Неорганические вещества клетки

Из неорганических веществ в состав клетки входят 86 элементов Периодической таблицы, около 16-18 элементов жизненно необходимы для нормального существования живой клетки.

Среди элементов выделяют: органогены, макроэлементы, микроэлементы и ультрамикроэлементы.

Органогены

Это вещества, из которых состоят органические вещества: кислород, углерод, водород и азот.

 

Кислород (65-75%) — содержится в огромном количестве органических молекул — белках, жирах, углеводах, нуклеиновых кислотах. В виде простого вещества (О2) образуется в процессе оксигенного фотосинтеза (цианобактерии, водоросли, растения).

Функции: 1. Кислород — сильный окислитель (окисляет глюкозу в процессе клеточного дыхания, в процессе выделяется энергия)

2. Входит в состав органических веществ клетки

3. Входит в состав молекулы воды

 

Углерод (15-18%) — является основой строения всех органических веществ. В виде углекислого газа выделяется в процессе дыхания, а поглощается в процессе фотосинтеза. Может быть в виде СО — угарного газа. В виде карбоната кальция (СаСО3) входит в состав костей.

 

Водород (8 — 10%) — как и углерод входит в состав любого органического соединения. А еще входит в состав воды.

 

Азот (2 — 3%) — входит в состав аминокислот, а значит и белков, нуклеиновых кислот, некоторых витаминов и пигментов. Фиксируется бактериями из атмосферы.

 

Макроэлементы

Магний (0,02  — 0,03%)

1. В клетке — входит в состав ферментов, участвует в синтезе ДНК и энергетическом обмене

2. У растений — входит в состав хлорофилла

3. У животных — входит в состав ферментов, участвующих в функционировании мышечной, нервной и костной тканей.

 

Натрий (0,02 — 0,03%)

1. В клетке — входит в состав калиево-натриевых каналов и насосов

2. У растений — участвует в осмосе, что обеспечивает поглощение воды из почвы

3. У животных — участвует в работе почек, поддержании сердечного ритма, входит в состав крови (NaCl), помогает поддерживать кислотно-щелочной баланс

 

Кальций (0,04 — 2,0%)

1. В клетке — участвует в избирательной проницаемости мембраны, в процессе соединения ДНК с белками

2. У растений — образует соли пектиновых веществ, придает твердость межклеточному веществу, соединяющему растительные клетки, а также участвует в формировании межклеточных контактов

3. У животных — входит в состав костей позвоночных, раковин моллюсков и коралловых полипов, участвует в образовании желчи, повышает рефлекторную возбудимость спинного мозга и центра слюноотделения, участвует в синаптической передаче нервного импульса, в процессах свертывания крови, является необходимым фактором сокращения поперечно-полосатой мускулатуры

 

Железо (0,02%)

1. В клетке — входит в состав цитохромов

2. У растений — участвует в синтезе хлорофилла, входит в состав ферментов, участвующих в дыхании, входят в состав цитохромов

3. У животных — входит в состав гемоглобина

 

Калий (0,15 — 0,4%)

1. В клетке — поддерживает коллоидные свойства цитоплазмы, входит в состав калиево-натриевых насосов и каналов, активизирует ферменты, участвующие в синтезе белка при гликолизе

2. У растений — участвует в регуляции водного обмена и фотосинтеза

3. Нужен для правильного сердечного ритма, участвует в проведении нервного импульса

 

Сера (0,15 — 0,2%)

1. В клетке — входит в состав некоторых аминокислот — цитина, цистеина и метионина, образует дисульфидные мостики в третичной структуре белка, входит в состав некоторых ферментов и кофермента А, входит в состав бактериохлорофилла, некоторые хемосинтетики используют соединения серы для получения энергии

2. У животных — входит в состав инсулина, витамина В1, биотина

 

Фосфор (0,2 — 1,0%)

1. В клетке — в виде остатков фосфорной кислоты входит в состав ДНК, РНК, АТФ, нуклеотидов, коферментов НАД, НАДФ, ФАД, фосфорилированных сахаров, фосфолипидов и многих ферментов, в составе фосфолипидов образует мембраны

2. У животных — входит в состав костей, зубов, у млекопитающих является компонентом буферной системы, поддерживает кислотный баланс тканевой жидкости относительно постоянным

 

Хлор (0,05 — 0,1%) 

1. В клетке — участвует в поддержании электронейтральности клетки

2. У растений — участвует в регуляции тургорного давления

3. У животных — участвует в формировании осмотического потенциала плазмы крови, также в процессах возбуждения и торможения в нервных клетках, входит в состав желудочного сока в виде соляной кислоты

 

Микроэлементы

Медь

1. В клетке — входит в состав ферментов, участвующих в синтезе цитохромов

2. У растений — входит в состав ферментов, участвующих в реакциях темновой фазы фотосинтеза

3. У животных — участвует в синтезе гемоглобина, у беспозвоночных входит в состав гемоцианинов — переносчиков кислорода, у человека — входит в состав пигмента кожи — меланина

 

Цинк

1. Участвует в спиртовом брожении

2. У растений — входит в состав ферментов, участвующих в расщеплении угольной кислоты и в синтезе растительных гормонов-ауксинов

 

Йод

1. У позвоночных — входит в состав гормонов щитовидной железы (тироксин)

 

Кобальт

1. У животных — входит в состав витамина В12 (принимает участие в синтезе гемоглобина), его недостаток приводит к анемии

 

Фтор

1. У животных — придает прочность костям и зубной эмали

 

Марганец

1. В клетке — входит в состав ферментов, участвующих в дыхании, окислении жирных кислот, повышает активность карбоксилазы

2. У растений — в составе ферментов участвует в темновых реакциях фотосинтеза и в восстановлении нитратов

3. У животных — входит в состав фосфатаз-ферментов, необходимых для роста костей

 

Бром

1. В клетке — входит в состав витамина В1, который участвует в расщеплении пировиноградной кислоты

 

Молибден

1. В клетке — в составе ферментов участвует в фиксации атмосферного азота

2. У растений — в составе ферментов участвует в работе устьиц и ферментов, участвующих в синтезе аминокислот

 

Бор

1. Влияет на рост растений

 

Функции минеральных солей

Минеральные соли в водных растворах диссоциируют на катионы (положительные ионы) и анионы (отрицательные ионы).

1. Сохранение кислотно-щелочного равновесия

За счет буферных систем происходит регуляция рН среды. Фосфатная буферная система поддерживает рН внутриклеточной среды в пределах 6,9-7,4. Бикарбонатная – на уровне 7,4.

2. Активация ферментов

Некоторые катионы являются активаторами и компонентами различных ферментов, витаминов и гормонов.

3. Структурная

Различные неорганические вещества служат источником для синтеза органических молекул или участвуют в образовании внутреннего и наружного скелета организмов.

4. Создание мембранных потенциалов клеток

Внутри клетки преобладают ионы калия, а снаружи – ионы натрия и хлора. В результате образуется разность потенциалов внешней и внутренней поверхности мембраны клетки.

5. Создание осмотического давления

Внутри клетки концентрация ионов солей выше, что обеспечивает поступление в клетку воды, создает тургорное давление.

 

 

 

 

Кириленко А. А. Биология. ЕГЭ. Раздел «Молекулярная биология». Теория, тренировочные задания. 2017.

cleverpenguin.ru

Химический состав клетки.

В живых организмах содержится большое количество химических элементов. Они образуют два класса соединений – органические и неорганические.

Неорганические вещества, входящие в состав клетки.

В клетках разных организмов обнаружено около 70 элементов периодической системы химических элементов Д.И. Менделеева, но лишь 24 из них имеют установленное значение и встречаются постоянно во всех типах клеток.

Наибольший удельный вес в элементном составе клетки приходится на кислород, углерод, водород и азот. Это так называемые основные или биогенные элементы. На долю этих элементов приходится более 95% массы клеток, причем их относительное содержание в живом веществе гораздо выше, чем в земной коре.

Жизненно важными являются кальций, фосфор, сера, калий, хлор, натрий, магний и железо. Их содержание в клетке исчисляется десятыми и сотыми долями процента. Перечисленные элементы составляют группу макроэлементов.

Другие химические элементы: медь, кобальт, марганец, молибден, цинк, бор, фтор, хром, селен, алюминий, йод, кремний – содержатся исключительно в малых количествах (менее 0,01% массы клеток). Они относятся к группе микроэлентов.

Процентное содержание в организме того или иного элемента никоим образом не характеризует степень важности и необходимости в организме. Так, например, многие микроэлементы входят в состав различных биологически активных веществ – ферментов, витаминов, гормонов, оказывают влияние на рост и развитие, кроветворение, процессы клеточного дыхания и т.д.

Вода. Играет важную роль в жизни клеток и живых организмов в целом. Помимо того, что она входит в их состав, для многих организмов это еще и среда обитания. Роль воды в клетке определяется ее свойствами. Свойства эти довольно уникальны и связаны главным образом с малыми размерами молекул воды, с полярностью ее молекул и с их способностью соединяться друг с другом водородными связями.

Молекулы воды имеют нелинейную пространственную структуру. Атомы в молекуле воды удерживаются посредством полярных ковалентных связей, которые связывают один атом кислорода с двумя атомами водорода. Полярность ковалентных связей объясняется в данном случае сильной электроотрицательностью атомов кислорода по отношению к атому водорода; атом кислорода оттягивает на себя электроны их общих электронных пар.

Вследствие этого на атоме кислорода возникает частично отрицательный заряд, а на атомах водорода – частично положительный. Между атомами кислорода и водорода соседних молекул воды возникают водородные связи.

Вода является превосходным растворителем для полярных веществ, например солей, сахаров, спиртов, кислот. Вещества, растворимые в воде, называются гидрофильными.

Не растворимые в воде вещества называются гидрофобными.

Вода обладает высокой теплоемкостью. Для разрыва водородных связей, удерживающих молекулы воды, требуется поглотить большое количество энергии. Это свойство обеспечивает поддержание теплового баланса организма при значительных перепадах температуры в окружающей среде. Кроме того, вода обладает высокой теплопроводностью, что позволяет организму поддерживать одинаковую температуру во всем его объеме. Вода обладает также высокой теплотой парообразования, т.е. способностью молекул уносить с собой значительное количество тепла, охлаждая организм. Это свойство воды используется при потоотделении у млекопитающих, тепловой одышке у крокодилов и транспирации (испарении) у растений, предотвращая их перегрев.

studfiles.net

Химический состав клеток. Неорганические соединения клетки

Урок на тему

«Химический состав клеток.

Неорганические соединения клетки»

Цели урока:


  1. Расширение и углубление знаний учащихся о роли металлов в жизнедеятельности человеческого организма.

  2. Развитие навыков самостоятельной работы; умения использовать знания, полученные ранее при изучении биологии и химии; работать с таблицами; сравнивать, анализировать, делать выводы.

  3. Воспитание бережного отношения к здоровью человека, чувства коллективизма, ответственности за общее дело.

Задачи:

  1. Познакомить учащихся с биологически важными химическими элементами, входящими в состав клетки.

  2. Рассмотреть особенности строения молекулы воды в связи с ее функциями в клетке. Объяснить важность воды как основного неорганического вещества клетки.

  3. Изучить значение катионов и анионов в жизнедеятельности клеток.

  4. Подвести к выводу о единстве живой и неживой природы на основе знаний об элементарном составе клеток.

Оборудование: Таблица «Содержание химических элементов в клетке», «Макро-микро элементы», карточки с химическими символами, оборудование для демонстрации лабораторного опыта, видеофильм.
Ход урока.

Актуализация нового материала.

В состав живых клеток входит более 90 химических элементов периодической системы Д.И.Менделеева, встречающихся и в неживой природе. Однако, соотношение химических элементов и их вклад в образование веществ, составляющих живой организм, резко отличается от объектов неживой природы. Так, в неорганическом мире преобладают фосфор, кремний, магний, железо, алюминий и др. Содержание элементов в живых клетках находится в другой пропорции.

Обращаем внимание на эпиграф, написанный на доске. «Я знаю, люди состоят из атомов, частиц, как радуги из светящихся пылинок или фразы из букв. Стоит изменить порядок, и наш смысл меняется». (А.Вознесенский). С небольшой поправкой на поэтическую вольность этот тезис можно принять.

Комбинируя по-разному эти элементарные «кирпичики», природа создала все разнообразие царств живой природы – более 2,5 млн. живых существ. И даже эти цифры все время меняются, ученые ежегодно открывают более 10 тысяч новых видов и подвидов животных и 5 тысяч видов растений.

И все это многообразие живой природы состоит из одних и тех же химических элементов, из которых львиная доля приходится всего на 25, а остальные – в следовых количествах.

О роли этих элементов и веществах, которые они образуют, нам предстоит узнать на ближайших уроках.


  1. Атомный состав клеток.

Элементы, по их содержанию в живых клетках можно условно разделить на три группы.

1. Макроэлементы.

Их концентрация колеблется от 60% до 0,001% массы тела.

Шесть первых наиболее значимы по их количеству от общей массы клетки.

Кислород – O (более 60%).

Углерод – С (15-18%).

Водород – Н (8-10%).

Азот – N (1,5-3%).

Фосфор – Р (0,2-1%).

Сера – S (0,15-0,2%).

На долю этих шести элементов приходится более 98% от массы клетки, поэтому такие элементы называют биоэлементами.

О первых четырех элементах этого списка немецкий поэт Фридрих Шиллер написал:

Силы четыре,

Соединяясь,

Жизнь образуют,

Мир создают.

К этой группе также относятся K, Na, Cl, Ca, Mg , Fe и некоторые другие.

Рассмотрим роль этих элементов в объектах живой природы.


  1. Кислород. Входит в состав воды и всех органических молекул: белков, жиров, углеводов, нуклеиновых кислот. Важная роль в обмене веществ, как окислителя для получения энергии.

  2. Водород. Также входит в состав воды и всех органических соединений. Ионы водорода создают кислую среду и способствуют протеканию многих реакций, например, для пищеварения в желудке.

Особенно чувствителен организм к увеличению или уменьшению водорода, точнее иона водорода, от которого зависит кислотность внутренней среды

Если кровь станет на 8-10% кислее, чем нужно, или наоборот, это может привести к гибели человека.



  1. Углерод. Базовый строительный материал всех органических соединений. Вспомните, ведь органическая химия изучает углеводороды и их производные.

  2. Азот. Входит в состав основного строительного материала клетки – в белки. Кроме того, входит в состав ДНК и РНК, АТФ.

5. Фосфор. Участвует в энергетическом обмене, так как является составляющей частью АТФ. Соли фосфора входят в состав костей, придавая им твердость. Недостаток фосфора приводит к рахиту, снижает мышечную и умственную деятельность.

6. Сера. В основном, встречается в белках. Входит в состав витамина В1 и некоторых ферментов. Особенно большое значение имеет для хемосинтезирующих бактерий.


  1. Калий и натрий. Ионы этих металлов обеспечивают разность потенциалов по разные стороны клеточной мембраны, что делает возможным работу клетки. Образуют так называемый калие-натриевый барьер.

Ион натрия окружен оболочкой воды, поэтому потеря натрия ведет и к потере воды, а избыток – скопление лишней жидкости в организме, что приводит к гипертонии.

  1. Железо. Около 55% железа находится в эритроцитах, входит в состав белка гемоглобина. Примерно 21% откладывается «про запас» в печени и селезенке. Людям, страдающим железодефицитной анемией необходимо употреблять мясо, а чай – ограничить, так как из-за дубильных веществ в чае, они образуют трудно расщепляемый в организме комплекс.

  2. Кальций. Необходим для нормального развития скелета, работы нервной системы. При избытке кальция развивается мочекаменная болезнь. Способствует свертыванию крови. Входит в состав хлорофилла.

Раздать учащимся таблицы «Макро-микро элементы» с предложением самостоятельно выписать значение для жизни живых существ макроэлементов (2-3 элемента по выбору учащихся).

Не надо забывать, что недостаток того или иного элемента опасен и даже губителен для организма. Однако, избыток также опасен для живых клеток. Еще Парацельс говорил, что лишь мера определяет, быть веществу вредным или полезным.

Это золотое правило также справедливо и для химических элементов, речь о которых пойдет ниже.
2. Микроэлементы.

К этой группе относятся в основном ионы тяжелых металлов, составные компоненты ферментов, гормонов и других жизненно важных соединений.

Содержатся в организме в количестве 0,001-0,000001%.

Таковыми являются марганец (Mn), бор (B), кобальт (Co), медь (Cu), молибден (Mo), цинк (Zn), йод (I), бром (Br), алюминий (Ai), фтор (F).

Вашему вниманию предлагается сообщение, подготовленное учащимися, о роли некоторых микроэлементов в жизнедеятельности объектов живой природы. (Приложение №1).

По ходу рассказа докладчика учащимся предлагается делать записи в тетради.

О роли других микроэлементов – рассказ учителя с элементами беседы.
1.Марганец. Участвует в фотолизе воды при фотосинтезе. В следовых количествах обнаружен в ферментах, катализирующих окислительно-восстановительные реакции. Участвует в синтезе витамина С. Содержится в костях, печени, почках, поджелудочной железе и гипофизе (1-3 мг/кг).

При инфаркте миокарда и язвенной болезни двенадцатиперстной кишки его уровень всегда превышен, а вот у больных первичным раком и циррозом печени уровень марганца в крови весьма низок.

2.Бор. Влияет на ростовые процессы, особенно у растений.

3. Кобальт. У растений участвует в фиксации атмосферного азота.

4.Медь. Образование костной ткани, пигмента кожи. В процессе кроветворения, у беспозвоночных – в белке гемоцианине – «голубая кровь». Входит в состав ферментов-оксидаз.

«Хозяйкой медной горы» в организме человека является печень. Содержится в форменных элементах крови – эритроцитах.

5.Молибден. Влияет на рост, развитие и воспроизводство человека и животных.

6.Цинк. Входит в состав гормона инсулина. Дефицит цинка вызывает расстройство половой функции. Влияет на синтез нуклеиновых кислот.

Общее содержание цинка в теле человека весом 70 кг составляет 2-3г. Наибольшее количество обнаруживается в сетчатке глаза, предстательной железе и мышцах. Входит в состав фермента, ускоряющего выделение углекислого газа в легких. При злокачественных новообразованиях содержание ионов цинка увеличивается в 2-3 раза. Это явление необъяснимо, но может служить для ранней диагностики рака.

Цитата из рассказа Валентина Распутина «Век живи – век люби».

— Ну и что ты собираешься делать с этой ягодой? – вдруг негромко спросил, но как-то значительно, с ударением.

— Не знаю, — пожал плечами Саня.

Он решил, что дядя Володя спрашивает потому, что не уверен, сумеет ли он, Сеня, обработать без взрослых ягоду.

— Сварю, наверное, половину… половину истолку.

— Нельзя ее варить, — решительно и твердо сказал дядя Володя. И еще решительнее добавил:

— И есть ее нельзя.

— Почему?

— Какой дурак берет ягоду в оцинкованную посуду? Да еще чтобы ночевала?
7. Йод. Оказывает влияние на функцию щитовидной железы. Недостаток ведет к образованию зоба.

8. Бром. Участвует в реакциях, которые уравновешивают процессы возбуждения и торможения в коре головного мозга. Больше всего брома в мозге, также встречается в печени и почках.

Персонажи многих книг, написанных в прошлом веке, чтобы успокоиться, «принимали бром». Не сам бром, разумеется, а растворы бромистого натрия или бромистого калия.

9.Алюминий. Вы помните песню группы «Кино» «Алюминиевые огурцы»? Этот металл, действительно, имеется в больших количествах в растениях, они содержат в 5-50 раз больше алюминия, чем продукты животного происхождения. В организме человека больше всего алюминия содержится в легких (5,59%), костях, головном мозге, почках. Алюминий связан с белками, принимает участие в построение эпителиальной и соединительной ткани, увеличивает выработку соляной кислоты в желудке. У больных хроническим алкоголизмом содержание в крови резко увеличивается, а при токсикозе беременных и нефропатии – снижается.

10. Фтор. Недостаток ведет к кариесу зубов, переизбыток вызывает флюороз (пятнистость эмали зубов).
Обратиться к таблице «Макро-микроэлементы» для самостоятельной записи в тетрадь роли 1-2 микроэлементов.
3. Ультрамикроэлементы.

Их концентрация не превышает 0,000001%.

К ним относятся редкие элементы: уран (U), радий (Ra), золото (Au), ртуть (Hg), бериллий (Be), цезий (Cs), селен (Se) и другие. Роль этих элементов практически неизвестна, ее еще предстоит изучить. Однако, о некоторых из них имеются данные.

Ртуть. Присутствует в молекулах ДНК и, возможно, участвует в передачи наследственной информации.

Селен. Значительная концентрация этого элемента в сетчатке глаз говорит о том, что он необходим для восприятия света. У животных, не получающих селена, разрушаются кровяные тельца. С другой стороны, он входит в состав яда самого опасного гриба – бледной поганки.
II Молекулярный состав клеток.

Одни и те же химические элементы входят в состав как неорганических веществ (воды и минеральных солей), характерных и для живых организмов и существующих в неживой природе, так и органических веществ – углеводов, липидов, белков, нуклеиновых кислот, характерных только для живых соединений.


Химические соединения

в клетке


↓ ↓

неорганические: органические:



  1. вода; 1. белки;

  2. минеральные 2. жиры;

соли. 3. углеводы;

4. нуклеиновые кислоты;

и д.р.

1. Вода.

Вода – одно из самых распространенных веществ на Земле. Все живые вещества состоят из воды. В среднем, в живой клетке воды 70 – 80%. Так, в крови и лимфе человека 92% воды, в сером веществе головного мозга – 85%, 20% — в костной ткани, 10% — в эмали зубов, самом твердом веществе человеческого тела. В теле медузы или в плодах огурцов – до 98%.

Вода в клетках находится в двух состояниях: свободной и связанной.

Свободная вода – 95% от всей воды в клетке, она-то и участвует в физиологических процессах, а связанная – 4-5%, непрочно соединена с белками.

Что же это за вещество – вода, такое простое и такое необходимое нашему организму?

Прежде, чем мы поговорим о свойствах воды, хочется зачитать одно известное высказывание, которое по праву можно назвать «Одой воде».

«Вода! Ты не имеешь ни вкуса, ни цвета, ни запаха, тебя невозможно описать. Тобой наслаждается человек, не понимая, что ты есть на самом деле. Нельзя сказать, что ты необходима для жизни, ты – сама жизнь. Ты везде и всюду даешь ощущение блаженства, которое нельзя понять ни одним из наших пяти органов чувств. Ты возвращаешь нам силу. Твое милосердие заставляет вновь ожить высохшие источники нашего сердца. Ты – самое большое богатство в мире, … но можно умереть около источника, если его воды несут примесь магнезии. Можно умереть и в двух шагах от озера, если оно соленое. Человек может умереть и тогда, когда он имеет два литра росы, но она содержит примеси вредных солей. Ты не терпишь примесей, не терпишь ничего из того, что тебе чуждо. Ты богатство, которое легко можно спугнуть, но ты даешь нам такое простое и бесконечное счастье», этот восторженный гимн воде написал французский писатель и летчик Антуан де Сент-Экзюпери, которому пришлось испытать на себе муки жажды в раскаленной пустыне.
Просмотр отрывка учебного видеофильма «Вода».
Значение воды.


  1. Универсальный растворитель.

Это свойство воды можно доказать, рассмотрев строение молекулы воды.

О-2

/ \

Н+ Н+

Вода – диполь, молекула полярная, один ее конец заряжен частично положительно, другой – частично отрицательно. В связи с этим молекулы воды могут приобретать определенную ориентацию в электрическом поле, а также взаимодействовать с ионами или заряженными группами различных соединений, образуя вокруг них гидратную оболочку. Этим объясняется способность воды хорошо растворять большое количество неорганических и полярных органических соединений (различных солей, углеводов, аминокислот, многих белков и т.д.). По отношению к воде все вещества можно условно разделить на две группы.

Демонстрация опытов (с привлечением учащихся)

Растворить в воде следующие вещества:

а) поваренную соль,

б) этиловый спирт,

в) сахарозу,

г) растительное масло.

Вопрос: почему одни вещества в воде растворяются, а другие – нет?

Дать понятие гидрофильных и гидрофобных веществ.

А) Гидрофильные вещества – хорошо растворимые в воде. Пример: соли, сахара, аминокислоты.

Б) Гидрофобные вещества – нерастворимые в воде. Пример: жиры, целлюлоза.


  1. Теплопроводность – равномерное распределение тепла между тканями тела.

Это свойство позволяет организму поддерживать одинаковую температуру во всем его объеме.

3. Теплоёмкость – способность поддерживать тепловой баланс организма при значительных перепадах температуры в окружающей среде.

Это свойство можно проиллюстрировать примером из неживой природы. Если нагревать равные количества разных веществ, то вода поглощает тепла больше в 5 раз по сравнению с песком, в 10 и 33 раза больше по сравнению с железом и платиной и во столько же раз дольше удерживает это тепло.

Океаны, моря, реки, озера, поглощая летом огромное количество солнечной энергии, зимой отдают ее в окружающее пространство, смягчая климат Земли.


4. Терморегуляция. Примеры: испарение листьев – транспирация, потоотделение.

5. Источник кислорода при фотосинтезе. При фотолизе воды свободный кислород как побочный продукт поступает в атмосферу.

6. Другие свойства воды: тургор (напряженное состояние клеточных стенок растительных клеток), участвует в образовании смазывающих жидкостей (с суставах, околосердечной сумке), выделение веществ (пот, моча, слезы, слюна).

2. Минеральные соли и их значение.

Помимо воды, в числе неорганических веществ клетки нужно обратить внимание на соли, подавляющее большинство которых находится в ионном соединении.

О роли многих катионов и анионов солей мы подробно говорили в начале урока, уделяя внимание тем или иным химическим элементам, входящим в состав живых клеток.

От концентрации ионов внутри клетки зависят ее буферные свойства, то есть поддержание слабощелочной реакции содержимого клетки. Это свойство в основном обеспечивают анионы слабых кислот: фосфорной и угольной.

Буферность – способность клетки поддерживать слабощелочную реакцию среды.

В нашем организме не хватает ионов натрия и хлора, хотя большинство других ионов поступает к нам в основном с овощами и фруктами. Поваренную же соль нам необходимо вносить в пищу искусственно.

О значении поваренной соли мы послушаем сообщение учащегося. (Приложение№2)
Прежде, чем подвести итоги сегодняшнего урока, мы послушаем еще одно полушутливое сообщение и рассмотрим плакат о содержании того или иного элемента или вещества в теле человека. (Приложение №3)
III. Закрепление изученного материала.

Задание № 1.

Обсудите в группах предложенные вашему вниманию тексты с ошибками. Некоторые тезисы в этом тексте ошибочны. Найдите и исправьте эти ошибки.

Текст с ошибками.

1.В состав клеток живых организмов входит более 90 из известных науке химических элементов.

2.Преобладающими элементами в живых клетках являются водород, фосфор, кремний, натрий и калий.

3. Элементы, на долю которых приходится более 98% клетки называют биоэлементами.

4. Все элементы условно делят на макро-, микро- и ультрамикроэлементы.

5. Примерами микроэлементов являются кальций, натрий, хлор, микроэлементов – медь, азот, сера; ультрамикроэлементов – селен, золото, бром.

6. Пространственная структура воды обеспечивает ее свойства как универсального растворителя.

7. Клетки теплокровных животных способны удерживать постоянную температуру тела за счет такого свойства воды, как теплопроводность.

8. Буферность – способность клеток обеспечивать нейтральную рН-среду.

9. Недостаток йода в организме приводит к нарушению работы щитовидной железы, а недостаток цинка разрушает зубную эмаль.

10. Знания об элементарном строении живых клеток позволяет сделать вывод о единстве живой и неживой природы.

Задание № 2. Дополнительное.

Значение химических элементов в живых организмах.

Если вы разгадаете названия химических элементов в горизонтальных столбцах, то узнаете какой радиоактивный элемент содержится в организме человека в количестве 0,09мг (из расчета массы тела 70кг).

1. Углерод

2. бРом

3. кАльций

4. селеН

Вопросы.


  1. Один из биоэлементов.

  2. Микроэлемент, уравновешивающий процессы возбуждения и торможения в коре головного мозга.

  3. Наибольшее количество этого макроэлемента находится в костной и зубной ткани.

  4. Этот редкий ультрамикроэлемент входит в состав яда самого ядовитого гриба – бледной поганки.

IV Итоги.

Подведение итогов урока. Выставление оценок. Запись домашнего задания.

Приложение №1

МИКРОЭЛЕМЕНТЫ
ФТОР.

Фтор и жизнь. Казалось бы, такое словосочетание не совсем правомерно.

И все-таки оправадно. Впервые это доказал слон… обычный, правда, ископаемый слон, найденный в окрестностях Рима. В его зубах был обнаружен фтор. В его зубах случайно был обнаружен фтор. Это открытие побудило ученых провести систематическое изучение химического состава зубов человека и животных.
Оказалось, что в состав зубов входит до 0,02% фтора, который поступает в организм человека с питьевой водой. Обычно в тонне питьевой воды содержится 0,2 мг фтора. В результате накопления фтора в почве повышается его содержание в питьевой воде и в растениях, что неблагоприятно сказывается на здоровье населения.

В суточном рационе содержится до 1,6 мг фтора. При систематическом использовании воды, содержащей избыточные количества фтора, у населения развивается эндемический флюороз. Отмечается характерное поражение зубов(крапчатость эмали), нарушение процессов окостенения скелета, истощение организма. Флюороз зубов проявляется в виде непрозрачных опалесцирующих меловидных полосок или пятнышек, которые со временем увеличиваются, появляется пигментация эмали темно-желтого или коричневого цвета, наступают необратимые ее изменения. желых случаях отмечаются генерализованный остеосклероз или диффузный остеопороз костного аппарата. Избыточные количества фтора снижают обмен фосфора и кальция в костной ткани, нарушают углеводный, белковый и другие обменные процессы, угнетают тканевое дыхание и пр. Фтор является нейротропным ядом( происходит снижение подвижности нервных процессов).

Если избыток фосфора вызывает эндемический флюороз, то дефицит этого микроэлемента ( меньше 0,5 мг/л ) в сочетании с другими факторами (нерациональное питание, неблагоприятные условия труда и быта) вызывает кариес зубов.

ЦИНК.


Цинк – обязательная составная часть фермента крови, этот элемент ускоряет выделение углекислого газа в легких. Много цинка содержится в яде кобры и гадюки, но в то же время известно, что соли цинка угнетают активность этих самых ядов, как показал опыт под действием солей цинка яды не разрушаются. Считается, что высокое содержание цинка в яде – это то средство, которым змея защищается от собственного яда. Сравнительно недавно установлено, что в биологических молекулах – ДНК и РНК и белках в клетках при злокачественном перерождении растет содержание ионов некоторых металлов. Концентрация цинка увеличивается в 1,5 – 2 раза и даже втрое. Причина пока неизвестна, но это может указать путь к ранней диагностике рака.

Биологическая роль цинка двоякая и не до конца выяснена. Установлено, что цинк — обязательный компонент фермента карбоангидразы, содержащийся в эритроцитах. Также было показано, что цинк играет известную роль в метаболизме нуклеиновых кислот и белка. Одну из теорий возникновения сахарного диабета также связывают с недостатком цинка в организме

Приложение № 2

СОЛИ
Помимо воды, важнейшие из неор­ганических веществ живого организма — минераль­ные соли. Из нерастворимых солей строятся кости позвоночных животных (фосфат кальция), ракови­ны моллюсков, оболочка птичьих яиц (карбонат кальция). Растворённые соли в каждой клетке со­ставляют 1% от её массы. Роль их в жизнедеятель­ности клетки чрезвычайно многообразна.

Самая известная соль — поваренная, хлористый натрий. Гулливер, герой знаменитого произведения Джонатана Свифта, в одном из своих путешествий оказался без поваренной соли. Он рассказывал: «Сначала я очень болезненно ощущал отсутствие соли, но скоро привык обходиться без неё, и я убеждён, что распространённое употребление этого вещества есть результат невоздержанности. Ведь мы не знаем ни одного животного, которое любило бы соль».

Однако Гулливер ошибался. Травоядные живот­ные постоянно испытывают солевой голод и жадно слизывают соль всюду, где находят. А вот плотояд­ные животные, действительно, получают достаточно поваренной соли с поедаемым ими мясом.

Точно так же питающиеся мясом и рыбой эскимосы и чукчи прекрасно обходятся без соли. Помните реакцию на солёную пищу персонажа романа Даниэля Дефо «Приключения Ро­бинзона Крузо» — Пятницы, никогда не пробовавшего соли? «Он удивился, зачем я ем суп и мясо с солью. Он стал показывать мне знаками, что с солью не вкусно. Взяв в рот щепотку соли, он принялся отплёвываться и сделал вид, что его тошнит от неё, а потом выполо­скал рот водой. …Лишь долгое время спустя он начал класть соль в кушанье, да и то немного». Вероятно, Пятница до встречи с Робинзо­ном питался в основном животной пищей.

Надо сказать, что поваренная соль сыграла большую роль в истории человечества: служила заменителем денег, являлась причиной «соля­ных бунтов» (Московский соляной бунт 1648 г., вызванный тем, что правительство подняло налог на соль; подобные бунты прокатились тогда по многим городам России) и «соляных походов протеста» (в Индии в начале XX в. — когда в знак неповиновения английским властям, обладавшим монополией на производство соли, её выпари­вали из морской воды).

Соль необходима живым организмам. В то же время избыток соли вреден. Увлекаясь такими продуктами, как соленья, сельдь, колбасы, люди вводят в организм слишком много соли. В сутки организму необходимо 8—9 г соли, но человек потребляет обычно вдвое большее её количество. Это приводит к повышенному кровяному давлению (гипертонии). Япония, где каждый житель потребляет около 30 г соли в день, держит первенство по числу больных этой болезнью.

Приложение №3
В фантастическом рассказе американского пи­сателя Артура Порджесса крошечный божок Йип хотел отблагодарить героя рассказа за ока­занную услугу, выполнив любую его просьбу. Но божок был очень мал, и стоимость награды не могла превышать двух долларов. В конце концов Йип помог герою покорить сердце любимой де­вушки. Причём главное условие не было нару­шено — ведь, как утверждает писатель, «стоимость всех химических веществ, входящих в состав организма человека весом около 70 кг, составляет 1 доллар 98 центов».

В организме человека, весящего 70 кг, — 45,5 кг кислорода, 12,6 кг углерода, 7 кг водоро­да, 2,1 кг азота, 1,4 кг кальция, 700 г фосфора. Всех остальных элементов, вместе взятых (в основном калия, серы, натрия, хлора, магния, железа и цинка), — около 700 г. Вот всё это «богатство» и стоило, по подсчётам писателя, 1 дол­лар 98 центов.

Всего в живых клетках можно найти около 70 химических элементов таблицы Менделеева. Среди них имеются даже такие ядовитые и экзотические, как олово, свинец, мышьяк, золото.
Для тех, кому «стоимость чело­века», подсчитанная американским писателем, по­казалась возмутительно низкой, мы можем привес­ти возражение профессора Йельского университета Г. Моровица против этого подсчёта. Он заметил, что подсчитывать надо стоимость не элементов, вхо­дящих в состав организма (углерода, кислорода и т. д.), а сложных органических соединений (бел­ков, углеводов и др.). При таком подсчёте стоимость уже только одних гормонов человека (о которых рассказано ниже) составит миллионы долларов — целое состояние!

МАКРО-МИКРО ЭЛЕМЕНТЫ


Минеральные вещества

Физиологическая роль

Реакция организма на недостаток или избыток веществ

В каких продуктах высокое содержание элемента

Макро-элементы
НАТРИЙ

Регуляция кровяного давления, водного обмена


Избыток – удержание воды, нагрузка на почки, сердце, ведет к гипертонии


Хлеб, мясные и рыбные консервы, колбасы



КАЛИЙ

Водный обмен, выделение мочи, гомеостаз крови, нормализует кровяное давление

Недостаток сказывается на деятельности сердца

Растительная пища: капуста, бобовые, яблоки, тыква, абрикосы, персики

ФОСФОР

Образует минеральную основу скелета, работа нервных клеток

Недостаток – рахит, снижение умственной деятельности, переизбыток – выведение кальция из костей

Мясо, рыба, яичный желток, сыр, молоко, бобовые, хлеб, крупы

КАЛЬЦИЙ

Основа костной ткани, развитие зубов, процессы в нервной и мышечной тканях, участие в свертывании крови, противовоспалительное действие

Недостаток – плохое развитие скелета, повышенная нервная и мышечная возбудимость, спазмам. При избытке – мочекаменная болезнь

Молоко, сыр, брынза, йогурт, творог, рыба, мясо, яичный желток, ржаной хлеб, овощи, фрукты

Микро-

элементы
ЙОД

Работа гормона щитовидной железы – тироксина


Недостаток – эндемический зоб, микседема, избыток- Базедова болезнь

Морская рыба, морепродукты



ФТОР

В составе зубной эмали

Недостаток – кариес, избыток- флюороз (пятнистость эмали)

Морская рыба, морепродукты, чай

ЦИНК

Без цинка человек не растет. Цинк предохраняет печень и желчь от вредных веществ, предупреждает диабет (входит в состав гормона инсулина)

Недостаток – нарушение роста, полового развития, заживление ран идет медленно. При избытке появляются приступы слабости, опасность отравления

Мясо, печень, бобовые, овсяные хлопья, бананы, хлеб из цельного зерна, молоко, молочные продукты, овощи

www.zubstom.ru

Неорганические вещества и их роль в клетке

Вода. Из неорганических веществ, входящих в состав клетки, важнейшим является вода. Количество ее составляет от 60 до 95% общей массы клетки. Вода играет важнейшую роль в жизни клеток и живых организмов в целом. Помимо того что она входит в их состав, для многих организмов это еще и среда обитания.

Роль воды в клетке определяется ее уникальными химическими и физическими свойствами, связанными главным образом с малыми размерами молекул, с полярностью ее молекул и с их способностью образовывать друг с другом водородные связи.

Вода как компонент биологических систем выполняет следующие важнейшие функции:

  1. Вода—универсальный растворитель для полярных веществ, например солей, Сахаров, спиртов, кислот и др. Вещества, хорошо растворимые в воде, называются гидрофильными. Когда вещество переходит в раствор, его молекулы или ионы получают возможность двигаться более свободно; соответственно возрастает реакционная способность вещества. Именно по этой причине большая часть химических реакций в клетке протекает в водных растворах. Ее молекулы участвуют во многих химических реакциях, например при образовании или гидролизе полимеров. В процессе фотосинтеза вода является донором электронов, источником ионов водорода и свободного кислорода.
  2. Неполярные вещества вода не растворяет и не смешивается с ними, поскольку не может образовывать с ними водородные связи. Нерастворимые в воде вещества называются гидрофобными. Гидрофобные молекулы или их части отталкиваются водой, а в ее присутствии притягиваются друг к другу. Такие взаимодействия играют важную роль в обеспечении стабильности мембран, а также многих белковых молекул, нуклеинов вых кислот и ряда субклеточных структур.
  3. Вода обладает высокой удельной теплоемкостью. Для разрыва водородных связей, удерживающих молекулы воды, требуется поглотить большое количество энергии. Это свойство обеспечивает поддержание теплового баланса организма при значительных перепадах температуры в окружающей среде. Кроме того, вода отличается высокой теплопроводностью, что позволяет организму поддерживать одинаковую температуру во всем его объеме.
  4. Вода характеризуется высокой теплотой парообразования, т. е. способностью молекул уносить с собой значительное количество тепла при одновременном охлаждении организма. Благодаря этому свойству воды, проявляющемуся при потоотделении у млекопитающих, тепловой одышке у крокодилов и других животных, транспирации у растений, предотвращается их перегрев.
  5. Для воды характерно исключительно высокое поверхностное натяжение. Это свойство имеет очень важное значение для адсорбционных процессов, для передвижения растворов по тканям (кровообращение, восходящий и нисходящий токи в растениях). Многим мелким организмам поверхностное натяжение позволяет удерживаться на воде или скользить по ее поверхности.
  6. Вода обеспечивает передвижение веществ в клетке и организме, поглощение веществ и выведение продуктов метаболизма.
  7. У растений вода определяет тургор клеток, а у некоторых животных выполняет опорные функции, являясь гидростатическим скелетом (круглые и кольчатые черви, иглокожие).
  8. Вода — составная часть смазывающих жидкостей (синовиальной — в суставах позвоночных, плевральной — в плевральной полости, перикардиальной — в околосердечной сумке) и слизей (облегчают передвижение веществ по кишечнику, создают влажную среду на слизистых оболочках дыхательных путей). Она входит в состав слюны, желчи, слез, спермы и др.

Минеральные соли. Неорганические вещества в клетке, кроме воды, прецспавлевы минеральными солями. Молекулы солей в водном растворе распадаются на катионы и анионы. Наибольшее значение имеют катионы (К+, Na+, Са2+, Mg:+, NH4+) и анионы (С1 , Н2Р04-, НР042- , НС03-, NO32—, SO42- ) Существенным является не только содержание, но и соотношение ионов в клетке.

Разность между количеством катионов и анионов на поверхности и внутри клетки обеспечивает возникновение потенциала действия, что лежит в основе возникновения нервного и мышечного возбуждения. Разностью концентрации ионов по разные стороны мембраны обусловлен активный перенос веществ через мембрану, а также преобразование энергии.

Анионы фосфорной кислоты создают фосфатную буферную систему, поддерживающую рН внутриклеточной среды организма на уровне 6,9.

Угольная кислота и ее анионы формируют бикарбонатную буферную систему, поддерживающую рН внеклеточной среды (плазма крови) на уровне 7,4.

Некоторые ионы участвуют в активации ферментов, создании осмотического давления в клетке, в процессах мышечного сокращения, свертывании крови и др.

Ряд катионов и анионов необходим дпясинтеза важных органических веществ (например, фосфолипидов, АТФ, нуклеоти-дов, гемоглобина, гемоцианина, хлорофилла и др.), а также аминокислот, являясь источниками атомов азота и серы.

Источник : Н.А. Лемеза Л.В.Камлюк Н.Д. Лисов «Пособие по биологии для поступающих в ВУЗы»

sbio.info

Неорганические вещества клетки | We are students

Клетка и периодическая таблица элементов

Любая клетка содержит не только органические вещества. В ее состав входит 70 элементов из таблицы Менделеева.  А 24 из них содержатся в клетках любого типа. Неорганические вещества клетки также представлены водой и ионами.

Все элементы можно поделить на три группы в зависимости от их содержания:

  • макроэлементы – N, C, H, O, Mg, Na, K, Ca, Fe, P, Cl, S;
  • микроэлементы – B, Ni, Cu, Zn, Mb, Co;
  • ультрамикроэлементы – U, Ra, Hg, Au, Pb, Se.

По другому способу классификации от этих групп отдельно выносят органоиды – вещества, необходимые для синтеза органики: вода, углерод, кислород и азот.

Значение воды

Вода – одно из самых важных неорганических веществ клетки. Ее необходимость для любого живого существа трудно переоценить, но мало кто знает обо всех ее функциях в клетке. Кратко рассмотрим их в связи с теми свойствами воды, которые позволяют ей выполнять свою роль.

  1. Транспирация и потоотделение – высокая теплоемкость и хорошей теплопроводности.
  2. Поддержание формы – воду практически невозможно сжать так, чтобы она изменила свой объем.
  3. Смазывающие свойства – вязкость.
  4. Осмос – подвижность молекул благодаря непрочности водородных связей внутри молекулы.
  5. Лимфа, кровь, желудочный сок и прочие жидкости организма могут использовать растворенный в воде кислород – молекулы воды полярны, она хороший растворитель.
  6. В цитоплазме поддерживается дисперсионная среда (одновременное существование в растворе двух и более фаз, не смешивающихся друг с другом) – образование гидратационных оболочек вокруг больших молекул, опять же благодаря полярности молекул воды.

Макроэлементы, микроэлементы и их роль в клетке

Рассмотрим некоторые функции элементов, чтобы понять, насколько они важны для клетки, хоть их содержание в ней невелико.

Магний – помогает многим ферментам участвовать в синтезе ДНК и энергетическом обмене.

Кальций – регулирует проницательность клеточных мембран.

Калий – участвует в синтезе белка и гликолизе, поддерживает необходимый биоэлектрический потенциал на мембране (посмотрите, как работает натрий-калиевый насос).

Сера – входит в состав некоторых аминокислот, помогает им создавать дисульфидные мостики (для образования третичной структуры белка), участвует в хемосинтезе и бактериальном фотосинтезе.

Железо – входит в состав ферментов-переносчиков электрона в системе фотосинтеза, является центром молекулы гемоглобина.

Хлор – его ионы помогают клетке оставаться электронейтральной.

Бром – является частью витамина В1.

Медь – входит в состав ферментов, которые участвуют в реакции синтеза цитохромов.

Цинк – содержится в ферментах, необходимых для спиртового брожения.

И это еще не все неорганические вещества клетки. Очень важно поддерживать концентрацию каждого вещества на нужном уровне. Ведь их недостаток может существенно нарушить работу клетки. Впрочем, как и их избыток.

Структура клетки и все процессы, происходящие в ней – это очень большая и сложная система. Все процессы и способы их регуляции были выработаны веками эволюции, в них все отточено и при должных условиях работает стабильно и без ошибок.

Неорганические вещества, входящие в состав клетки – видео

westud.ru

Химический состав клетки: неорганические вещества

Чем различается химический состав тел живой и неживой природы? Организмы состоят из клеток. Клетки разных организмов обладают сходным химическим составом. В таблице 1 представлены основные химические элементы, обнаруженные в клетках живых организмов.

Таблица 1

Содержание химических элементов в клетке
Кислород65-75Кальций0,04-2,00
Углевод15-18Магний0,02-0,03
Водород8-10Натрий0,02-0,03
Азот1,5-3,0Железо0,01-0,015
Фосфор0,2-1,0Цинк0,0003
Азот1,5-3,0Железо0,01-0,015
Калий0,15-0,4Медь0,0002
Сера0,15-0,2Иод0,0001
Хлор0,05-0,10Фтор0,0001

По содержанию в клетке можно выделить три группы элементов. В первую группу входят кислород, углерод, водород и азот. На их долю приходится почти 98% всего состава клетки. Во вторую группу входят калий, натрий, кальций, сера, фосфор, магний, железо, хлор. Их содержание в клетке составляет десятые и сотые доли процента. Элементы этих двух групп относят к макроэлементам (от греч. macros — большой).

Остальные элементы, представленные в клетке сотыми и тысячными долями процента, входят в третью группу. Это микроэлементы (от греч. micros — малый).

Каких-либо элементов, присущих только живой природе, в клетке не обнаружено. Все перечи 1000 сленные химические элементы входят и в состав неживой природы. Это указывает на единство живой и неживой природы.

Недостаток какого-либо элемента может привести к заболеванию и даже гибели организма, так как каждый элемент играет определенную роль. Макроэлементы первой группы составляют основу биополимеров — белков, углеводов, нуклеиновых кислот, а также липидов, без которых жизнь невозможна. Сера входит в состав некоторых белков, фосфор — в состав нуклеиновых кислот, железо — в состав гемоглобина, а магний — в состав хлорофилла. Кальций играет важную роль в обмене веществ.

Часть химических элементов, содержащихся в клетке, входит в состав неорганических веществ — минеральных солей и воды.

Минеральные соли находятся в клетке, как правило, в виде катионов (K+, Na+, Ca2+, Mg2+) и анионов (HPO42-, H2PO4, Сl, HCO3), соотношение которых определяет важную для жизнедеятельности клеток кислотность среды. (У многих клеток среда слабощелочная и ее pH почти не изменяется, так как в ней постоянно поддерживается определенное соотношение катионов и анионов.)

Из неорганических веществ в живой природе огромную роль играет вода.

Без воды жизнь невозможна. Она составляет значительную массу большинства клеток. Много воды содержится в клетках мозга и эмбрионов человека: воды более 80%; в клетках жировой ткани — всего 40%. К старости содержание воды в клетках снижается. Человек, потерявший 20% воды, погибает.

Уникальные свойства воды определяют ее роль в организме. Она участвует в теплорегуляции, которая обусловлена высокой теплоемкостью воды — потреблением большого количества энергии при нагревании. Чем же определяется высокая теплоемкость воды?

B молекуле воды атом кислорода ковалентно связан с двумя атомами водорода. Молекула воды полярна, так как атом кислорода имеет частично отрицательный заряд, а каждый из двух атомов водорода имеет частично положительный заряд. Между атомом кислорода одной молекулы воды и атомом водорода другой молекулы образуется водородная связь. Водородные связи обеспечивают соединение большого числа молекул воды. При нагревании воды значительная часть энергии расходуется на разрыв водородных связей, что и определяет ее высокую теплоемкость.

Вода — хороший растворитель. Благодаря полярности ее молекулы взаимодействуют с положительно и отрицательно заряженными ионами, способствуя тем самым растворению вещества. По отношению к воде все вещества клетки делятся на гидрофильные и гидрофобные.

Гидрофильными (от греч. hidor — вода и fileo — люблю) называют вещества, которые растворяются в воде. К ним относят ионные соединения (например, соли) и некоторые неионные соединения (например, сахара).

Гидрофобными (от греч. hidor — вода и fobos — страх) называют вещества, нерастворимые в воде. К ним относят, например, липиды.

Вода играет большую роль в химических реакциях, протекающих в клетке в водных растворах. Она растворяет ненужные организму продукты обмена веществ и тем самым способствует выводу их из организма. Большое содержание воды в клетке придает ей упругость. Вода способствует перемещению различных веществ внутри клетки или из клетки в клетку.

 

 

 

www.agrojour.ru

Химический состав клетки. Неорганические вещества — Лекции — Каталог файлов

Химический состав клетки. Неорганические вещества

 

 

Атомный состав клетки

 

Каждая клетка содержит множество химических элементов,участвующих в различных химических реакциях.Химические процессы, протекающие в клетке — одно из основных условий её развития и функционирования. Одних химических элементов в клетке больше, других — меньше. На атомном уровне различий между органическим и неорганическим миром живой природы нет: живые организмы состоят из тех же атомов, что и тела неживой природы. Однако соотношение разных химических элементов в живых организмах и в земной коре сильно различается. Кроме того, живые организмы могут отличаться от окружающей их среды по изотопному составу химических элементов. Условно все элементы клетки можно разделить на три группы.

 

К макроэлементам относят кислород(65—75 %),углерод(15—18 %),водород(8—10 %),азот(2,0—3,0 %),калий(0,15—0,4 %),сера(0,15—0,2 %),фосфор(0,2—1,0 %),хлор(0,05—0,1 %), магний(0,02—0,03 %),натрий(0,02—0,03 %),кальций(0,04—2,00 %).Такие элементы, как C,O,H,N,S,P входят в состав органических соединений.

 

Углерод — входит в состав всех органических веществ; скелет из атомов углерода составляет их основу. Кроме того, в виде CO2 фиксируется в процессе фотосинтеза и выделяется в ходе дыхания, в виде CO (в низких концентрациях) участвует в регуляции клеточных функций, в виде CaCO3 входит в состав минеральных скелетов.

 

Кислород — входит в состав практически всех органических веществ клетки. Образуется в ходе фотосинтеза при фотолизе воды. Для аэробных организмов служит окислителем в ходе клеточного дыхания, обеспечивая клетки энергией. В наибольших количествах в живых клетках содержится в составе воды.

 

Водород — входит в состав всех органических веществ клетки. В наибольших количествах содержится в составе воды. Некоторые бактерии окисляют молекулярный водород для получения энергии.

 

Азот — входит в состав белков, нуклеиновых кислот и их мономеров — аминокислот и нуклеотидов. Из организма животных выводится в составе аммиака, мочевина мочевины,гуанина или мочевой кислоты как конечный продукт азотного обмена. В виде оксида азота NO (в низких концентрациях) участвует в регуляции кровяного давления.

 

Сера — входит в состав серосодержащих аминокислот, поэтому содержится в большинстве белков. В небольших количествах присутствует в виде сульфат-иона в цитоплазме клеток и межклеточных жидкостях.

 

Фосфор — входит в состав АТФ, других нуклеиновых кислот(в виде остатков фосфорной кислоты), в состав костной ткани и зубной эмали (в виде минеральных солей), а также присутствует в цитоплазме и межклеточных жидкостях (в виде фосфат-ионов).

 

Магний — кофактор многих ферментов, участвующих в энергетическом обмене и синтезе ДНК; поддерживает целостность рибосом и митохондрий,входит в состав хлорофилла. В животных клетках необходим для функционирования мышечных и костных систем.

 

Кальций — участвует в свёртывании крови, а также служит одним из универсальных вторичных посредников, регулируя важнейшие внутриклеточные процессы (в том числе участвует в поддержании мембранного потенциала, необходим для мышечного сокращения и экзоцитоза). Нерастворимые соли кальция участвуют в формировании костей и зубов позвоночных и минеральных скелетов беспозвоночных.

 

Натрий — участвует в поддержании мембранного потенциала, генерации нервного импульса, процессах осморегуляции(в том числе в работе почек у человека) и создании буферной системы крови.

 

Калий — участвует в поддержании мембранного потенциала, генерации нервного импульса, регуляции сокращения сердечной мышцы.Содержится в межклеточных веществах.

 

Хлор — поддерживает электронейтральность клетки.

 

Микроэлементы

 

К микроэлементам, составляющим от 0,001 % до 0,000001 % массы тела живых существ, относят ванадий, германий, йод (входит в состав тироксина, гормона щитовидной железы), кобальт (витамин В12), марганец, никель, рутений, селен, фтор (зубная эмаль), медь, хром, цинк

 

Цинк — входит в состав ферментов, участвующих в спиртовом брожении, в состав инсулина

 

Медь — входит в состав окислительных ферментов, участвующих в синтезе цитохромов.

 

Селен — участвует в регуляторных процессах организма.

 

Ультрамикроэлементы

 

Ультрамикроэлементы составляют менее 0,0000001 % в организмах живых существ, к ним относят золото, серебро, которые оказывают бактерицидное воздействие,ртуть, подавляющую обратное всасывание воды в почечных канальцах, оказывая воздействие на ферменты. Также к ультрамикроэлементам относят платину ицезий. Некоторые к этой группе относят и селен, при его недостатке развиваются раковые заболевания. Функции ультрамикроэлементов ещё малопонятны.

Молекулярный состав клетки

Соединения
Неорганические Органические
Вода
Минеральные соли
70—80 %
1,0—1,5 %
Белки
Углеводы
Жиры
Нуклеиновые кислоты
АТФ, соли и др. вещества
10—20 %
0,2—2,0 %
1—5 %
1,0—2,0 %
0,1—0,5 %

 

Химический элементы входят в состав клеток в виде ионов или компонентов молекул неорганических и органических веществ.

 

Неорганические вещества

 

Вода – одно из самых распространенных веществ на Земле и преобладающий компонент всех живых организмов. Среднее количество воды в клетках большинства живых организмов составляет порядка 70% (в клетках медузы – 95%).

 

Вода в клетке находится в двух формах: свободной и связанной. Свободная вода составляет 95 % всей воды клетки; на долю связанной воды, входящей в состав фибриллярных структур и соединенной с некоторыми белками, приходится около 4-5 %%.

 

Вода обладает рядом свойств, имеющих исключительно важное значение для живых организмом. Исключительные свойства воды определяются структурой ее  молекул. Молекула воды является диполем. Атом кислорода в ней ковалентно связан с двумя атомами водорода. Положительные заряды сосредоточены у атомов водорода, т.к.  кислород электроотрицательнее водорода.

 

Из-за высокой полярности молекул вода является лучшим из известных растворителей. Вещества, хорошо растворимые в воде называют гидрофильными. К ним относят многие кристаллические соли, ряд органических веществ – спирты, сахара, некоторые белки (например, альбумины, гистоны). Вещества, плохо или совсем нерастворимые в воде, называют гидрофобными. К ним относятся жиры, нуклеиновые кислоты, некоторые белки (глобулины, фибриллярные белки).

 

Высокая теплоемкость воды делает ее идеальной жидкостью для поддержания теплового равновесия клетки и в целом организма. Так как на испарение воды расходуется много теплоты, то, испаряя воду, организмы могут защищать себя от перегрева (например, при потоотделении).

 

Вода обладает высокой теплопроводностью, обеспечивая возможность равномерного распределения тепла между тканями организма.

 

Вода является дисперсионной средой, играющей важную роль в коллоидной системе цитоплазмы, определяет структуру и функциональную активность многих макромолекул, служит основной средой для протекания химических реакций и непосредственным участником реакций синтеза и расщепления органических веществ, обеспечивает транспортировку веществ  в клетке и организме (диффузия, кровообращение, восходящий и нисходящий  ток растворов по телу растения и др. ).

 

Вода практически не сжимается, создавая тургорное давление и определяя объем и упругость клеток и тканей.

 

Неорганические ионы

 

Имеют немаловажное значение для обеспечения жизнедеятельности клетки – это катионы (K+, Na+, Ca 2+, Mg 2+, Nh4+) и анионы (Cl-, HPO4 2-, h3PO4-, HCO3-, NO3-) минеральных солей. Концентрация катионов и анионов в клетке и в окружающей её среде резко различна. Внутри клетки превалируют ионы К+ и крупные органические ионы, в околоклеточных жидкостях всегда больше ионов Na+ и Cl-. Вследствие этого образуется разность зарядов внешней и внутренней поверхностей мембраны клетки, между ними возникает разность потенциалов, обуславливающая такие важные процессы как передача возбуждения по нерву или мышце.

 

Соединения азота, фосфора, кальция и другие неорганические вещества служат источником строительного материала для синтеза органических молекул (аминокислот, белков, нуклеиновых кислот и др.) и входят в состав ряда опорных структур клетки и организма.

 

Некоторые неорганические ионы (например, ионы кальция и магния) являются активаторами и компонентами многих ферментов, гормонов и витаминов. При недостатке этих ионов нарушаются жизненно важные процессы в клетке.

 

Немаловажные функций в живых организмах выполняют неорганические кислоты и их соли. Соляная кислота входит в состав желудочного сока человека и животных, ускоряя процесс переваривания белков пищи. Остатки серной кислоты, присоединяясь к нерастворимым в воде чужеродным веществам, придают им растворимость, способствуя к выведению из организма. Неорганические натриевые и калиевые соли азотистой и фосфорной кислот, кальциевая соль серной кислоты служат важными элементами минерального питания растений, их вносят в почву в качестве удобрений. Соли кальция и фосфора входят в состав костной ткани животных.

 

Содержащиеся в организме ионы имеют важное значение для поддержания постоянства реакций среды в клетки и в окружающих её растворах, т.е. являются компонентами буферных систем. Наиболее значимые буферные системы млекопитающих – фосфатная и бикарбонатная.

www.biokan.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *