник по биологии

Все живые организмы в природе состоят из одинаковых уровней организации, это общая для всех живых организмов характерная биологическая закономерность.
Выделяют следующие уровни организации живых организмов — молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой, биогеоценотический, биосферный.

 

 

Рис. 1. Молекулярно-генетический уровень

 

1. Молекулярно-генетический уровень. Это наиболее элементарный характерный для жизни уровень (рис. 1). Как бы сложно или просто ни было строение любого живого организма, они все состоят из одинаковых молекулярных соединений. Примером этого являются нуклеиновые кислоты, белки, углеводы и другие сложные молекулярные комплексы органических и неорганических веществ. Их называют иногда биологическими макро- молекулярными веществами. На молекулярном уровне происходят различные процессы жизнедеятельности живых организмов: обмен веществ, превращение энергии. С помощью молекулярного уровня осуществляется передача наследственной информации, образуются отдельные органоиды и происходят другие процессы.

 


Рис. 2. Клеточный уровень

 

2. Клеточныйуровенъ. Клетка является структурной и функциональной единицей всех живых организмов на Земле (рис. 2). Отдельные органоиды в составе клетки имеют характерное строение и выполняют определенную функцию. Функции отдельных органоидов в клетке взаимосвязаны и выполняют единые процессы жизнедеятельности. У одноклеточных организмов (одноклеточные водоросли и простейшие) все жизненные процессы проходят в одной клетке, и одна клетка существует как отдельный организм. Вспомните одноклеточные водоросли, хламидомонады, хлореллу и простейших животных — амебу, инфузорию и др. У многоклеточных организмов одна клетка не может существовать как отдельный организм, но она является элементарной структурной единицей организма.

 


Рис. 3. Тканевый уровень

 

3. Тканевый уровень. Совокупность сходных по происхождению, строению и функциям клеток и межклеточных веществ образует ткань. Тканевый уровень характерен только для многоклеточных организмов. Также отдельные ткани не являются самостоятельным целостным организмом (рис. 3). Например, тела животных и человека состоят из четырех различных тканей (эпителиальная, соединительная, мышечная, нервная). Растительные ткани называются: образовательная, покровная, опорная, проводящая и выделительная. Вспомните строение и функции отдельных тканей.

 


Рис. 4. Органный уровень


4. Органный уровень. У многоклеточных организмов объединение нескольких одинаковых тканей, сходных по строению, происхождению и функциям, образует органный уровень (рис. 4). В составе каждого органа встречается несколько тканей, но среди них одна наиболее значительная. Отдельный орган не может существовать как целостный организм. Несколько органов, сходных по строению и функциям, объединяясь, составляют систему органов, например пищеварения, дыхания, кровообращения и т. д.

 


Рис. 5. Организменный уровень


5. Организменный уровень. Растения (хламидомонада, хлорелла) и животные (амеба, инфузория и т. д.), тела которых состоят из одной клетки, представляют собой самостоятельный организм (рис. 5). А отдельная особь многоклеточных организмов считается как отдельный организм. В каждом отдельном организме происходят все жизненные процессы, характерные для всех живых организмов, — питание, дыхание, обмен веществ, раздражимость, размножение и т. д. Каждый самостоятельный организм оставляет после себя потомство. У многоклеточных организмов клетки, ткани, органы и системы органов не являются отдельным организмом. Только целостная система органов, специализированно выполняющих различные функции, образует отдельный самостоятельный организм. Развитие организма, начиная с оплодотворения и до конца жизни, занимает определенный промежуток времени. Такое индивидуальное развитие каждого организма называется онтогенезом. Организм может существовать в тесной взаимосвязи с окружающей средой.

 


Рис. 6. Популяционно-видовой уровень


6. Популяционно-видовой уровень. Совокупность особей одного вида или группы, которая длительно существует в определенной части ареала относительно обособленно от других совокупностей того же вида, составляет популяцию. На популяционном уровне осуществляются простейшие эволюционные преобразования, что способствует постепенному появлению нового вида (рис. 6).

 


Рис. 7 Биогеоценотический уровень


7. Биогеоценотический уровень. Совокупность организмов разных видов и различной сложности организации, приспособленных к одинаковым условиям природной среды, называется биогеоценозом, или природным сообществом. В состав биогеоценоза входят многочисленные виды живых организмов и условия природной среды. В природных биогеоценозах накапливается энергия и передается от одного организма к другому. Биогеоценоз включает неорганические, органические соединения и живые организмы (рис. 7).

 


Рис. 8. Биосферный уровень


8. Биосферный уровень. Совокупность всех живых организмов на нашей планете и общей природной среды их обитания составляет биосферный уровень (рис. 8). На биосферном уровне современная биология решает глобальные проблемы, например определение интенсивности образования свободного кислорода растительным покровом Земли или изменения концентрации углекислого газа в атмосфере, связанные с деятельностью человека. Главную роль в биосферном уровне выполняют «живые вещества», т. е. совокупность живых организмов, населяющих Землю. Также в биосферном уровне имеют значение «биокосные вещества», образовавшиеся в результате жизнедеятельности живых организмов и «косных» веществ (т. е. условий окружающей среды). На биосферном уровне происходит круговорот веществ и энергии на Земле с участием всех живых организмов биосферы.

Уровни организации жизни. Популяция. Биогеоценоз. Биосфера.

  1. В настоящее время выделяют несколько уровней организации живых организмов: молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой, биогеоценотический и биосферный.
  2. На популяционно-видовом уровне осуществляются элементарные эволюционные преобразования.
  3. Клетка — самая элементарная структурная и функциональная единица всех живых организмов.
  4. Совокупность сходных по происхождению, строению и функциям клеток и межклеточных веществ образует ткань.
  5. Совокупность всех живых организмов на планете и общей природной среды их обитания составляет биосферный уровень.
    1. Назовите по порядку уровни организации жизни.
    2. Что такое ткань?
    3. Из каких основных частей состоит клетка?
      1. Для каких организмов характерен тканевый уровень?
      2. Дайте характеристику органного уровня.
      3. Что такое популяция?
        1. Дайте характеристику организменному уровню.
        2. Назовите особенности биогеоценотического уровня.
        3. Приведите примеры взаимосвязанности уровней организованности жизни.

Заполните таблицу, показывающую структурные особенности каждого уровня организации:

Порядковый номер

Уровни организации

Особенности

 

 

 

 

bioslogos.ru

1. Уровни организации жизни

Различают такие уровни организации живой материи — уровни биологической организации: молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой и экосистемный.

Молекулярный уровень организации — это уровень функционирования биологических макромолекул — биополимеров: нуклеиновых кислот, белков, полисахаридов, липидов, стероидов. С этого уровня начинаются важнейшие процессы жизнедеятельности: обмен веществ, превращение энергии, передача наследственной информации. Этот уровень изучают: биохимия, молекулярная генетика, молекулярная биология, генетика, биофизика.

Клеточный уровень — это уровень клеток (клеток бактерий, цианобактерий, одноклеточных животных и водорослей, одноклеточных грибов, клеток многоклеточных организмов). Клетка — это структурная единица живого, функциональная единица, единица развития. Этот уровень изучают цитология, цитохимия, цитогенетика, микробиология.

Тканевый уровень организации — это уровень, на котором изучается строение и функционирование тканей. Исследуется этот уровень гистологией и гистохимией.

Органный уровень организации — это уровень органов многоклеточных организмов. Изучают этот уровень анатомия, физиология, эмбриология.

Организменный уровень организации — это уровень одноклеточных, колониальных и многоклеточных организмов. Специфика организменного уровня в том, что на этом уровне происходит декодирование и реализация генетической информации, формирование признаков, присущих особям данного вида. Этот уровень изучается морфологией (анатомией и эмбриологией), физиологией, генетикой, палеонтологией.

Популяционно-видовой уровень — это уровень совокупностей особей — популяций и видов. Этот уровень изучается систематикой, таксономией, экологией, биогеографией, генетикой популяций. На этом уровне изучаются генетические и экологические особенности популяций, элементарные эволюционные факторы и их влияние на генофонд (микроэволюция), проблема сохранения видов.

Экосистемный уровень организации — это уровень микроэкосистем, мезоэкосистем, макроэкосистем. На этом уровне изучаются типы питания, типы взаимоотношений организмов и популяций в экосистеме,

численность популяций, динамика численности популяций, плотность популяций, продуктивность экосистем, сукцессии. Этот уровень изучает экология.

Выделяют также биосферный уровень организации живой материи. Биосфера — это гигантская экосистема, занимающая часть географической оболочки Земли. Это мега-экосистема. В биосфере происходит круговорот веществ и химических элементов, а также превращение солнечной энергии.

2. Фундаментальные свойства живой материи

Обмен веществ (метаболизм)

Обмен веществ (метаболизм) — совокупность протекающих в живых системах химических превращений, обеспечивающих их жизнедеятельность, рост, воспроизведение, развитие, самосохранение, постоянный контакт с окружающей средой, способность адаптироваться к ней и ее изменениям. В процессе обмена веществ происходит расщепление и синтез молекул, входящих в состав клеток; образование, разрушение и обновление клеточных структур и межклеточного вещества. В основе метаболизма лежат взаимосвязанные процессы ассимиляции (анаболизм) и диссимиляции (катаболизм). Ассимиляция — процессы синтеза сложных молекул из простых с расходованием энергии, запасенной в ходе диссимиляции (а также накопление энергии при отложении в запас синтезированных веществ). Диссимиляция — процессы расщепления (анаэробного или аэробного) сложных органических соединений, идущее с высвобождением энергии, необходимой для осуществления жизнедеятельности организма. В отличие от тел неживой природы обмен с окружающей средой для живых организмов является условием их существования. При этом происходит самообновление. Процессы обмена веществ, протекающие внутри организма, объединены в метаболические каскады и циклы химическими реакциями, которые строго упорядочены во времени и пространстве. Согласованное протекание большого количества реакций в малом объеме достигается путем упорядоченного распределения отдельных звеньев обмена веществ в клетке (принцип компартментализации). Процессы обмена веществ регулируются с помощью биокатализаторов — особых белков-ферментов. Каждый фермент обладает субстратной специфичностью катализировать превращение лишь одного субстрата. В основе этой специфичности лежит своеобразное «узнавание» субстрата ферментом. Ферментативный катализ отличается от небиологического чрезвычайно высокой эффективностью, в результате чего скорость соответствующей реакции повышается в 1010 — 1013 раз. Каждая молекула фермента способна осуществлять от нескольких тысяч до нескольких миллионов операций в минуту, не разрушаясь в процессе участия в реакциях. Еще одно характерное отличие ферментов от небиологических катализаторов состоит в том, что ферменты способны ускорять реакции при обычных условиях (атмосферном давлении, температуре тела организма и т.п.). Все живые организмы могут быть разделены на две группы — автотрофы и гетеротрофы, отличающиеся источниками энергии и необходимых веществ для своей жизнедеятельности. Автотрофы — организмы, синтезирующие из неорганических веществ органические соединения с использованием энергии солнечного света (фотосинтетики — зеленые растения, водоросли, некоторые бактерии) или энергии, получаемой при окислении неорганического субстрата (хемосинтетики — серо-, железобактерии и некоторые другие), Автотрофные организмы способны синтезировать все компоненты клетки. Роль фотосинтезирующих автотрофов в природы является определяющей — являясь первичным продуцентом органического вещества в биосфере, они обеспечивают существование всех других организмов и ход биогеохимических циклов в круговороте веществ на Земле. Гетеротрофы (все животные, грибы, большинство бактерий, некоторые бесхлорофилльные растения) — организмы, нуждающиеся для своего существования в готовых органических веществах, которые, поступая в качестве пищи, служат как источником энергии, так и необходимым «строительным материалом». Характерной чертой гетеротрофов является наличие у них амфиболизма, т.е. процесса образования мелких органических молекул (мономеров), образующихся при переваривании пищи (процесс деградации сложных субстратов). Такие молекулы — мономеры используются для сборки собственных сложных органических соединений.

Самовоспроизведение (репродукция)

Способность к размножению (воспроизведению себе подобных, самовоспроизведению) относится к одному из фундаментальных свойств живых организмов. Размножение необходимо для того, чтобы обеспечить непрерывность существования видов, т.к. продолжительность жизни отдельного организма ограничена. Размножение с избытком компенсирует потери, обусловленные естественным отмиранием особей, и таким образом поддерживает сохранение вида в ряду поколений особей. В процессе эволюции живых организмов происходила эволюция способов размножения. Поэтому у ныне существующих многочисленных и разнообразных видов живых организмов мы обнаруживаем разные формы размножения. Многие виды организмов сочетают несколько способов размножения. Необходимо выделить два, принципиально отличающихся типа размножения организмов — бесполое (первичный и более древний тип размножения) и половое. В процессе бесполого размножения новая особь образуется из одной или группы клеток (у многоклеточных) материнского организма. При всех формах бесполого размножения потомки обладают генотипом (совокупность генов) идентичным материнскому. Следовательно, все потомство одного материнского организма оказывается генетически однородным и дочерние особи обладают одинаковым комплексом признаков. При половом размножении новая особь развивается из зиготы, образующейся путем слияния двух специализированных половых клеток (процесс оплодотворения), продуцируемых двумя родительскими организмами. Ядро в зиготе содержит гибридный набор хромосом, образующийся в результате объединения наборов хромосом слившихся ядер гамет. В ядре зиготы, таким образом, создается новая комбинация наследственных задатков (генов), привнесенных в равной мере обоими родителями. А развивающийся из зиготы дочерний организм будет обладать новым сочетанием признаков. Иными словами, при половом размножении происходит осуществление комбинативной формы наследственной изменчивости организмов, обеспечивающий приспособление видов к меняющимся условиям среды и представляющей собой существенный фактор эволюции. В этом заключается значительное преимущество полового размножения по сравнению с бесполым. Способность живых организмов к самовоспроизведению базируется на уникальном свойстве нуклеиновых кислот к репродукции и феномене матричного синтеза, лежащего в основе образования молекул нуклеиновых кислот и белков. Самовоспроизведение на молекулярном уровне обусловливает как осуществление обмена веществ в клетках, так и самовоспроизведение самих клеток. Клеточное деление (самовоспроизведение клеток) лежит в основе индивидуального развития многоклеточных организмов и воспроизведения всех организмов. Размножение организмов обеспечивает самовоспроизведение всех видов, населяющих Землю, что в свою очередь обусловливает существование биогеоценозов и биосферы.

Наследственность и изменчивость

Наследственность обеспечивает материальную преемственность (поток генетической информации) между поколениями организмов. Она тесно связана с репродукцией на молекулярном, субклеточном и клеточном уровнях. Генетическая информация, определяющая разнообразие наследственных признаков, зашифрована в молекулярной структуре ДНК (у некоторых вирусов — в РНК). В генах закодирована информация о структуре синтезируемых белков, ферментных и структурных. Генетический код — это система «записи» информации о последовательности расположения аминокислот в синтезируемых белках с помощью последовательности нуклеотидов в молекуле ДНК. Совокупность всех генов организма называется генотипом, а совокупность признаков — фенотипом. Фенотип зависит как от генотипа, так и факторов внутренней и внешней среды, которые влияют на активность генов и обусловливают регулярные процессы. Хранение и передача наследственной информации осуществляется у всех организмов с помощью нуклеиновых кислот, генетический код един для всех живых существ на Земле, т.е. он универсален. Благодаря наследственности из поколения в поколение передаются признаки, обеспечивающие приспособленность организмов к среде их обитания. Если бы при размножении организмов проявлялась только преемственность существующих признаков и свойств, то на фоне меняющихся условий внешней среды существование организмов было бы невозможно, так как необходимым условием жизни организмов является их приспособленность к условиям среды обитания. Проявляется изменчивость в разнообразии организмов, принадлежащих к одному и тому же виду. Изменчивость может реализовываться у отдельных организмов в ходе их индивидуального развития или в пределах группы организмов в ряду поколений при размножении. Выделяют две основные формы изменчивости, различающиеся по механизмам возникновения, характеру изменения признаков и, наконец, их значимости для существования живых организмов — генотипическую (наследственную) и модификационную (ненаследственную). Генотипическая изменчивость связана с изменением генотипа и приводит к изменению фенотипа. В основе генотипической изменчивости могут лежать мутации (мутационная изменчивость) или новые комбинации генов, возникающие в процессе оплодотворения при половом размножении. При мутационной форме изменения связаны, в первую очередь, с ошибками при репликации нуклеиновых кислот. Таким образом происходит возникновение новых генов, несущих новую генетическую информацию; происходит появление новых признаков. И если вновь возникающие признаки полезны организму в конкретных условиях, то они «подхватываются» и «закрепляются» естественным отбором. Таким образом, на наследственной (генотипической) изменчивости базируется приспособляемость организмов к условиям внешней среды, разнообразие организмов, создаются предпосылки для позитивной эволюции. При ненаследственной (модификационной) изменчивости происходят изменения фенотипа под действием факторов внешней среды и не связанные с изменением генотипа. Модификации (изменения признаков при модификационной изменчивости) происходят в пределах нормы реакции, находящейся под контролем генотипа. Модификации не передаются следующим поколениям. Значение модификационной изменчивости заключается в том, что она обеспечивает приспособляемость организма к факторам внешней среды в течение его жизни.

Индивидуальное развитие организмов

Всем живым организмам свойственен процесс индивидуального развития — онтогенез. Традиционно, под онтогенезом понимают процесс индивидуального развития многоклеточного организма (образующегося в результате полового размножения) от момента формирования зиготы до естественной смерти особи. За счет деления зиготы и последующих поколений клеток формируется многоклеточный организм, состоящий из огромного числа разных типов клеток, различных тканей и органов. Развитие организма базируется на «генетической программе» (заложенной в генах хромосом зиготы) и осуществляется в конкретных условиях среды, существенно влияющей на процесс реализации генетической информации в ходе индивидуального существования особи. На ранних этапах индивидуального развития происходит интенсивный рост (увеличение массы и размеров), обусловленный репродукцией молекул, клеток и других структур, и дифференцировка, т.е. появление различий в структуре и усложнение функций. На всех этапах онтогенеза существенное регулирующее влияние оказывают на развитие организма различные факторы внешней среды (температура, гравитация, давление, состав пищи по содержанию химических элементов и витаминов, разнообразные физические и химические агенты). Изучение роли этих факторов в процессе индивидуального развития животных и человека имеет огромное практическое значение, возрастающее по мере усиления антропогенного воздействия на природу. В различных областях биологии, медицины, ветеринарии и других наук широко проводятся исследования по изучению процессов нормального и патологического развития организмов, выяснению закономерностей онтогенеза.

Раздражимость

3 класса способов передачи информации, описываемые догмой

Общие

Специальные

Неизвестные

ДНК → ДНК

РНК → ДНК

белок → ДНК

ДНК → РНК

РНК → РНК

белок → РНК

РНК → белок

ДНК → белок

белок → белок

Неотъемлемым свойством организмов и всех живых систем является раздражимость — способность воспринимать внешние или внутренние раздражители (воздействия) и адекватно на них реагировать. У организмов раздражимость сопровождается комплексом изменений, выражающихся в сдвигах обмена веществ, электрического потенциала на мембранах клеток, физико-химических параметров в цитоплазме клеток, в двигательных реакциях, а высокоорганизованным животным присущи изменения в их поведении.

4. Центральная догма молекулярной биологии — обобщающее наблюдаемое в природе правило реализации генетической информации: информация передаётся от нуклеиновых кислот к белку, но не в обратном направлении. Правило было сформулировано Френсисом Криком в 1958 году и приведено в соответствие с накопившимися к тому времени данными в 1970 году. Переход генетической информации от ДНК к РНК и от РНК к белку является универсальным для всех без исключения клеточных организмов, лежит в основе биосинтеза макромолекул. Репликации генома соответствует информационный переход ДНК → ДНК. В природе встречаются также переходы РНК → РНК и РНК → ДНК (например у некоторых вирусов), а также изменение конформации белков, передаваемое от молекулы к молекуле.

Универсальные способы передачи биологической информации

В живых организмах встречаются три вида гетерогенных, то есть состоящих из разных мономеров полимера — ДНК, РНК и белок. Передача информации между ними может осуществляться 3 х 3 = 9 способами. Центральная догма разделяет эти 9 типов передачи информации на три группы:

-Общий — встречающиеся у большинства живых организмов;

-Специальный — встречающиеся в виде исключения, у вирусов и у мобильных элементов генома или в условиях биологического эксперимента;

-Неизвестные — не обнаружены.

Репликация ДНК (ДНК → ДНК)

ДНК — основной способ передачи информации между поколениями живых организмов, поэтому точное удвоение (репликация) ДНК очень важна. Репликация осуществляется комплексом белков, которые расплетают хроматин, затем двойную спираль. После этого ДНК полимераза и ассоциированные с ней белки, строят на каждой из двух цепочек идентичную копию.

Транскрипция (ДНК → РНК)

Транскрипция — биологический процесс, в результате которого информация, содержащаяся в участке ДНК, копируется на синтезируемую молекулу информационной РНК. Транскрипцию осуществляют факторы транскрипции и РНК-полимераза. В эукариотической клетке первичный транскрипт (пре-иРНК) часто редактируется. Этот процесс называется сплайсингом.

Трансляция (РНК → белок)

Зрелая иРНК считывается рибосомами в процессе трансляции. В прокариотических клетках процесс транскрипции и трансляции не разделён пространственно, и эти процессы сопряжены. В эукариотических клетках место транскрипции клеточное ядро отделено от места трансляции (цитоплазмы) ядерной мембраной, поэтому иРНК транспортируется из ядра в цитоплазму. иРНК считывается рибосомой в виде трёхнуклеотидных «слов». Комплексы факторов инициации и факторов элонгации доставляют аминоацилированные транспортные РНК к комплексу иРНК-рибосома.

5. Обратная транскрипция — это процесс образования двуцепочечной ДНК на матрице одноцепочечной РНК. Данный процесс называется обратной транскрипцией, так как передача генетической информации при этом происходит в «обратном», относительно транскрипции, направлении.[1]

Идея обратной транскрипции вначале была очень непопулярна, так как противоречила центральной догме молекулярной биологии, которая предполагала, что ДНК транскрибируется в РНК и далее транслируется в белки. Встречается у ретровирусов, например, ВИЧ и в случае ретротранспозонов.

Трансдукция (от лат. transductio — перемещение) — процесс переноса бактериальной ДНК из одной клетки в другую бактериофагом. Общая трансдукция используется в генетике бактерий для картирования генома и конструирования штаммов. К трансдукции способны как умеренные фаги, так и вирулентные, последние, однако, уничтожают популяцию бактерий, поэтому трансдукция с их помощью не имеет большого значения ни в природе, ни при проведении исследований.

Векторная молекула ДНК — это молекула ДНК, которая выступает в роли носителя. Молекулу-носитель должен отличать ряд особенностей:

— Способность к автономной репликации в клетке хозяина (чаще бактериальной или дрожжевой)

— Наличие селективного маркера

— Наличие удобных сайтов рестрикции

В роли векторов чаще всего выступают бактериальные плазмиды.

studfiles.net

назовите по 3 примера уровней организации живой природы:

Уровни организации живой природы, их характеристика.

1. Сложная структура живой природы, выделение молекулярного, клеточного, организменно-го, популяционно-видового, биоценотического и биосферного уровней. Соподчинение и связь разных уровней организации структур живой природы, изучение их разными областями биологической науки: молекулярной биологией, цитологией, ботаникой, зоологией, анатомией и физиологией человека, экологией и др.

2. Молекулярный, наиболее древний уровень структуры живой природы, граничащий с неживой природой. Изучение химического состава и строения молекул сложных органических веществ, входящих в состав клетки (белков, нуклеиновых кислот и др.) . Выявление роли нуклеиновых кислот в хранении наследственной информации, белков — в образовании клеточных структур, в процессах жизнедеятельности клетки.

3. Клеточный уровень жизни, включающий в себя молекулярный. Сложное строение клетки, наличие в ней оболочки, плазматической мембраны, ядра, цитоплазмы и других органоидов; присущие ей разнообразные процессы жизнедеятельности: рост, развитие, деление, обмен веществ. Сходное строение и жизнедеятельность клеток организмов растений, животных, грибов и бактерий.

4. Организменный уровень, включающий в себя молекулярный и клеточный. Сходство организмов разных царств живой природы — их клеточное строение, сходное строение клеток и протекающих в них процессов жизнедеятельности. Различия между растениями и животными в строении и способах питания. Связь организмов со средой обитания, их приспособленность к ней.

5. Популяционно-видовой — надорганизменный уровень жизни, включающий в себя организменный уровень. Пищевые, территориальные и родственные связи между особями вида, связь их с факторами неживой природы. Приуроченность экологических закономерностей и эволюционных процессов к этому уровню.

6. Биоценотический уровень жизни, представляющий собой сообщество особей разных видов на определенной территории, связанных различными внутривидовыми и межвидовыми взаимоотношениями, а также факторами неживой природы. Проявление на этом уровне экологических закономерностей и эволюционных процессов.

7. Биосферный — высший уровень организации жизни. Биосфера — биологическая оболочка Земли, совокупность всего живого населения. Круговорот веществ и превращение энергии в биосфере — основа ее целостности, роль живых организмов в нем. Роль солнечной энергии в круговов хранении наследственной информации, белков — в образовании клеточных структур, в процессах жизнедеятельности клетки.

3. Клеточный уровень жизни, включающий в себя молекулярный. Сложное строение клетки, наличие в ней оболочки, плазматической мембраны, ядра, цитоплазмы и других органоидов; присущие ей разнообразные процессы жизнедеятельности: рост, развитие, деление, обмен веществ. Сходное строение и жизнедеятельность клеток организмов растений, животных, грибов и бактерий.

otvet.mail.ru

Уровни организации жизни — Лекции — Каталог файлов

УРОВНИ ОРГАНИЗАЦИИ ЖИВОГО

Различают молекулярный, клеточный, тканевой, органный, организменный, популяционный, видовой, биоценотический и глобаль- ный (биосферный) уровни организации живого. На всех этих уровнях проявляются все свойства, характерные для живого. Каждый из этих уровней характеризуется особенностями, присущими другим уровням, но каждому уровню присущи собственные специфические особенности.

Молекулярный уровень. Этот уровень является глубинным в организации живого и представлен молекулами нуклеиновых кислот, белков, углеводов, липидов и стероидов, находящихся в клетках и получивших название биологических молекул. На этом уровне зачинаются и осуществляются важнейшие процессы жизнедеятельно- сти (кодирование и передача наследственной информации, дыхание, обмен веществ и энергии, изменчивость и др.). Физико-химическая специфика этого уровня заключается в том, что в состав живого входит большое количество химических элементов, но основная масса живого представлена углеродом, кислородом, водородом и азотом. Из группы атомов образуются молекулы, а из последних формируются сложные химические соединения, различающиеся по строению и функциям. Большинство этих соединений в клетках представлены нуклеиновыми кислотами и белками, макромолекулы которых являются полимерами, синтезированными в результате образования мономеров и соединения последних в определенном порядке. Кроме того, мономеры макромолекул в пределах одного и того же соединения имеют одинаковые химические группировки и соединены с помощью химических связей между атомами, их неспецифи-

ческих частей (участков). Все макромолекулы универсальны, так как построены по одному плану независимо от их видовой принадлежности. Являясь универсальными, они одновременно и уникальны, ибо их структура неповторима. Например, в состав нуклеотидов ДНК входит по одному азотистому основанию из четырех известных (аденин, гуанин, цитозин или тимин), вследствие чего любой нуклеотид неповторим по своему составу. Неповторима также и вторичная структура молекул ДНК.

Биологическая специфика молекулярного уровня определяется функциональной специфичностью биологических молекул. Например, специфичность нуклеиновых кислот заключается в том, что в них закодирована генетическая информация о синтезе белков. Более того, эти процессы осуществляются в результате одних и тех же этапов метаболизма. Например, биосинтезы нуклеиновых кислот, аминокислот и белков протекают по сходной схеме у всех организмов. Универсальными являются также окисление жирных кислот, гликолиз и другие реакции.

Специфичность белков определяется специфической последовательностью аминокислот в их молекулах. Эта последовательность определяет далее специфические биологические свойства белков, так как они являются основными структурными элементами клеток, катализаторами и регуляторами реакций в клетках. Углеводы и липиды служат важнейшими источниками энергии, тогда как стероиды имеют значение для регуляции ряда метаболических процессов.

На молекулярном уровне осуществляется превращение энергии — лучистой энергии в химическую, запасаемую в углеводах и других химических соединениях, а химической энергии углеводов и других молекул — в биологически доступную энергию, запасаемую в форме макроэргических связей АТФ. Наконец, здесь происходит превращение энергии макроэргических фосфатных связей в работу — механическую, электрическую, химическую, осмотическую. Механизмы всех метаболических и энергетических процессов универсальны.

Биологические молекулы обеспечивают также преемственность между молекулами и следующим за ним уровнем (клеточным), так как являются материалом, из которого образуются надмолекулярные структуры. Молекулярный уровень является «ареной» химических реакций, которые обеспечивают энергией клеточный уровень.

Клеточный уровень. Этот уровень организации живого представлен клетками, действующими в качестве самостоятельных организ-

мов (бактерии, простейшие и др.), а также клетками многоклеточных организмов. Главнейшая специфическая черта этого уровня заключается в том, что с него начинается жизнь. Будучи способными к жизни, росту и размножению, клетки являются основной формой организации живой материи, элементарными единицами, из которых построены все живые существа (прокариоты и эукариоты). Между клетками растений и животных нет принципиальных различий по структуре и функциям. Некоторые различия касаются лишь строения их мембран и отдельных органелл. Заметные различия в строении есть между клетками-прокариотами и клеткамиэукариотами, но в функциональном плане эти различия нивелируются, ибо везде действует правило «клетка от клетки».

Специфичность клеточного уровня определяется специализацией клеток, существованием клеток в качестве специализированных еди- ниц многоклеточного организма. На клеточном уровне происходит разграничение и упорядочение процессов жизнедеятельности в пространстве и во времени, что связано с приуроченностью функций к разным субклеточным структурам. Например, у клеток-эукариотов значительно развиты мембранные системы (плазматическая мембра- на, цитоплазматическая сеть, пластинчатый комплекс) и клеточные органеллы (ядро, хромосомы, центриоли, митохондрии, пластиды, лизосомы, рибосомы). Мембранные структуры являются «ареной» важнейших жизненных процессов, причем двухслойное строение мембранной системы значительно увеличивает площадь «арены». Кроме того, мембранные структуры обеспечивают пространственное разделение в клетках многих биологических молекул, а их физическое состояние позволяет осуществлять постоянное диффузное движение некоторых из содержащихся в них молекул белков и фосфолипидов. Таким образом, мембраны являются системой, компоненты которой находятся в движении. Для них характерны различные перестройки, что определяет раздражимость клеток — важнейшее свойство живого.

Тканевой уровень. Данный уровень представлен тканями, объединяющими клетки определенного строения, размеров, расположения и сходных функций. Ткани возникли в ходе исторического развития вместе с многоклеточностью. У многоклеточных организмов они образуются в процессе онтогенеза как следствие дифференциации клеток. У животных различают несколько типов тканей (эпителиальная, соединительная, мышечная, кровь, нервная и репродуктивная). У рас-

тений различают меристематическую, защитную, основную и проводящую ткани. На этом уровне происходит специализация клеток.

Органный уровень. Представлен органами организмов. У растений и животных органы формируются за счет разного количества тканей. У простейших пищеварение, дыхание, циркуляция веществ, выделение, передвижение и размножение осуществляются за счет различных органелл. У более совершенных организмов имеются системы органов. Для позвоночных характерна цефализация, заклю- чающаяся в сосредоточении важнейших нервных центров и органов чувств в голове.

Организменный уровень. Данный уровень представлен самими организмами — одноклеточными и многоклеточными организмами растительной и животной природы. Специфическая особенность организменного уровня заключается в том, что на этом уровне происходят декодирование и реализация генетической информации, создание структурных и функциональных особенностей, присущих организмам данного вида.

Видовой уровень. Данный уровень определяется видами растений и животных. В настоящее время насчитывают около 500 тыс. видов растений и около 1,5 млн видов животных, представители которых характеризуются самым различным местообитанием и занимают разные экологические ниши. Вид является также единицей классификации живых существ.

Популяционный уровень. Растения и животные не существуют изолированно; они объединены в популяции, которые характеризуются определенным генофондом. В пределах одного и того же вида может насчитываться от одной до многих тысяч популяций. В популяциях осуществляются элементарные эволюционные преобразования, происходит выработка новой адаптивной формы.

Биоценотический уровень. Представлен биоценозами — сообществами организмов разной видовой принадлежности. В таких сообществах организмы разных видов в той или иной мере зависят один от другого. В ходе исторического развития сложились биогеоценозы (экосистемы), которые представляют собой системы, состоящие из взаимозависящих сообществ организмов и абиотических факторов среды. Экосистемам присуще подвижное равновесие между организмами и абиотическими факторами. На том уровне осуществляются вещественно-энергетические круговороты, связанные с жизнедеятельностью организмов.

Глобальный (биосферный) уровень. Данный уровень является высшей формой организации живого (живых систем). Он представлен биосферой. На этом уровне осуществляется объединение всех вещественно-энергетических круговоротов в единый гигантский биосферный круговорот веществ и энергии.

Между разными уровнями организации живого существует диалектическое единство. Живое организовано по типу системной организации, основу которой составляет иерархичность систем. Переход от одного уровня к другому связан с сохранением функциональных механизмов, действующих на предшествующих уровнях, и сопровождается появлением структуры и функций новых типов, а также взаимодействия, характеризующегося новыми особенностями, т. е. появляется новое качество.

www.biokan.ru

Уровни организации жизни живых систем

Все живые организмы в природе состоят из одинаковых уровней организации, это общая для всех живых организмов характерная биологическая закономерность. Выделяют следующие уровни организации живых организмов — молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой, биогеоценотический, биосферный.

Уровни организации живых систем

1. Молекулярно-генетический уровень. Это наиболее элементарный характерный для жизни уровень. Как бы сложно или просто ни было строение любого живого организма, они все состоят из одинаковых молекулярных соединений. Примером этого являются нуклеиновые кислоты, белки, углеводы и другие сложные молекулярные комплексы органических и неорганических веществ. Их называют иногда биологическими макромолекулярными веществами. На молекулярном уровне происходят различные процессы жизнедеятельности живых организмов: обмен веществ, превращение энергии. С помощью молекулярного уровня осуществляется передача наследственной информации, образуются отдельные органоиды и происходят другие процессы.

2. Клеточный уровень. Клетка является структурной и функциональной единицей всех живых организмов на Земле. Отдельные органоиды в составе клетки имеют характерное строение и выполняют определенную функцию. Функции отдельных органоидов в клетке взаимосвязаны и выполняют единые процессы жизнедеятельности. У одноклеточных организмов все жизненные процессы проходят в одной клетке, и одна клетка существует как отдельный организм (одноклеточные водоросли, хламидомонады, хлорелла и простейшие животные — амеба, инфузория и др.). У многоклеточных организмов одна клетка не может существовать как отдельный организм, но она является элементарной структурной единицей организма.

3. Тканевый уровень.

Совокупность сходных по происхождению, строению и функциям клеток и межклеточных веществ образует ткань. Тканевый уровень характерен только для многоклеточных организмов. Также отдельные ткани не являются самостоятельным целостным организмом. Например, тела животных и человека состоят из четырех различных тканей (эпителиальная, соединительная, мышечная, нервная). Растительные ткани называются: образовательная, покровная, опорная, проводящая и выделительная.

4.Органный уровень.

У многоклеточных организмов объединение нескольких одинаковых тканей, сходных по строению, происхождению и функциям, образует органный уровень. В составе каждого органа встречается несколько тканей, но среди них одна наиболее значительная. Отдельный орган не может существовать как целостный организм. Несколько органов, сходных по строению и функциям, объединяясь, составляют систему органов, например пищеварения, дыхания, кровообращения и т. д.

5. Организменный уровень.

Растения (хламидомонада, хлорелла) и животные (амеба, инфузория и т. д.), тела которых состоят из одной клетки, представляют собой самостоятельный организм. А отдельная особь многоклеточных организмов считается как отдельный организм. В каждом отдельном организме происходят все жизненные процессы, характерные для всех живых организмов, — питание, дыхание, обмен веществ, раздражимость, размножение и т. д. Каждый самостоятельный организм оставляет после себя потомство. У многоклеточных организмов клетки, ткани, органы и системы органов не являются отдельным организмом. Только целостная система органов, специализированно выполняющих различные функции, образует отдельный самостоятельный организм. Развитие организма, начиная с оплодотворения и до конца жизни, занимает определенный промежуток времени. Такое индивидуальное развитие каждого организма называется онтогенезом. Организм может существовать в тесной взаимосвязи с окружающей средой.

6. Популяционно-видовой уровень.

Совокупность особей одного вида пли группы, которая длительно существует в определенной части ареала относительно обособленно от других совокупностей того же вида, составляет популяцию. На популяционном уровне осуществляются простейшие эволюционные преобразования, что способствует постепенному появлению нового вида.

7. Биогеоценотический уровень.

Совокупность организмов разных видов и различной сложности организации, приспособленных к одинаковым условиям природной среды, называется биогеоценозом, или природным сообществом. В состав биогеоценоза входят многочисленные виды живых организмов и условия природной среды. В природных биогеоценозах накапливается энергия и передается от одного организма к другому. Биогеоценоз включает неорганические, органические соединения и живые организмы.

8. Биосферный уровень.

Совокупность всех живых организмов на нашей планете и общей природной среды их обитания составляет биосферный уровень. На биосферном уровне современная биология решает глобальные проблемы, например определение интенсивности образования свободного кислорода растительным покровом Земли или изменения концентрации углекислого газа в атмосфере, связанные с деятельностью человека. Главную роль в биосферном уровне выполняют » живые вещества», т. е. совокупность живых организмов, населяющих Землю. Также в биосферном уровне имеют значение » биокосные вещества», образовавшиеся в результате жизнедеятельности живых организмов и » косных» веществ, т. е. условий окружающей среды. На биосферном уровне происходит круговорот веществ и энергии на Земле с участием всех живых организмов биосферы.

Физиология боли
Физиологические эффекты гормонов
Функции грудины и ребёр
Методы исследования строения белка
Химизм аэробной фазы дыхания
Функции скелетных и гладких мышц
Химическая структура андрогена
Цветовое зрение
Центробежный проводящий путь
Циркадианные ритмы и суточное распределение активности
Функции основных классов липидов



biofile.ru

15. Краткая характеристика уровней организации живой материи.

Уровень организации живой материи – это функциональное место биологической структуры определенной степени сложности в общей иерар­хии живого. Выделяют следующие уровни организации живой материи:

1.Молекулярный — организуется в сложные высокомолекулярные органические соединения, такие, как белки, нуклеиновые кис­лоты и др.

2.Субклеточный — организуется в органоиды: хромосомы, клеточную мембрану, эндоплазматическую сеть, митохондрии, комплекс Гольджи, лизосомы, рибосомы и другие субклеточные струк­туры.

3.Клеточный. На этом уровне живая материя представлена клетками. Клетка является элементарной структурной и функциональной единицей живого.

4.Органно-тканевой. На этом уровне живая материя организуется в ткани и органы. Ткань – совокупность клеток, сходных по строению и функциям, а также связанных с ними межклеточных веществ. Орган – часть многоклеточного организ­ма, выполняющая определенную функцию или функции.

5.Организменный На этом уровне живая материя представлена организмами. Организм (особь, индивид) – неделимая единица жизни, ее реальный носитель, характеризующийся всеми ее признаками.

6.Популяционно-видовой. На этом уровне живая материя организуется в популяции. Популяция – совокупность особей одного вида, образующих обособленную генетическую систему, которая длительно существует в определенной части ареала относительно обособленно от других совокупностей того же вида. Вид – совокупность особей (популяций особей), способных к скрещиванию с образованием плодовитого потомства и занимающих в природе определенную область (ареал).

7.БиоценотическийНа этом уровне живая материя образует биоценозы. Биоценоз – совокупность популяций разных видов, обитающих на определенной территории.

8.Биогеоценотический. На этом уровне живая материя формирует биогеоценозы. Биогеоценоз – совокупность биоценоза и абиотических факторов среды обитания (климат, почва).

9.Биосферный. На этом уровне живая материя формирует биосферу. Биосфера – оболочка Земли, преобразованная деятельностью живых организмов.

Предсказать свойства каждого следующего уровня на основе свойств предыдущих уровней невозможно так же, как нельзя предсказать свойства воды, исходя из свойств кислорода и водорода. Такое явление носит название эмерджментность, то есть наличие у системы особых, качественно новых свойств, не присущих сумме свойств ее отдельных элементов. С другой стороны, знание особенностей отдельных составляющих системы значительно облегчает ее изучение.

16. Понятие о клетке как первооснове живой материи. Функции клетки.

Клетка — элементарная единица строения и жизнедеятельности всех живых организмов, обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию.

Все клеточные формы жизни на земле можно разделить на два надцарства на основании строения составляющих их клеток — прокариоты (безядерные) и эукариоты (ядерные). Прокариотические клетки — более простые по строению, по-видимому, они возникли в процессе эволюции раньше.

Эукариотические клетки — более сложные, возникли позже. Клетки, составляющие тело человека, являются эукариотическими.

Основные функции клеток

Во всех клетках под контролем генетического аппарата осуществляется синтез белков. Клетка, не синтезирующая белки, по сути дела мертва. Клетка живет, — значит, её компоненты непрерывно меняются.

Чтобы все внутриклеточные процессы могли осуществляться, необходима энергия. В живых клетках постоянно идет энергетический обмен. Клетки обладают важнейшим для их жизни свойством — запасать и тратить энергию.

Клетка существует в постоянном контакте с окружающими клетками или с окружающими организм веществами. Жизнь клетки, по существу, заключается в поглощении веществ извне, преобразовании этих веществ в нужные для жизни клетки компоненты и передаче их в другие клетки, или запасании внутри данной клетки, или выведении из организма .

На всех стадиях развития клетки осуществляется регулирование ее жизнедеятельности. Сейчас биологам известно много способов регуляции жизнедеятельности клетки, включая генетическую регуляцию внутриклеточных процессов. Регуляция нужна и для обеспечения важнейшей функции живой клетки — свойства раздражимости, т. е. способности отвечать на воздействия, которым подвергается клетка извне.

studfiles.net

Каждый уровень организации живой материи по-своему важен :: SYL.ru

Живая материя и уровни её организации

В ходе эволюции каждый новый уровень организации живой материи становился всё сложнее и совершеннее. Теперь, как результат, можно выделить множество таких уровней, их количество зависит от того, насколько детально они рассматриваются. Существуют молекулярный, клеточный, субклеточный, тканевый, организменный, видовой, биогеоцинотический и глобальный (биосферный) уровни. Каждый предыдущий является составной частью следующего.

Молекулярный уровень организации живой материи

Единицы организации этого уровня весьма однообразны, тем не менее здесь происходят процессы, которые очень важны для всего организма в целом. Так, именно макромолекулы и их соединения обеспечивают передачу генетической информации в виде ДНК, они же заведуют превращением энергии, а также обменом веществ. К некоторым основным единицам этого уровня можно отнести углеводы, жиры, белки, которые состоят из аминокислот и т. д.

Клеточный уровень организации живой материи

Он является одним из основных, поскольку именно из клеток в последующем создаются ткани, органы и их системы. Это своеобразная единица всего живого. Развитие и рост живых организмов зависят именно от тех процессов, что происходят в клетке. Нужно знать, что существует только два их основных типа: ядерные и безъядерные. Еще их называют эукариотами и прокариотами соответственно.

Тканево-органный уровень

Ткань состоит из клеток, которые очень схожи между собой. В животных организмах существует 4 вида тканей: мышечная, нервная, эпителиальная и соединительная, — в то время как растения имеют 6 их видов. Из тканей образуются органы, и каждый из них выполняет свою функцию. Орган часто состоит из нескольких видов тканей, одна из которых обязательно преобладает.

Организменный уровень

Организмы могут быть как многоклеточными, так и одноклеточными. Последние, соответственно, пропускают такой уровень организации живой материи, как тканево-органный. Многоклеточные же представляют собой целостную систему, которая может существовать самостоятельно и поддерживать свою внутреннюю среду в стабильном состоянии (гомеостаз).

Следующий уровень организации живой материи: популяционно-видовой

В мире существуют около 2 миллионов видов живых организмов. Данный уровень организации живой материи более масштабный, чем предыдущие. Вид охватывает похожих особей, способных к размножению и воспроизведению здорового потомства. Популяцией же называются особи, которые принадлежат к одному виду и очень долго проживают на одной территории.

Биогеоцинотический и биосферный уровни организации

Биогеоциноз охватывает уже не только живые организмы. В него (в экосистему) входят все те представители, которые взаимодействуют с факторами среды своего обитания. Биосферный уровень организации живой материи — самый глобальный. Он охватывает все экосистемы, а также затрагивает гидросферу, литосферу и атмосферу.

www.syl.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *