Содержание

Тема Автотрофы и гетеротрофы

Тема : Автотрофы и гетеротрофы

План 1. Способы питания. 2. Автотрофы: 1. Фототрофы. 2. Хемотрофы. 3. Гетеротрофы 4. Фотосинтез. 5. Хемосинтез

Знать сущность понятий автотрофы, гетеротрофы, сапрофиты, паразиты, фототрофы, хемотрофы, примеры живых организмов имеющих данные способы питания.

Способы питания Все живые организмы , обитающие на Земле , можно подразделить на две группы в зависимости от того, каким образом они получают необходимые им органические вещества. Бывают 2 группы: гетеротрофы и автотрофы.

Автотрофы (др. греч αὐτός — сам + τροφή — пища) — живые организмы, синтезирующие органических соединений из неорганических. Именно они являются первичными продуцентами органического вещества в биосфере, обеспечивая пищей гетеротрофов.

Автотрофы Следует отметить, что иногда резкой границы между автотрофами и гетеротрофами провести не удаётся. Например, одноклеточная эвглена на свету является автотрофом, а в темноте — гетеротрофом.

Автотрофы Автотрофные организмы для построения своего тела используют неорганические вещества почвы, воды, воздуха. При этом почти всегда источником углерода является у При этом одни из них глекислый газ. ( фототрофы) получают необходимую энергию от Солнца, другие (хемотрофы) — от химических реакций неорганических соединений.

Фототрофы Организмы, для которых источником энергии служит солнечный свет (фотоны, благодаря которым Такой тип питания носит появляются доноры — источники электронов), название фотосинтеза. К фотосинтезу способны называются зелёные растения и фототрофами. многоклеточные водоросли, а также цианобоктерии , благодаря содержащемуся в их клетках пигменту — хлорофиллу

Хемотрофы Остальные организмы в качестве внешнего источника энергии (доноров — источников электронов) используют энергию химических связей пищи или восстановленных неорганических соединений — таких, как сероводород, метан, сера, двухвалентное железо и др. Такие организмы называются хемотрофы. Серобактерии

Гетеротрофы (от греческих слов heteros - иной, другой и irophe -пища) – живые организмы, существующие за счет потребления готовых органических веществ, создаваемых автотрофами.

Гетеротрофы Различают травоядных животных и плотоядных животных. Есть также и всеядные животные, к которым относится и человек.

Гетеротрофы У других гетеротрофов тип питания сапрофитный. Он характерен для грибов и бактерий. Эти организмы не заглатывают пищу, а получают органические вещества в растворенном виде через клеточные стенки. Примером сапрофитов могут служить дрожжи (из органических веществ им необходим сахар).

Проверка знаний 1. Автотрофы – это организмы: А) продуцирующие органические вещества в процессе фотосинтеза или хемосинтеза Б) поглощающие готовые органические вещества В) перерабатывающие мертвые органические остатки

Проверка знаний 2. Переходной формой между автотрофами и гетеротрофами можно считать: А) амебу Б) эвглену зеленую В) инфузорию туфельку

Проверка знаний 3. Фототрофы получают энергию: А) вместе с пищей Б) от химических реакций В) от Солнца

Проверка знаний 4. К гетеротрофам относятся: А) шампиньоны Б) серобактерии В) водоросли

Проверка знаний 5. К травоядным животным относится: А) медведь Б) шимпанзе В) зебра

Домашнее задание § 13, стр. 83 -85 Хемосинтез. § 14 стр. 85 -86 Автотрофы, гетеротрофы Повторить конспект или материал на сайте Заполнить таблицу "Сравнительная характеристика автотрофов и гетеротрофов" Признаки для сравнения Происхождение названия Определение Синтез органических веществ из неорганических Источник энергии Представители растительного мира Представители животного мира Автотрофы Гетеротрофы

present5.com

Что такое автотрофное и гетеротрофное питание?

К гетеротрофным организмам относятся все животные и человек, а также некоторые паразитические растения и бактерии. Среди этих растений можно выделить группу растений паразитов и растений-хищников.

ГЕТЕРОТРОФЫ, организмы, использующие для своего питания готовые органические вещества (обычно ткани растений или животных) через процесс, известный как гетеротрофное питание. Трудно переоценить роль автотрофов в природе: именно они оказываются первичными продуцентами органического вещества, которое затем используется всеми другими живыми организмами — гетеротрофами.

Гетеротрофные организмы (животные, грибы , часть прокариот ) не могут создавать органические соединения непосредственно из неорганических. К консументам относятся по преимуществу животные, включая, естественно, и человека. Редуценты — заключительное звено в пищевой цепи и экологической пирамиде.

Все остальные живые существа, населяющие нашу планету, не способны использовать солнечную энергию и синтезировать органические вещества из неорганических соединений. У растений, фотосинтезирующих бактерий этот путь используется с наступлением темноты, с прекращением фотосинтеза. Организмы, которые способны синтезировать органические вещества, необходимые для жизнедеятельности, из неорганических соединений, принято называть автотрофами.

Автотрофные организмы способны усваивать углекислый газ из воздуха и превращать его в сложные органические соединения. Таким образом автотрофы строят свое «тело» из неорганических соединений.

По способу получения энергии автотрофы подразделяются на фотоавтотрофы и хемоавтотрофы. Фотоавтотрофные бактерии используют энергию солнечных лучей при синтезе органических веществ из двуокиси углерода по типу фотосинтеза у растений.

Хемоавтотрофы способны существовать только в присутствии неорганических соединений, при этом определенные виды бактерий способны окислять определенные минеральные вещества. Однако среди автотрофов обнаружены микроорганизмы, которые способны усваивать углерод не только из СО2 воздуха, но и из органических соединений.

Автотрофные и гетеротрофные организмы

В зависимости от способа поглощения азота, микроорганизмы могут подразделяться на аминоавтотрофы и аминогетеротрофы. Аминоавторофы синтезируют белок из минеральных соединений и из воздуха, это в основном почвенные бактерии. У зеленых растений в основе автотрофного типа питания лежит процесс фотосинтеза.

В 1905 г. появилась гипотеза о том, что фотосинтез может проходить и в темноте. Таким образом, процесс фотосинтеза составляют световая и теневая фазы. Однако биохимические доказательства этого предположения были получены лишь в 1937 г. английским исследователем Хиллом. Организмы, использующие для своего питания готовые органические соединения, принято называть гетеротрофными. Некоторые автотрофы — фотосинтезирующие зеленые растения — могут усваивать небольшое количество органических соединений.

Некоторые автотрофы нуждаются в витаминоподобных веществах. Из микроорганизмов гетеротрофами являются возбудители брожения (спиртового, пропионово — кислого, молочно — кислого и маслянично — кислого), гнилостные и болезнетворные бактерии. В зависимости от используемого субстрата, гетеротрофные микроорганизмы подразделяются на две обширные группы: мета- и паратрофы.

В эту группу входят в основном гнилостные бактерии. Паратрофы используют органические соединения живых организмов. Именно эти микроорганизмы обычно вызывают инфекционные заболевания человека, животных и растений. Гетеротрофы в качестве источника азота используют готовые аминокислоты: такой путь питания называют аминогетеротрофным. У высших животных имеется строго дифференцированная и сложно организованная пищеварительная система.

Строение и функция ротового аппарата у животных разнообразно и зависит от вида корма; в основном различают грызущий, перетирающий, сосущий типы ротового аппарата. Животных условно подразделяют на фитофагов (растительноядные) и зоофагов (плотоядные). Однако имеются и промежуточные, или смешанные формы. Применительно к животным, целесообразнее употреблять термин «пищеварение».

Гетеротрофы (гетеротрофные организмы)

Различают пищеварение в ротовой полости, желудочное и кишечное. В организации процесса переваривания корма у животных и пищи у человека важную роль играют нервная система и железы внутренней секреции. Таким образом осуществляется нервная и гуморальная регуляции пищеварительных процессов. В ротовой полости пища подвергается механической обработке и действию ряда ферментов, в основном, амипазы и мальтазы.

Под воздействием соляной кислоты и большого количества ферментов расщепляется большинство сложных органических веществ. В кишечнике происходит дальнейшее химическое превращение питательных веществ и их всасывание.

Все животные и грибы — гетеротрофы. Все растения делятся на две группы по типу использования питательных веществ – автотрофы и гетеротрофы. Одноклеточная эвглена на свету зеленая и автотроф, а в темноте бесцветная и гетеротроф. Строгими гетеротрофами являются животные и человек. Хотя между автотрофами и гетеротрофами есть принципиальное различие, резкой границы между ними иногда провести не удается (как это часто бывает в природе вообще).

Также интересно:

Век

Онлайн учебник по биологии
9 класс

   

§14.

Автотрофное питание

Вспомните из учебника «Растения. Бактерии. Гри бы и лишайники», в чем сущность фотосинтеза. В ка ких органоидах клетки он протекает? Какие вещества участвуют и какие синтезируются при фотосин тезе?

Какие условия необходимы для фотосинтеза?

Жизнь на Земле зависит от автотрофных организмов. Почти все органические вещества, необходимые для жи -вых клеток, производятся в процессе фотосинтеза.

Фотосинтез (от греч. фотос — свет и синтезис — соединение, сочетание) — превращение зелеными растениями и фотосинтезирующими микроорганизмами неорганических веществ (воды и углекислого газа) в органические за счет солнечной энергии, которая преобразуется в энергию химических связей в молекулах органических веществ.

Рис. 55. Дж. Пристли (1783—1804) и его опыт

История открытия и изучения фотосинтеза. В течение нескольких веков ученые-биологи пытались разгадать тайну зеленого листа. Долгое время считалось, что растения создают питательные вещества из воды и минеральных веществ.

Открытие роли зеленого листа принадлежит не биологу, а химику — английскому ученому Джозефу Пристли (рис. 55).

В 1771 г., изучая значение воздуха для горения веществ и дыхания, он поставил следующий опыт. В герметичный стеклянный сосуд он поместил мышь и убедился через некоторое время в том, что она, израсходовав на дыхание весь кислород воздуха, погибла. Но если рядом с ней ставили живое растение, то мышь продолжала жить. Следовательно, воздух в сосуде оставался хорошим. Пристли сделал важный вывод: растения улучшают воздух, насыщая его кислородом, — делают его пригодным для дыхания.

Так впервые была установлена роль зеленых растений. Пристли первым высказал предположение и о роли света в жизнедеятельности растений.

Большой вклад в изучение фотосинтеза внес русский ученый К.А. Тимирязев (рис. 56). Он исследовал влияние различных участков спектра солнечного света на процесс фотосинтеза и установил, что фотосинтез наиболее эффективен в красных лучах. Тимирязев доказал, что, усваивая углерод в присутствие солнечного света, растение преобразует его энергию в энергию органических веществ.

В своей работе «Солнце, жизнь и хлорофилл» К. А. Тимирязев подробно описал и научно обосновал свои опыты. Его методы лабораторных исследований использовали другие ученые для последующих работ по изучению фотосинтеза. Актом авторитетного признания научных заслуг ученого явилось приглашение Климента Аркадьевича Тимирязева в 1903 г. в Лондонское королевское общество для чтения знаменитой лекции «Космическая роль растений». За свои работы по изучению фотосинтеза он был избран почетным доктором ряда западноевропейских университетов.

Фазы фотосинтеза. В процессе фотосинтеза энергетически бедные вода и углекислый газ превращаются в энергоемкое органическое вещество — глюкозу. При этом солнечная энергия аккумулируется в химических связях этого вещества. Кроме того, в процессе фотосинтеза в атмосферу выделяется кислород, который используется организмами для дыхания.

Рис.

56. Климент Аркадьевич Тимирязев(1843 — 1920)

В настоящее время установлено, что фотосинтез протекает в две фазы — световую и темновую (рис.

57).

Рис. 57. Общая схема фотосинтеза

Рис.

58. Интенсивность фотосинтеза в разных спектрах света

В световую фазу благодаря солнечной энергии происходит возбуждение молекул хлорофилла и синтез АТФ. Одновременно с этой реакцией под действием света разлагается вода (Н20) с выделением свободного кислорода (02).

Этот процесс назвали фотолизом (от греч. фотос — свет и лизис — растворение). Образовавшиеся ионы водорода связываются с особым веществом — переносчиком ионов водорода (НАДФ) и используются в следующей фазе.

Для протекания реакций темповой фазы наличие света необязательно.

Источником энергии здесь служат синтезированные в световую фазу молекулы АТФ. В темповой фазе происходит усвоение углекислого газа из воздуха, его восстановление ионами водорода и ооразование глюкозы благодаря использованию энергии АТФ.

Влияние условий среды на фотосинтез. При фотосинтезе используется только 1% солнечной энергии, падающей на лист. Фотосинтез зависит от целого ряда условий среды. Во-первых, наиболее интенсивно этот процесс протекает под влиянием красных лучей солнечного спектра (рис.

58). Степень интенсивности фотосинтеза определяется по количеству выделившегося кислорода, который вытесняет воду из цилиндра. Скорость фотосинтеза зависит также и от степени освещенности растения.

Увеличение продолжительности светового дня приводит к росту продуктивности фотосинтеза, т. е. количества образуемых растением органических веществ.

Значение фотосинтеза. Продукты фотосинтеза используются:

  • организмами в качестве питательных веществ, источника энергии и кислорода для процессов жизнедеятельности;
  • в производстве человеком продуктов питания;
  • в качестве строительного материала для построек жилищ, в производстве мебели и др.

Человечество своим существованием обязано фотосинтезу. Все запасы горючего на Земле — это продукты, образованные в результате фотосинтеза. Используя уголь и древесину, мы получаем энергию, которая была запасена в органических веществах при фотосинтезе. Одновременно в атмосферу выделяется кислород. По подсчетам ученых, без фотосинтеза весь запас кислорода был бы израсходован за 3000 лет.

Хемосинтез. Кроме фотосинтеза, известен еще один способ получения энергии и синтеза органических веществ из неорганических.

Некоторые бактерии способны извлекать энергию путем окисления различных неорганических веществ. Для создания органических веществ им не нужен свет.

Процесс синтеза органических веществ из неорганических, проходящий благодаря энергии окисления неорганических веществ, называют хемосинтезом (от лат. хемия — химия и греч. синтезис — соединение, сочетание).

Хемосинтезирующие бактерии были открыты русским ученым С.Н.Виноградским. В зависимости оттого, при окислении какого вещества выделяется энергия, различают хемосинтезирующие железобактерии, серобактерии и азотобактерии.

Упражнения по пройденному материалу

  1. Дайте определение фотосинтеза.

    Какое значение имеет этот процесс для жизни на Земле?

  2. Какие вещества образуются в световую фазу фотосинтеза?
  3. Назовите основные реакции темповой фазы. За счет какой энергии синтезируется глюкоза?
  4. В чем основное отличие хемосинтеза от фотосинтеза?
  5. Объясните, почему в процессе исторического развития органического мира фотосинтезирующие организмы заняли господствующее положение по сравнению с хемосинтезирующими.

Автотрофы – это те живые организмы, которые способны получать продукты питания из неорганических соединений, то есть органические вещества из неорганических веществ, к примеру, с кислорода или же солнечного света.

Автотрофы – это живые существа, составляющие первую грань в общей пирамиде пищевой цепочки.

В природе автотрофы обеспечивают едой гетеротрофов – те живые организмы, которые питаются уже органическими соединениями.

Образ жизни

Все автотрофы – это простейшие растения и бактерии, живущие либо же на поверхности земного шара или же в недрах морей, океанов, озер, рек и т.д.

В образе жизни растений всем и так известно, как в принципе и бактерий, так что данный вопрос можно глубоко не рассматривать.

Питание

Автотрофов и гетеротрофов различает лишь способ питания.

Как уже говорилось, автотрофы способны питаться неорганическими соединениями, а автотрофы могут питаться только тем, что для них подготовили автотрофы. Не все автотрофы одинаковы, так различают фототрофов и хемотрофов. Чем они отличаются?

Дело в том, что фототрофы получают энергию от солнечных лучей, а хемотрофы от химических реакций (углеводорода, серы, металлы и другие).

Способ питания фототрофов называется фотосинтезом.

Таким образом питаются все же зеленые растения на планете, а также ряд водорослей и бактерий. Источником важного для из жизни углерода, является углекислый газ.

Размножение

Чаще всего размножение происходит с помощью спор, почкования, деления клеток из одной на две, с помощью распыления семян и так далее.

Внешний вид

Почти все фототрофы выглядят как зеленые растения: деревья, кусты, травы и многое другое, что мы привыкли видеть в повседневной жизни.

К хемотрофам можно причислить большое количество паразитирующих организмов и бактерий (сальмонелла).

К хемотрофам также относятся грибы.

А большинство микроорганизмов можно увидеть только под микроскопом. Для построения своего тела, автотрофы чаще всего используют такие неорганические вещества как воздух, вода и, конечно же, почва.

Среда обитания

Автотрофы обитают по всему земному шару – на каждом континенте, в каждой стране и даже в других живых организмах, некоторые даже паразитируют на них.

Автотрофы обитают не только на поверхности земли, но и под водой, даже на дне океана.

Интересные факты

  • эвглена зелёная – одноклеточная водоросль, может быть и автотрофом, и гетеротрофом: днем она питается энергией Солнца, то есть является автотрофом, а когда Солнце заходит, она становиться гетеротрофом;
  • зеленые растения в результате фотосинтеза превращают углекислый газ в кислород;
  • углекислый газ – это отходы жизнедеятельности, а кислородом мы можем дышать, как и другие живые организмы-гетеротрофы.

скачать dle 10.6фильмы бесплатно

Все живые организмы, обитающие на Земле, представляют собой открытые системы, зависящие от поступления веществ и энергии извне. Процесс потребления веществ и энергии называют питанием. Химические вещества необходимы для построения тела, энергия — для осуществления процессов жизнедеятельности.

Существует два типа питания живых организмов: автотрофное и гетеротрофное.

НадцарстваЦарстваПодцарстваАвтотрофыГетеротрофыФототрофыХемотрофыБиотрофыСапротрофы
Прокариоты Дробянки Бактерии + + + +
Архебактерии + + + +
Цианобактерии + +
Эукариоты Растения Багрянки +
Настоящие водоросли +
Высшие растения + Очень редко ?
Грибы Низшие Редко +
Высшие Редко +
Животные Простейшие + Очень редко
Многоклеточные + +

Живые организмы в зависимости от типа питания делят на автотрофов и гетеротрофов.

Автотрофы (автотрофные организмы).

Это организмы, использующие в качестве источника углерода углекислый газ (растения, некоторые бактерии). Другими словами, это организмы, способные создавать органические вещества из неорганических — углекислого газа, воды, минеральных солей.

В зависимости от источника энергии автотрофы делят на фотоавтотрофов и хемоавтотрофов.

Фототрофы — организмы, использующие для биосинтеза световую энергию (растения, цианобактерии). Хемотрофы — организмы, использующие для биосинтеза энергию химических реакций окисления неорганических соединений (хемотрофные бактерии: водородные, нитрифицирующие, железобактерии, серобактерии и др.).

Гетеротрофы (гетеротрофные организмы).

Это организмы, использующие в качестве источника углерода органические соединения (животные, грибы, большинство бактерий).

По способу получения пищи гетеротрофы делят на фаготрофов и осмотрофов. Фаготрофы (голозои) заглатывают твердые куски пищи (животные). Осмотрофы поглощают органические вещества из растворов непосредственно через клеточные стенки (грибы, большинство бактерий).

По состоянию источника пищи гетеротрофы подразделяют на биотрофов и сапротрофов.

Биотрофы питаются живыми организмами. К ним относятся зоофаги (питаются животными) и фитофаги (питаются растениями), в том числе паразиты.

Сапротрофы используют в качестве пищи органические вещества мертвых тел или выделения (экскременты) животных. К ним принадлежат сапротрофные бактерии, сапротрофные грибы, сапротрофные растения (сапрофиты), сапротрофные животные (сапрофаги).

Среди них встречаются детритофаги (питаются детритом), некрофаги (питаются трупами животных), копрофаги (питаются экскрементами) и др.

Миксотрофы.

Некоторые живые существа в зависимости от условий обитания способны и к автотрофному, и к гетеротрофному (смешанному типу) питания. Организмы со смешанным типом питания называют миксотрофами. Они могут синтезировать органические вещества из неорганических соединений и питаться готовыми органическими соединениями (насекомоядные растения, представители отдела эвгленовых водорослей и др.).

Автотрофное питание. Фотосинтез, его значение

Автотрофное питание, когда организм сам синтезирует органические вещества из неорганических, включает фотосинтез и хемосинтез (у некоторых бактерий).

Фотосинтез протекает у растений, цианобактерий.

Фотосинтез – это образование органических веществ из углекислого газа и воды, на свету, с выделением кислорода. У высших растений фотосинтез происходит в хлоропластах – пластидах овальной формы, содержащих хлорофилл, который определяет окраску зеленых частей растения. У водорослей хлорофилл содержится в хроматофорах, имеющих различную форму. У бурых и красных водорослей, обитающих на значительной глубине, куда затруднен доступ солнечного света, имеются другие пигменты.

Фотосинтез обеспечивает органическим веществом не только растения, но и животных, которые ими питаются.

То есть является источником пищи для всего живого на планете.

Выделяющийся при фотосинтезе кислород, поступает в атмосферу. В верхних слоях атмосферы из кислорода образуется озон. Озоновый экран защищает поверхность Земли от жесткого ультрафиолетового излучения, что сделало возможным выход живых организмов на сушу.

Кислород необходим для дыхания растений и животных. При окислении глюкозы с участием кислорода в митохондриях запасается почти в 20 раз больше энергии, чем в его отсутствие.

Что делает использование пищи гораздо более эффективным, привело к высокому уровню обмена веществ у птиц и млекопитающих.

Все это позволяет говорить о планетарной роли фотосинтеза и необходимости охраны лесов, которые называют «легкими нашей планеты».

2.

Характеристика царства животных. Роль животных в природе. Среди готовых микропрепаратов простейших найдите эвглену зеленую. Объясните, почему эвглену зеленую ботаники относят к растениям, а зоологи – к животным.

К царству животных относятся гетеротрофные организмы, являющиеся фаготрофами, т.е.

поглощающие пищу более или менее крупными частями, «кусочками». В отличие от грибов, которые всасывают питательные вещества в виде растворов (осмотрофы).

Для животных характерна подвижность, хотя некоторые кишечнополостные во взрослом состоянии ведут оседлый образ жизни.

Также у большинства животных имеется нервная система, обеспечивающая ответную реакцию на раздражения.

Животные могут быть растительноядными, плотоядными (хищники, падальщики) и всеядными.

В природе животные являются консументами, потребляют готовое органическое вещество и значительно ускоряют круговорот веществ в экосистемах и биосфере в целом.

Животные способствуют процветанию многих видов растений, являясь опылителями, распространяя семена, разрыхляя почву, обогащая ее экскрементами. Морским животным, обладающим известковым скелетом, мы обязаны образованием запасов мела, известняка, способствующих постоянной концентрации углекислого газа в атмосфере.

Эвглена зеленая, одноклеточное живое существо, занимает промежуточное положение в систематике, обладая особенностями, присущими разным царствам.

Она имеет хлоропласты и на свету питается с помощью фотосинтеза. При наличии в воде растворенных органических веществ, особенно в темноте, она их поглощает, переходя на гетеротрофное питание.

Наличие жгутика обеспечивает подвижность, что также роднит ее с животными.

Объясните биологическое значение безусловных и условных рефлексов. Составьте схему рефлекторной дуги (безусловного рефлекса) и объясните, из каких частей она состоит. Приведите примеры безусловных рефлексов человека.

Учение о рефлексах связано с трудами отечественного физиолога Ивана Михайловича Сеченова.

Рефлексом называют ответную реакцию организма на раздражение, осуществляемую при участии нервной системы.

Рефлексы бывают безусловные – врожденные и условные – приобретенные в течение жизни.

Безусловные рефлексы обеспечивают выживание организма и вида в постоянных условиях среды и на ранних этапах жизни. К ним относятся защитные (мигание при попадании соринки в глаз), ориентировочные (изучение окружающего мира), пищевые (сосание у детей, выработка слюны).

Инстинкты тоже носят врожденный характер, их иногда рассматривают как сложную последовательность безусловных рефлексов. Важнейшим инстинктом является продолжение рода.

Для приспособления к новым условиям служат условные рефлексы. Они образуются при наличии определенных условий и обеспечивают наилучшую ответную реакцию. Примером условного рефлекса является прилет птиц к знакомой кормушке, распознавание съедобного и несъедобного (поначалу птенец клюет все подряд) , обучение собаки командам.

Рефлекторная дуга безусловного коленного рефлекса включает:

рецептор – окончание чувствительного нейрона,

2. нервные пути, по которым сигнал передается в центральную нервную систему – чувствительный нейрон, который передает сигнал в спинной мозг,

3. исполнительный нейрон в передних корешках спинного мозга, передающий ответную команду,

4. орган, производящий ответную реакцию, — мышца.

Большинство дуг других рефлексов включают дополнительно вставочные нейроны.

Билет № 11

Дата добавления: 2016-10-30; просмотров: 279 | Нарушение авторских прав

Похожая информация:

Поиск на сайте:

По способу питания хемосинтезирующих бактерий относят к

1)автотрофам 2)симбионтам 3)сапротрофам 4)фототрофам

Организмы, способные синтезировать органические вещества из неорганических соединений с использованием энергии окисления сероводорода до серной кислоты, относят к

1)сапротрофам 2)фототрофам 3)гетеротрофам 4)хемотрофам

К организмам с автотрофным типом питания относят

1)высшие растения 2)животных 3)грибы 4)болезнетворные бактерии

Плесневые грибы по способу питания относят к

1)гетеротрофам 2)хемотрофам 3)симбионтам 4)паразитам

22.

Установите соответствие между группой организмов и процессом превращения веществ, который для неё характерен.

ГРУППА ОРГАНИЗМОВ

А)папоротникообразные Б)железобактерии В)бурые водоросли

Г)цианобактерии Д)зеленые водоросли Е)нитрифицирующие бактерии

ПРОЦЕСС

1)фотосинтез 2)Хемосинтез

Свободный азот из атмосферы способны усваивать

1)травянистые растения 2)микроорганизмы почвы

3)шляпочные грибы 4)почвенные животные

Бактерии гниения по типу питания относят к

1)хемосинтетикам 2)фотосинтетикам 3)сапротрофам 4)Симбионтам

Нитрифицирующие бактерии относят к

1)хемотрофам 2)фототрофам 3)сапротрофам 4)гетеротрофам

Готовыми органическими веществами питаются организмы

1)автотрофы 2)гетеротрофы 3)хемотрофы 4)фототрофы

27.

Какие организмы используют энергию окисления неорганических веществ для синтеза органических соединений?

1)гетеротрофы 2)симбионты 3)хемотрофы 4)сапротрофы

К автотрофам относятся

1)растения-паразиты 2)плесневые грибы 3)кровососущие насекомые 4)бурые водоросли

К эукариотам, которым свойствен гетеротрофный способ питания, относят

1)растения 2)бактерии 3)грибы 4)бактериофагов

30. Какой способ питания характерен для молочнокислых бактерий?

1)автотрофный 2)гетеротрофный 3)фототрофный 4)хемотрофный

Date: 2016-02-19; view: 727; Нарушение авторских прав

Понравилась страница?

Лайкни для друзей:

ekoshka.ru

Типы питания клетки - Пасечник, Швецов 9 класс (ответы)

75. Закончите схему

Классификация организмов по типу питания

Организмы (по типу питания):

1. Автотрофы:

1.1 – фототрофы

1.2 – хемотрофы

2. Гетеротрофы:

2.1 – грибы

2.2 – животные

2.3. – некоторые бактерии


76. Закончите предложения

Способ питания организма зависит от того, способен ли он самостоятельно создавать необходимые для построения клеток и процессов жизнедеятельности органические вещества из неорганических, или получает их из внешней среды

По способу питания зеленые растения являются фототрофами

Основной источник энергии на нашей планете – солнечный свет



77. Как вы думаете, можно ли считать, что все клетки зеленого растения питаются автотрофно? Ответ обоснуйте

Нельзя. Некоторые клетки зеленого растения питаются гетеротрофно: клетки камбия, корня. Клетки этих частей растения не способны к фотосинтезу и питаются за счет органических веществ, синтезированных зелеными частями растений


78. Заполните таблицу "Автотрофные и гетеротрофные организмы"

Группы организмовСпособы получения органических веществПредставители
Автотрофы за счет солнечного света, либо за счет химических превращений минеральных соединений зелень, растения, бактерии
Гетеротрофы за счет поглощения готовых органических веществ извне грибы, бактерии, животные


79. Заполните таблицу "Классификация гетеротрофных организмов по способу получения органических веществ"

Группы гетеротрофовОсобенности питанияПредставители
Сапрофиты питаются мертвыми органическими остатками бактерии гниения, многие грибы
Паразиты существуют только на живых организмах болезнетворные бактерии, грибы
Голозои три этапа: поедание, переваривание, всасывание переработанных веществ многоклеточные животные

pobio.ru

Классификация организмов по способу питания и получения энергии

Классификация организмов по способу питания и получения энергии

По способу питания живые организмы можно разделить на две большие группы: автотрофы и гетеротрофы.

Автотрофы

Автотрофы (от греческих слов autos — сам и trophe — пища) — живые организмы, синтезирующие органические соединения из неорганических. Автотрофы составляют первый ярус в пищевой пирамиде (первые звенья пищевых цепей). Именно они являются первичными продуцентами органического вещества в биосфере, обеспечивая пищей гетеротрофов. Следует отметить, что иногда резкой границы между автотрофами и гетеротрофами провести не удается. Например, одноклеточная эвглена на свету является автотрофом, а в темноте — гетеротрофом. Автотрофы делятся на фототрофов и хемотрофов.

Фототрофы

Организмы, для которых источником энергии служит солнечный свет, называются фототрофами. Такой тип питания носит название фотосинтеза.

Хемотрофы

Остальные организмы в качестве внешнего источника энергии используют энергию химических связей пищи или восстановленных неорганических соединений — таких, как сероводород, метан, сера, двухвалентное железо и др. Такие организмы называются хемотрофы. Все фототрофы-эукариоты одновременно являются автотрофами, а все хемотрофы-эукариоты — гетеротрофами. Среди прокариот встречаются и другие комбинации. Так, существуют хемоавтотрофные бактерии, а некоторые фототрофные бактерии являются гетеротрофами.

Гетеротрофы

Гетеротрофы — организмы, которые не способны синтезировать органические вещества из неорганических. Для синтеза необходимых для своей жизнедеятельности органических веществ им требуются органические вещества, произведённые другими организмами. В процессе пищеварения пищеварительные ферменты расщепляют полимеры органических веществ на мономеры. В сообществах гетеротрофы — это консументы различных порядков и редуценты.

Миксотрофы

Некоторые организмы (например, хищные растения) сочетают в себе признаки как автотрофов, так и гетеротрофов. Такие организмы называются миксотрофами. Некоторые источники считают термин "миксотрофии" неверным, так как та же Венерина мухоловка ловит мух для получения азота, а пищу получает с помощью фотосинтеза.

Литотрофы и органотрофы

Эта классификация основана на делении организмов по донорам (источникам) электронов, необходимых для многих клеточных процессов. Литотрофы — организмы, для которых донорами электронов являются неорганические вещества. Органотрофы — организмы, для которых источниками электронов являются органические соединения.

Общее

Непосредственно энергию в форме молекул АТФ организмы получают в ходе клеточного дыхания — процесса, проходящего в митохондриях, гликолиза и фотосинтеза. Дыхание бывает двух типов: аэробное, в котором обязательно участвует кислород (им окисляется глюкоза) и анаэробное (состоит из двух процессов: гликолиза и спиртового или молочнокислого брожения).

См. также

dic.academic.ru

Гетеротрофный способ питания у растений

Гетеротрофный способ питания у растений

Автотрофные организмы (от греч. «аutos» — сам и «trophe» — питание) способны самостоятельно синтезировать органические питательные вещества из неорганических, гетеротрофные - питаются готовыми органическими веществами. К автотрофам принадлежат зеленые растения и некоторые бактерии, использующие в ходе фотосинтеза энергию света (фототрофы), а также бактерии, способные утилизировать энергию окисления веществ для синтеза органических соединений (хемосинтез).

Огромное большинство организмов, принадлежащих к царству растений,—автотрофы (фототрофы). К гетеротрофам относят всех животных, грибы и большинство бактерий. Среди растений также имеются факультативные или облигатные гетеротрофы, получающие органическую пищу из внешней среды,—сапротрофы, паразиты и насекомоядные растения. Сапротрофы (сапрофиты) питаются органическими веществами разлагающихся остатков растений и животных, паразиты - органическими веществами живых организмов. Насекомоядные растения способны улавливать и переваривать мелких беспозвоночных. Однако в жизни растения есть периоды, когда оно питается только за счет запасенных ранее органических веществ, т. е. гетеротрофно.

К таким периодам относятся прорастание семян, органов вегетативного размножения (клубней, луковиц и др.). рост побегов из корневищ, развитие почек и цветков у листопадных древесных растений и т. д. Многие органы растений гетеротрофны полностью или частично (корни, почки, цветки, плоды, формирующиеся семена). Наконец, все ткани и органы растения гетеротрофно питаются в темноте. Именно поэтому в культуре можно выращивать изолированные растительные клетки и ткани без света на органо-минеральной среде.

Таким образом, гетеротрофный способ питания клеток и тканей столь же обычен для растений, как и фотосинтез, поскольку присущ любой клетке. В то же время этот способ питания растений изучен крайне недостаточно. Знакомство с физиологией растений, питающихся гетеротрофно, позволяет ближе подойти к пониманию механизмов питания клеток, тканей и органов в целом растений.

Целые растения или органы могут усваивать как низкомолекулярные органические соединения, поступающие извне или из собственных запасных фондов, так и высокомолекулярные белки, полисахариды, а также жиры, которые необходимо предварительно перевести в легкодоступные и усвояемые соединения.

 

Последнее достигается в результате пищеварения, под которым понимают процесс ферментативного расщепления макромолекулярных органических соединений на продукты, лишенные видовой специфичности и пригодные для всасывания и усвоения.

Различают три типа пищеварения: внутриклеточное, мембранное и внеклеточное.

 

Внутриклеточное — самый древний тип пищеварения. У растений оно происходит не только в цитоплазме, но и в вакуолях, пластидах, белковых телах, сферосомах.

 

Мембранное пищеварение осуществляется ферментами, локализованными в клеточных мембранах, что обеспечивает максимальное сопряжение пищеварительных и транспортных процессов. Оно хорошо изучено в кишечнике ряда животных. У растений мембранное пищеварение не исследовалось.

 

Внеклеточное пищеварение происходит тогда, когда гидролитические ферменты, образующиеся в специальных клетках, выделяются в наружную среду и действуют вне клеток. Этот тип пищеварения характерен для насекомоядных растений; он осуществляется и в других случаях, в частности в эндосперме зерновок злаков.

 

Сапрофиты(Сапротрофы)

 

Среди растений сапрофитный способ питания довольно обычен у водорослей. Например, диатомовые водоросли, живущие на больших глубинах, куда не достигает свет, питаются, поглощая органические вещества из окружающей среды. При большом количестве растворимых органических веществ в водоемах легко переходят к гетеротрофному способу питания хлорококковые, эвгленовые и некоторые другие водоросли. 

 

У покрытосеменных растений сапрофитный способ питания относительно редок. Такие растения не имеют или имеют мало хлорофилла и не способны к фотосинтезу, хотя встречаются и фотосинтезирующие виды. Для построения своего тела они используют гниющие остатки растений и животных.

Как пример можно привести Gidiophytum formicarum — полукустарник, стебель которого образует крупный клубень, пронизанный многочисленными ходами, в которых поселяются муравьи. Этот вид использует в пищу продукты жизнедеятельности муравьев, что было доказано с помощью радиоактивной метки. Меченые личинки мухи, которых муравьи занесли в полость стебля, были переварены растением через месяц, а радиоактивность была обнаружена в листьях и подземных частях растения.

 

Некоторые виды, не содержащие хлорофилла, для обеспечения себя органической пищей используют симбиоз с грибами; это микотрофные растения. Особенно много таких видов в семействе орхидных. На ранних этапах развития все орхидеи вступают в симбиоз с грибами, так как запаса питательных веществ в их семенах недостаточно для роста зародыша. Гифы грибов, проникающие в семена, поставляют растущему зародышу органические вещества, а также минеральные соли из перегноя. У взрослых орхидей с микотрофным типом питания гифы грибов внедряются в периферическую зону корней, но дальше проникнуть не могут. Их дальнейшему росту препятствует фунгистатическое действие клеток глубинных тканей корня, а также слой довольно больших клеток с крупными ядрами, похожих на фагоциты. Эти клетки способны переваривать гифы грибов и усваивать освобождающиеся органические вещества. Возможен, вероятно, и прямой обмен между растением и грибом через наружную мембрану гифы.

 

По традиции такие бесхлорофилльные растения, как подъельник (Monotropa), также относят к сапрофитам. Однако и в этом случае сапрофитный способ питания осуществляется не непосредственно, а в симбиозе с грибами в форме микоризы. Причем во многих случаях эти симбиотические отношения можно рассматривать как форму паразитизма, когда клетки растений переваривают гифы гриба, проникшие в клетки корня. Таким образом, собственно сапротрофом является гриб, а высшее растение паразитирует на нем. Гифы гриба могут соединять корень подъельника с корнями дерева, и тогда подъельник становится паразитом, получающим органические вещества от другого растения.

 

Микориза большинством растений используется главным образом для увеличения поглощения воды и минеральных солей.

Паразиты

На примере подъельника и орхидей был рассмотрен способ питания высших растений путем паразитизма. Микоризный гриб также выступает как паразит (явление взаимного паразитизма). Гифы гриба образуют выросты-гаустории, плотно прилегающие к клеткам корней или же проникающие в них. Гаустории высасывают питательные вещества (прежде всего углеводы) из растения.

 

Высшие растения-паразиты, использующие готовые органические вещества,-это, как правило, высокоспециализированные однолетники или многолетники с редуцированными или полностью утраченными в ходе эволюции листьями, а часто и корнями. Имеются виды, совершенно лишенные хлорофилла и не способные к фотосинтезу.

 

К ним относится, например, заразиха (Orobanche). паразитирующая на корнях многих культурных растений. Ее семена прорастают лишь под влиянием корневых выделений растения-хозяина. Как только кончик зародышевого корня проростка соприкоснется с корнем хозяина, он преобразуется в гаусторию (присоску), начинающую выделять гидролазы, растворяющие клеточные стенки, и активно внедряющуюся в корень. В период роста и развития заразиха поглощает большое количество азотистых веществ, углеводов и минеральных элементов, особенно фосфора, а также воду из корней растений-хозяев. В растениях томатов, пораженных заразихой, содержание, например, белкового азота снижается в 3 раза, а сахаров - в 16 раз. Другой пример корневого паразита — петров крест (Lathraea squantaria), паразитирующий на корнях деревьев и кустарников.

 

У вьющегося паразитного травянистого растения повилики (Cuseuta) нитевидные стебли с редуцированными листьями-чешуйками обвиваются вокруг стеблей растений-хозяев и присасываются к ним с помощью гаусторий. Гаустории повилики - преобразованные адвентивные (придаточные) корни. Они принимают форму диска, плотно прилегающего к коре растения-хозяина. Группа клеток из центральной части диска внедряется в коровую паренхиму растения-хозяина и достигает центрального цилиндра, откуда повилика получает воду, органические вещества и минеральные элементы. Проростки повилики, совершая ростовые вращательные движения, находят растение-хозяина, реагируя на градиент влажности и выделяемые им вещества (явление хемотропизма).

 

К паразитным растениям относится и раффлезия, питающаяся соками корней тропических лиан. В тело жертвы она внедряется с помощью гаусторий, выделяющих целлюлазу и другие ферменты, разрушающие клеточные стенки. Всю свою жизнь раффлезия проводит в теле хозяина — под землей. Лишь ее цветки появляются на поверхности почвы. С помощью радиоактивной метки показано, что паразиты поглощают из тела хозяина в основном сахарозу, глутаминовую и аспарагиновую кислоты и их амиды.

Насекомоядные растения

В настоящее время известно свыше 400 видов покрытосе менных растений, которые ловят мелких насекомых и другие ор ганизмы, переваривают свою добычу и используют продукт» ее разложения как дополнительный источник питания. Большинсгво из них встречается на бедных азотом болотистых  почвах, есть эпифитные и водные формы

 

Листья насекомоядных растений трансформированы в специальные ловушки. Наряду с фотосинтезом они служат для поимки добычи. По способу ее ловли насекомоядные растения можно разделить на две большие группы.

 

При пассивном типе л о в л и добыча может

а) прилипать к листьям, желёзки которых выделяют липкую слизь, содержащую кислые полисахариды (библис, росолист),

б) попадать в специальные ловушки в виде кувшинов, урн, трубочек. окрашенных в яркие цвета и выделяющие сладкий ароматный секрет (саррацения, гелиамфора, дарлингтония).

 

Для активного захвата насекомых используются:

1) приклеивание добычи липкой слизью и обволакивание ее листом или волосками (жирянка, росянка).

2) ловля по принципу капкана — с захлопыванием ловчих листьев над добычей (альдрованда, венерина мухоловка),

3) ловчие пузырьки, в которые насекомые втягиваются с водой благодаря поддерживаемому в них вакууму (пузырчатка).

 

Общим для всех типов ловчих приспособлений является привлечение насекомых с помощью полисахаридных слизей или ароматного секрета (нектара), выделяемых или самими ловчими аппаратами, или желёзками вблизи от ловушки. Быстрые движения ловчих органов, как правило, осуществляются путем изменений в них тургора и запускаются с помощью распространяющихся потенциалов действия в ответ на раздражение чувствительных волосков, вызванное движениями насекомого.

 

 

Гетеротрофный способ питания у растений | 2014-06-18 03:55:13 | Варламов Дмитрий | Естествознание |

4 3 51

Гетеротрофный способ питания у растений | способ, питания, растение

www.abakbot.ru

способы, по типу автотрофы или гетеротрофы

0

222

Рейтинг статьи

Кира Столетова

Питание грибов гетеротрофное. Это сложный процесс, который соединяет в себе механизмы, свойственные животным и растениям. Он является уникальным, эти организмы представляют отдельное царство со своими особенностями. Одни виды получают все необходимое из мертвого субстрата, другие паразитируют на живых существах.

Особенности питания грибов

Способы питания

В природе существует 2 основных способа питания – гетеротрофное и автотрофное. В чем их отличие? Гетеротрофами являются все животные, многие бактерии и грибы. Эти организмы не способны синтезировать органические вещества из неорганических. Они должны получать нужные соединения из внешней среды.

Автотрофы – растения и часть бактерий. В их клетках есть особенные пластиды – хлоропласты. В них содержится вещество хлорофилл зеленого цвета. Оно катализирует реакцию, после которой углекислый газ, азот и вода, под воздействием световой энергии, способны превращаться в сложные органические соединения.

Таким образом, растения сами обеспечивают себя строительным и энергетическим материалом, за счет которого они растут. Из внешней среды они получают лишь воду, кислород и минералы.

Грибы называют гетеротрофами, они не способны самостоятельно синтезировать органические вещества из неорганических. В этом они схожи с животными. Второй момент, который сближает это царство с фауной — способность выделять ферменты для расщепления сложных соединений. Только у животных этот процесс проходит внутри тела, а у грибов – во внешней среде.

С царством растений эти организмы тоже имеют кое-что общее. Их сближает способ поглощения питательных веществ. Он проходит путем впитывания из субстрата через клеточную стенку. У высших представителей царства это происходит через особый орган – мицелий. Но хлорофилла у них нет, а значит реакция фотосинтеза невозможна.

Способ питания

Для нормального функционирования любого живого организма необходимы протеины, углеводы и жиры. Протеины синтезируются в клетках из аминокислот, поступающих у гетеротрофов из внешней среды. Жиры входят в состав клеточных стенок, становятся энергетическим резервом при дефиците углеводов. Сложные углеводы получают из глюкозы, они являются энергетическим материалом. У растений из простых углеводов синтезируются сложные – крахмал и клетчатка. У животных они превращаются в гликоген, здесь у грибов полное сходство с фауной, в их организме также присутствует гликоген.

Чтобы получить все эти вещества из внешней среды, они должны разложить более сложные соединения до простых. Ведь в клетку не попадают ни пептиды, ни крахмал, ни клетчатка. Для этого организмы выделяют во внешнюю среду ферменты. Некоторые представители царства, например, дрожжи, ферментов не имеют. Поэтому они живут на специфическом субстрате из простых углеводов, который проникает через клеточные стенки.

Сложные многоклеточные высшие грибы синтезируют ферменты в мицелии, некоторые виды и в плодовых телах. Каждая разновидность имеет свои особенности. Одни вырабатывают ферменты, способные растворять большое количество веществ. Другие имеют лишь специфические, например, расщепляющие только кератин. От этого зависит, на какой среде они будут расти.

Тело многоклеточных разновидностей состоит из особых нитей – гифов. Именно через их клетки всасываются питательные вещества. Здесь же происходит синтез протеинов, превращение глюкозы в гликоген, простых липидов в сложные жиры. Гифы закрепляются на субстрате. В зависимости от того, какую среду и способ питания выбирают грибы, их разделяют на:

  • Сапрофиты или сапротрофы;
  • Паразиты;
  • Симбиотики.

Большинство представителей царства относятся к типу сапрофиты. Но существуют тысячи паразитирующих видов. Некоторые выбрали особый способ взаимодействия с другими организмами – взаимовыгодный симбиоз. Такие грибы не питаются только за счет другого организма, а помогают ему получать из внешней среды химические элементы. Это их главное отличие от паразитов.

Грибы сапрофиты

Плесневые грибы селятся на любой поверхности

Способы питания грибов сапрофитов классические. По мнению многих ученых он является первичным по отношению к любому другому типу, характерен для большинства представителей этого царства. Такие организмы поселяются на определенном мертвом субстрате – почве, пнях деревьев, полуразложившихся плодах, продуктах, трупах животных. Гифы пронизывают этот субстрат, начинают выделять ферменты и впитывать питательные вещества.

Сапротрофы играют важную роль в природе. Питаются грибы мертвыми организмами и разлагают их. Так высвобождаются зольные элементы, доступные для поглощения растениями. Из простых минералов автотрофы синтезируют сложную органику, которая необходима гетеротрофам для поддержания жизненного цикла всего живого.

Большинство сапрофитов живет в грунте. Они бывают микроскопическими и макроскопическими. В группе макроскопических сапрофитов самые распространенные шляпочные и плесневые. Шляпочные виды каждый знает, они растут в лесах и на лугах, бывают съедобными и несъедобными. Живут на старой древесине, берут участие в разложении опавшей хвои и листьев. Питаются продуктами распада органических веществ.

Плесневые разновидности поселяются на любой среде, включая домашние продукты. Это также мертвая материя, которая становится их питательным субстратом. Это одна из самых многочисленных групп, которая заселяет все уголки планеты. Грибы плесневые питаются, разлагая грубую органику до более простой, затем к процессу подключаются бактерии.

Грибы паразиты

Паразитический образ жизни и питания грибов является вторичным, но довольно распространенным. В процессе эволюции некоторые виды выбрали среду, на которой у них было меньше конкурентов. Они обитают на живых организмах, питаются грибы продуктами их жизнедеятельности. Некоторые убивают часть ткани с помощью ферментов, потом используют образовавшиеся полуразложившиеся вещества.

Все разновидности этой группы условно подразделяются на:

  • Вредителей растений (спорынья, фитофтора, серая гниль)
  • Вредителей беспозвоночных животных (паразитируют на муравьях, пчелах, ракообразных)
  • Вредителей позвоночных (паразитируют на амфибиях, рептилиях, птицах, млекопитающих)
  • Паразитов человека (чаще всего это дрожжи рода Кандида)

Многие паразиты обладают строгой специфичностью, поражают только один вид растений или животных. К этому типу относятся и такие, которые имеют более широкий круг хозяев. Если грибок не живет вне чужого организма и это его единственный способ питания, то называется облигатным паразитом. Для него характерно простое строение, часто это одноклеточные существа. Например, распространенные возбудитель молочницы Кандида, является одноклеточным дрожжевым грибком.

Есть сапрофиты, которые в определенные моменты способны переходить на паразитический образ жизни и становится своеобразными хищниками. Они относятся к факультативному типу, поражают ослабленных животных и растения. Например, обычная плесень заселяет еще живые листья во влажной среде. Аспергиллез, опасное Грибковое заболевание человека, развивается только у людей с ослабленным иммунитетом. Хотя эти грибы широко распространены в природе и даже живут в человеческом теле.

Существует еще один способ неполного паразитирования. Грибы питаются органическими веществами и живут в организме, не причиняя ему вреда. Когда растение или животное умирает, грибки начинают размножаться, питаясь наркотизированными тканями. Это естественный механизм, помогающий быстрее разлагать трупы живых организмов.

Симбиоз

Такой способ взаимодействия довольно распространен в природе, хотя и специфичен. Два несовершенных организма используют особенности друг друга и взаимно приносят пользу. Шляпочные виды часто вступают в симбиоз с деревьями в лесу. Их грибница окутывает корни растения, проникает в клетки. Площадь ее достигает 1-6 км² и даже больше.

Через гифы проходит всасывание минеральных веществ и делятся ими с деревом. Таким образом к нему поступает почти вся таблица Менделеева Всасывающая поверхность корней увеличивается, что стимулирует рост дуба, березы, осины или другого вида. Некоторые деревья даже не могут существовать без своих помощников, ворсинки их корней атрофируются.

Гриб получает от дерева органические вещества в больших дозах, которое оно синтезирует на свету путём фотосинтеза. Часто эти соединения поступают в мицелий уже в простом, доступном для клеток виде. В результате таких нормализированных отношений у видов больше шансов выжить в естественной конкуренции.

питание грибов

Питание грибов

Питание бактерий и грибов.Биология 6 класс

Лишайники

Симбиоз грибов и водорослей породил особый вид организмов – лишайники, которые относятся одновременно к двум царствам. Их иногда ошибочно называют грибами автотрофами. Но в составе лишайников гриб продолжает питаться гетеротрофным способом.

За компонент фотосинтеза в этом тандеме отвечают водоросли, которые получают от своего «напарника» минеральные вещества. Грибные гифы прикрепляются к субстрату (почве, коре дерева) и впитывают оттуда воду, зольные элементы, передают их водорослям. Те вырабатывают органику из углерода, водорода и азота, которую потом используют грибы.

Заключение

Питание любого гриба – это сложный процесс, который является частью круговорота химических веществ в природе. В этой цепочке не бывает лишних участков. Даже паразиты играют свою роль, они очищают среду от ослабленных организмов и ускоряют их разложение после смерти. Растут грибы почти во всех уголках планеты, на любых средах, являются одними из самых распространенных организмов.

fermoved.ru

Автотрофное и гетеротрофное питание растений. Корневые волоски

Автотрофное и гетеротрофное питание растительных организмов

По характеру пищи, используемой в процессе жизнедеятельности, все живые организмы делятся на автотрофных и гетеротрофных. Неорганические составные — CO2, H2O и др. — служат основной пищей для автотрофных организмов (большинство растений), которые синтезируют из них путём фотосинтеза или хемосинтеза органические вещества: белки, жиры, углеводы, — составляющие пищу гетеротрофных организмов (ряд растений, все Грибы, животные и человек). Помимо белков жиров и углеводов гетеротрофным организмам необходимы витамины, нуклеиновые кислоты и микроэлементы.

Сложноцветное изображение, показывающие глобальное распределение фотосинтеза, включая фитопланктон и земную растительность

Автотрофы — организмы, синтезирующие из неорганических соединений органические вещества. Часть организмов (фотоавтотрофы) использует для этого энергию солнца. К ним относятся высшие растения (исключение составляют растения-паразиты), водоросли (фотоавтотрофные протисты), фотосинтезирующие бактерии. Они получают энергию в ходе фотосинтеза, осуществляющегося в хлоропластах (эукариоты) или на клеточных мембранах (прокариоты). В ходе фотосинтеза образуется не только глюкоза, но и аминокислоты, используемые для построения белков. Другие организмы используют для этого энергию, высвобождающуюся в ходе химических реакций. Такие организмы называются хемоавтотрофами. К хемотрофам относятся хемосинтезирующие бактерии, образующие органику в ходе хемосинтеза. Автотрофы являются продуцентами в сообществах, именно они составлют первый ярус в пищевой пирамиде (первые звенья пищевых цепей)

Лист — лаборатория фотосинтеза в растениях

Гетеротрофы — организмы, которые не способны синтезировать органические вещества из неорганических. Для синтеза необходимых для своей жизнедеятельности органических веществ им требуются органические вещества, произведённые другими организмами. В процессе пищеварения пищеварительные ферменты расщепляют полимеры органических веществ на мономеры. В сообществах гетеротрофы — это консументы различных порядков и редуценты.

Некоторые организмы (например, хищные растения) сочетают в себе признаки как автотрофов, так и гетеротрофов. Такие организмы называются миксотрофами.

У низших организмов выделяют три типа питания продуктами в основном растительного происхождения, т.е. гетеротрофного питания: симбиотический, паразитический и сапрофитный.

При симбиотическом питании один организм питается отходами другого, не причиняя ему вреда. Например, нитрифицирующие бактерии, живущие на бобовых растениях снабжают их азотом. В кишечнике млекопитающих находятся бактерии, помогающие расщеплять питательные вещества, например кишечная палочка E.coli. Благодаря безвредности данной бактерии для человека она широко используется при создании БСС.

Схема взаимосвязанности аутотрофного и гетеротрофного питания

При паразитическом питании организм-паразит разрушает системы жизнедеятельности организма-хозяина.

При сапрофитном питании организмы выделяют ферменты на мертвый или разлагающийся органический материал. К ним относятся грибы, ряд бактерий и насекомых. Некоторые сапрофиты выделяют ферменты протеазы, способные разлагать белки, растворять оболочки других клеток, в том числе болезнетворных. Поэтому протеазы широко применяют в качестве объектов биотехнологии в моющих средствах, а также в БСС для обнаружения с помощью ферментативных реакций различных специфичных для них белков-субстратов

Охарактеризовать функции и строение корневых волосков

Различные части корня выполняют неодинаковые функции и характеризуются определенными морфологическими особенностями. Поступление почвенного раствора в корень происходит преимущественно через зону всасывания, поэтому чем больше поверхность этого участка корня, тем лучше он выполняет свою основную всасывающую функцию. Именно в связи с этой функцией часть клеток кожицы вытянута в корневые волоски длиной 0,1—8 мм. Корневые волоски появляются в виде небольших сосочков — выростов клеток эпиблемы. Рост волоска осуществляется у его верхушки. Оболочка корневого волоска растягивается быстро. По прошествии определенного времени корневой волосок отмирает. Продолжительность его жизни не превышает 10—20 дней.


Корни деревьев

Почти всю клетку корневого волоска занимает вакуоль, окруженная тонким слоем цитоплазмы. Ядро располагается в цитоплазме возле верхушки волоска. Корневые волоски способны охватывать частички почвы, как будто срастаются с ними, что облегчает поглощение из почвы воды и минеральных веществ. Поглощению способствует также выделение корневыми волосками различных кислот (угольной, яблочной, лимонной, щавелевой), которые растворяют частички почвы.

Формируются корневые волоски очень быстро (у молодых сеянцев яблони за 30—40 ч). На 1 кв. мм корня при благоприятных условиях образуется до 300—400 корневых волосков, которые создают огромную поглощающую поверхность. У одной особи четырехмесячного растения ржи примерно 14 млрд. корневых волосков с площадью поглощения около 400 м2 и суммарной длиной более 10 тыс. км; поверхность всей корневой системы, включая корневые волоски, составляет примерно 640 м2, т.е. в 130 раз больше, чем у побега. Функционируют корневые волоски недолго — обычно 10—20 дней. Средняя медленность жизни волоска у винограда — от 10 до 40 суток. Сменяют отмершие корневые волоски в более нижней части корня новые. Таким образом, наиболее деятельная, всасывающая зона корней все время перемещается вглубь и в стороны вслед за растущими кончиками разветвлений корневой системы. При этом общая всасывающая поверхность корней все время увеличивается.

Каждый волосок представляет из себя вытянутую клеточку. В связи с ростом корня, перемещением и обновлением поглощающей зоны происходит константа смена волосков, обеспечивающая непрерывную активную работу корневой системы (Андросов, 2006).



biofile.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *