Содержание

Тектоника плит — Википедия

Материал из Википедии — свободной энциклопедии

Классификация геотектонических процессов согласно концепции тектоники плит.

Текто́ника плит — современное научное представление о строении и движении литосферы, согласно которому земная кора состоит из относительно целостных блоков — литосферных плит, которые находятся в постоянном движении друг относительно друга. При этом в зонах расширения (срединно-океанических хребтах и континентальных рифтах) в результате спрединга (англ. seafloor spreading — растекание морского дна) образуется новая океаническая кора, а старая поглощается в зонах субдукции. Теория тектоники плит объясняет возникновение землетрясений, вулканическую деятельность и процессы горообразования, по большей части приуроченные к границам плит.

Впервые идея о движении блоков коры была высказана в теории дрейфа континентов, предложенной Альфредом Вегенером в 1920-х годах. Эта теория была первоначально отвергнута. Возрождение идеи о движениях в твёрдой оболочке Земли («мобилизм») произошло в 1960-х годах, когда в результате исследований рельефа и геологии океанического дна были получены данные, свидетельствующие о процессах расширения (спрединга) океанической коры и пододвигания одних частей коры под другие (субдукции). Объединение этих представлений со старой теорией дрейфа материков породило современную теорию тектоники плит, которая вскоре стала общепринятой концепцией в науках о Земле.

В теории тектоники плит ключевое положение занимает понятие геодинамической обстановки — характерной геологической структуры с определённым соотношением плит. В одной и той же геодинамической обстановке происходят однотипные тектонические, магма

ru.wikipedia.org

Тектонические плиты Википедия

Литосферная плита — крупный стабильный участок земной коры, часть литосферы. Согласно теории тектоники плит, литосферные плиты ограничены зонами сейсмической, вулканической и тектонической активности — границами плиты. Границы плит бывают трёх типов: дивергентные, конвергентные и трансформные.

Карта литосферных плит

Из геометрических соображений понятно, что в одной точке могут сходиться только три плиты. Конфигурация, в которой в одной точке сходятся четыре или более плит, неустойчива, и быстро разрушается со временем.

Существует два принципиально разных вида земной коры — кора континентальная и кора океаническая. Некоторые литосферные плиты сложены исключительно океанической корой (пример — крупнейшая тихоокеанская плита), другие состоят из блока континентальной коры, впаянного в кору океаническую.

Литосферные плиты постоянно меняют свои очертания, они могут раскалываться в результате рифтинга и спаиваться, образуя единую плиту в результате коллизии. Литосферные плиты также могут тонуть в мантии планеты, достигая глубины внешнего ядра[1]. С другой стороны, разделение земной коры на плиты неоднозначно, и по мере накопления геологических знаний выделяются новые плиты, а некоторые границы плит признаются несуществующими. Поэтому очертания плит меняются со временем и в этом смысле. Особенно это касается малых плит, в отношении которых геологами предложено множество кинематических реконструкций, зачастую взаимно исключающих друг друга.

Изучение

Впервые обратил внимание на то, что литосфера Земли разбита на ряд плит, канадский археолог Дж. Вильсон в 1965 году. Несколькими годами позже американец В. Морган и француз К. Ле-Пишон определили границы литосферных плит.[2]

Tectonics plates (preserved surfaces)

Типы литосферных плит

Более 90 % поверхности Земли покрыто 13-ю крупнейшими литосферными плитами.

Крупнейшие литосферные плиты

Плиты среднего размера:

Микроплиты

Исчезнувшие плиты:

Исчезнувшие океаны:

Суперконтиненты:

Типы столкновений литосферных плит

Океанически-континентальное столкновение

Граница столкновения проходит между океанической и континентальной плитой. Плита с океанической корой подвигается под континентальную плиту. Примеры: столкновения: плита Наска с Южноамериканской плитой и плита Кокос с Североамериканской плитой.

Океанически-океаническое столкновение

Одна из плит подвигается под другую — ту, на которой находится группа островов. Примеры столкновения: Североамериканская плита с Охотской плитой, с Амурской плитой, с Филиппинской плитой, с Индо-Австралийской плитой; Южноамериканская плита с Карибской плитой.

Континентально-континентальное столкновение

Тип столкновения, когда ни одна из плит не уступает другой и они обе образуют горы.

Скорость движения литосферных плит

Скорость горизонтального движения литосферных плит в наше время варьируется от 1 до 6 см/год (скорость раздвигания плит — от 2 до 12 см/год). Скорость раздвигания плит от Срединно-Атлантического хребта в северной части его составляет 2,3 см/год, а в южной части — 4 см/год. Наиболее быстро раздвигаются плиты вблизи Восточно-Тихоокеанского хребта у острова Пасхи — их скорость 18 см/год. Наиболее медленно раздвигаются плиты в Аденском заливе и Красном море — со скоростью 1-1,5 см/год.

[2]

См. также

Примечания

Ссылки

Литература

  • И. В. Тарасов. Земной магнетизм. — Долгопрудный: Интеллект. — С. 67. — 193 с.

wikiredia.ru

Тектонические плиты и причины их движения

Тектонические плиты (или литосферные плиты) — это целостные блоки, из которых состоит поверхностная оболочка нашей планеты. Они находятся в непрерывном движении, из-за чего возникают различные явления и изменяется рельеф планеты.

Тектоника плит

Направление в науке, изучающее движение литосферных плит, называют тектоникой плит. Именно тектоника объясняет многие явления, возникающие на стыке блоков земной коры. Она способна рассказать о причинах возникновения землетрясений, а также о вулканической деятельности. Из всех явлений, связанных с движением литосферных плит, именно эти два представляют наибольшую опасность.

Также движение плит способно изменять рельеф планеты, правда, на это требуется много времени. В тех местах, где плиты сходятся, образуются возвышенности и горы. В тех же местах, где они расходятся, возникают трещины в земле и впадины.

Тектоника плит изучает перемещения частей земной коры, и способна поведать нам о том, как выглядела Земля миллионы лет назад, и как она будет выглядеть в будущем. Правда, мы этих изменений не увидим, так что этим мало кто интересуется. А вот узнать, в каких районах происходят самые жуткие природные катаклизмы, полезно многим. А происходят они на стыках плит (чёрные линии) и в районах с повышенной тектонической активностью (чёрные точки). Автор фото — Blatant World, ссылка на оригинал (фото было изменено).

Причина движения плит

Не только литосферные плиты, но и вся литосфера Земли находится в движении. Этот процесс возникает благодаря очень жаркой центральной части нашей планеты. Вещество, находящееся там, нагревается, в результате чего поднимается, а после охлаждается и постепенно опускается к центру. Из-за циркуляции вещества в земной мантии как раз и происходит движение тектонических плит.

Интересно

Тектоника плит не является чем-то стабильным и предсказуемым. Что-то прогнозировать можно лишь на относительно небольшие промежутки времени (около 100 лет). Потому что со временем всё меняется. К примеру, иногда плиты начинаются вести себя «неправильно», то есть, либо меняют свою скорость, либо направление движения. Так, в последнее время (счёт идёт на миллионы лет) скорость движения почти всех тектонических плит возросла в 2 раза. Хотя, согласно предположениям учёных, она, наоборот, должна была уменьшиться. Самым вероятным объяснением данного феномена является наличие в земной мантии огромных запасов воды (предположительно, намного превосходящих запасы воды, находящиеся на поверхности). Считают, что именно вода размягчает мантию, за счёт чего плиты движутся быстрее.

naturae.ru

Тектонические плиты и их движение

Тектоника плит

Определение 1

Тектоническая плита – это движущаяся часть литосферы, которая перемещается на астеносфере как относительно жесткий блок.

Замечание 1

Тектоника плит – наука, изучающая структуру и динамику поверхности земли. Установлено, что верхняя динамическая зона Земли фрагментирована в плиты, движущиеся по астеносфере. Тектоника плит описывает, в каком направлении перемещаются литосферные плиты, а также особенности их взаимодействия.

Вся литосфера разделена на большие и более мелкие плиты. Тектоническая, вулканическая и сейсмическая активность проявляется по краям плит, что ведет к формированию крупных горных бассейнов. Тектонические движения способны изменять рельеф планеты. В месте их соединения формируются горы и возвышенности, в местах расхождения образуются впадины и трещины в земле.

В настоящее время движение тектонических плит продолжается.

Движение тектонических плит

Литосферные плиты перемещаются относительно друг друга в среднем со скоростью 2,5 см в год. При движении плиты между собой взаимодействуют, особенно вдоль границ, вызывая значительные деформации в земной коре.

В результате взаимодействия тектонических плит между собой образовались массивные горные хребты и связанные с ними системы разломов (например, Гималаи, Пиренеи, Альпы, Урал, Атлас, Аппалачи, Апеннины, Анды, система разломов Сан-Андреас и др.).

Трение между плитами вызывает большую часть землетрясений на планете, вулканическую активность и образование океанических ям.

В состав тектонических плит входит два типа литосферы: континентальная кора и океаническая кора.

Тектоническая плита может быть трех типов:

  • континентальная плита,
  • океаническая плита,
  • смешанная плита.

Теории движения тектонических плит

В изучении движения тектонических плит особая заслуга принадлежит А. Вегенеру, предположившему, что Африка и восточная часть Южной Америки ранее были единым континентом. Однако после произошедшего много млн. лет назад разлома, начался сдвиг частей земной коры.

Согласно гипотезе Вегенера, тектонические платформы, обладающие разной массой и имеющие жесткую структуру, размещались на пластичной астеносфере. Они пребывали в неустойчивом состоянии и все время перемещались, в результате чего сталкивались, заходили друг на друга, формировались зоны раздвижения плит и стыки. В местах столкновений формировались участки с повышенной тектонической активностью, образовывались горы, извергались вулканы и происходили землетрясения. Смещение происходило со скоростью до 18 см в год. Из глубинных слоев литосферы в разломы проникала магма.

Некоторые исследователи считают, что выходящая на поверхность магма постепенно остывала и формировала новую структуру дна. Незадействованная земная кора под действие дрейфа плит погружалась в недра и снова превращалась в магму.

Исследования Вегенера затронули процессы вулканизма, изучение вопросов растяжения поверхности дна океанов, а также вязко-жидкой внутренней структуры земли. Труды А. Вегенера стали фундаментом для развития теории тектоники литосферных плит.

Исследования Шмеллинга доказали существование конвективного движения внутри мантии и приводящего к движению литосферных плит. Ученый считал, что основная причина движения тектонических плит – тепловая конвекция в мантии планеты, при которой нижние слои земной коры нагреваются и поднимаются, а верхние – остывают и постепенно опускаются.

Основное положение в теории тектоники плит занимает понятие геодинамической обстановки, характерной структуры с определенным соотношением тектонических плит. В одинаковой геодинамической обстановке наблюдаются однотипные магматические, тектонические, геохимические и сейсмические процессы.

Теория тектоники плит не объясняет полностью связи между движениями плит и происходящими в глубине планеты процессами. Необходима теория, которая могла бы описать внутреннее строение самой земли, процессы, происходящие в ее недрах.

Положения современной тектоники плит:

  • верхняя часть земной коры включает литосферу, обладающую хрупкой структурой и астеносферу, имеющую пластичную структуру;
  • основная причина движения плит – конвекция в астеносфере;
  • современная литосфера состоит из восьми крупных тектонических плит, порядка десяти средних плит и множества мелких;
  • мелкие тектонические плиты располагаются между крупными;
  • магматическая, тектоническая и сейсмическая активность сосредоточены на границах плит;
  • движение тектонических плит подчиняется теореме вращения Эйлера.

Типы движений тектонических плит

Выделяют различные типы движений тектонических плит:

  • дивергентное движение – две плиты расходятся, и между ними образуется подводная горная цепь или пропасть в земле;
  • конвергентное движение – две плиты сходятся, и более тонкая плита перемещается под более большую плиту, вследствие чего формируются горные хребты;
  • скользящее движение – плиты перемещаются в противоположных направлениях.

В зависимости от типа движения выделяют дивергентные, конвергентные и скользящие тектонические плиты.

Конвергенция приводит к субдукции (одна плита находится над другой) или к коллизии (две плиты сминаются и образуются горные цепи).

Дивергенция ведет к спредингу (расхождение плит и формированием океанических хребтов) и рифтингу (формирование разлома континентальной коры).

Трансформный тип движения тектонических плит подразумевает их перемещение вдоль разлома.

Рисунок 1. Типы движений тектонических плит. Автор24 — интернет-биржа студенческих работ

spravochnick.ru

Литосферная плита — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 20 июля 2018; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 20 июля 2018; проверки требует 1 правка.

Литосферная плита — крупный стабильный участок земной коры, часть литосферы. Согласно теории тектоники плит, литосферные плиты ограничены зонами сейсмической, вулканической и тектонической активности — границами плиты. Границы плит бывают трёх типов: дивергентные, конвергентные и трансформные.

Карта литосферных плит

Из геометрических соображений понятно, что в одной точке могут сходиться только три плиты. Конфигурация, в которой в одной точке сходятся четыре или более плит, неустойчива, и быстро разрушается со временем.

Существует два принципиально разных вида земной коры — кора континентальная и кора океаническая. Некоторые литосферные плиты сложены исключительно океанической корой (пример — крупнейшая тихоокеанская плита), другие состоят из блока континентальной коры, впаянного в кору океаническую.

Литосферные плиты постоянно меняют свои очертания, они могут раскалываться в результате рифтинга и спаиваться, образуя единую плиту в результате

ru.wikipedia.org

Тектоника плит • Джеймс Трефил, энциклопедия «Двести законов мироздания»

Земная поверхность состоит из нескольких сцепленных между собой больших плит, которые медленно движутся друг относительно друга.

Твердые планеты в своем развитии проходят период нагревания, основную энергию для которого дают падающие на поверхность планеты обломки космических тел (см. Гипотеза газопылевого облака). При столкновении этих объектов с планетой почти вся кинетическая энергия падающего объекта мгновенно преобразуется в тепловую, поскольку его скорость движения, составляющая несколько десятков километров в секунду, в момент удара резко падает до нуля. Всем внутренним планетам Солнечной системы — Меркурию, Венере, Земле, Марсу — этого тепла хватало если не для того, чтобы полностью или частично расплавиться, то хотя бы для того, чтобы размягчиться и сделаться пластичными и текучими. В этот период вещества с наибольшей плотностью передвигались к центру планет, образуя ядро, а наименее плотные, наоборот, поднимались на поверхность, образуя земную кору. Примерно так же расслаивается соус для салата, если его надолго оставить на столе. Этот процесс, называемый дифференциацией магмы, объясняет внутреннее строение Земли.

У самых маленьких внутренних планет, Меркурия и Марса (а также у Луны), это тепло в конце концов выходило на поверхность и рассеивалось в космосе. Затем планеты затвердевали и (как в случае с Меркурием) в последующие несколько миллиардов лет проявляли низкую геологическую активность. История Земли была совсем другой. Поскольку Земля — самая крупная из внутренних планет, в ней сохранился и самый большой запас тепла. А чем крупнее планета, тем меньше у нее отношение площади поверхности к объему и тем меньше она теряет тепла. Следовательно, Земля остывала медленнее, чем другие внутренние планеты. (То же самое можно сказать и о Венере, размер которой немного меньше Земли.)

Кроме того, с начала формирования Земли в ней происходил распад радиоактивных элементов, что увеличивало запас тепла в ее недрах. Следовательно, Землю можно рассматривать как шарообразную печь. Внутри нее непрерывно образуется тепло, переносится к поверхности и излучается в космос. Перенос тепла вызывает ответное перемещение мантии — оболочки Земли, расположенной между ядром и земной корой на глубине от нескольких десятков до 2900 км (см. Теплообмен). Горячее вещество из глубины мантии поднимается, охлаждается, а затем вновь погружается, замещаясь новым горячим веществом. Это классический пример конвективной ячейки.

Можно сказать, что порода мантии бурлит так же, как вода в чайнике: и в том, и в другом случае тепло переносится в процессе конвекции. Некоторые геологи считают, что для завершения полного конвективного цикла породам мантии требуется несколько сотен миллионов лет — по человеческим меркам очень большое время. Известно, что многие вещества с течением времени медленно деформируются, хотя на протяжении человеческой жизни они выглядят абсолютно твердыми и неподвижными. Например, в средневековых соборах старинные оконные стекла внизу толще, чем наверху, потому что в течение многих веков стекло стекало вниз под действием силы тяжести. Если за несколько столетий это происходит с твердым стеклом, то нетрудно представить себе, что то же самое может произойти с твердыми горными породами за сотни миллионов лет.

Наверху конвективных ячеек земной мантии плавают породы, составляющие твердую поверхность Земли, — так называемые тектонические плиты. Эти плиты состоят из базальта, самой распространенной излившейся магматической горной породы. Толщина этих плит примерно 10–120 км, и они перемещаются по поверхности частично расплавленной мантии. Материки, состоящие из относительно легких пород, таких как гранит, образуют самый верхний слой плит. В большинстве случаев толщина плит под материками больше, чем под океанами. Со временем процессы, происходящие внутри Земли, сдвигают плиты, вызывая их столкновение и растрескивание, вплоть до образования новых плит или исчезновения старых. Именно благодаря этому медленному, но непрерывному перемещению плит поверхность нашей планеты все время находится в динамике, постоянно изменяясь.

Важно понимать, что понятия «плита» и «материк» — не одно и то же. Например, Северо-Американская тектоническая плита простирается от середины Атлантического океана до западного побережья Северо-Американского континента. Часть плиты покрыта водой, часть — сушей. Анатолийская плита, на которой расположены Турция и Ближний Восток, полностью покрыта сушей, в то время как Тихоокеанская плита расположена полностью под Тихим океаном. То есть границы плит и береговые линии материков не обязательно совпадают. Кстати, слово «тектоника» происходит от греческого слова tekton («строитель») — тот же корень есть и в слове «архитектор» — и подразумевает процесс строительства или сборки.

Тектоника плит заметнее всего там, где плиты соприкасаются друг с другом. Принято выделять три типа границ между плитами.

Дивергентные границы

В середине Атлантического океана поднимается к поверхности раскаленная магма, образовавшаяся в глубине мантии . Она прорывается сквозь поверхность и растекается, постепенно заполняя собой трещину между раздвигающимися плитами. Из-за этого морское дно расширяется и Европа и Северная Америка расходятся в стороны со скоростью несколько сантиметров в год. (Это движение смогли измерить с помощью радиотелескопов, расположенных на двух континентах, сравнив время прихода радиосигнала от далеких квазаров.)

Если дивергентная граница расположена под океаном, в результате расхождения плит возникает срединно-океанический хребет — горная цепь, образованная за счет скопления вещества в том месте, где оно выходит на поверхность. Срединно-Атлантический хребет, простирающийся от Исландии до Фолклендов, — это самая длинная горная цепь на Земле. Если же дивергентная граница находится под материком, она буквально разрывает его. Примером такого процесса, происходящего в наши дни, служит Великая долина разломов, простирающаяся от Иордании на юг в Восточную Африку.

Конвергентные границы

Если на дивергентных границах образуется новая кора, значит где-то в другом месте кора должна разрушаться, иначе Земля увеличивалась бы в размерах. При столкновении двух плит одна из них пододвигается под другую (это явление называется субдукцией, или пододвиганием). При этом плита, оказавшаяся внизу, погружается в мантию. Что происходит на поверхности над зоной субдукции, зависит от местонахождения границ плиты: под материком, на границе материка или под океаном.

Если зона субдукции расположена под океанической корой, то в результате пододвигания образуется глубокая срединно-океаническая впадина (желоб). Примером этого может служить самое глубокое место в Мировом океане — Марианская впадина около Филиппин. Вещество нижней плиты попадает вглубь магмы и расплавляется там, а потом может опять подняться к поверхности, образуя гряду вулканов — как, например, цепь вулканов на востоке Карибского моря и на западном берегу Соединенных Штатов.

Если обе плиты на конвергентной границе находятся под материками, результат будет совсем другим. Материковая кора состоит из легких веществ, и обе плиты фактически плавают над зоной субдукции. Поскольку одна плита пододвигается под другую, два материка сталкиваются, и их границы сминаются, образуя материковый горный хребет. Так сформировались Гималаи, когда Индийская плита около 50 миллионов лет назад столкнулась с Евразийской. В результате такого же процесса сформировались и Альпы, когда Италия соединилась с Европой. А Уральские горы, старую горную цепь, можно назвать «сварочным швом», образовавшимся при объединении европейского и азиатского массивов.

Если материк покоится только на одной из плит, на нем будут образовываться складки и смятия по мере его наползания на зону субдукции. Примером этого служат Анды на Западном побережье Южной Америки. Они сформировались после того, как Южно-Американская плита наплыла на погрузившуюся под нее плиту Наска в Тихом океане.

Трансформные границы

Иногда бывает так, что две плиты не расходятся и не пододвигаются друг под друга, а просто трутся краями. Самый известный пример такой границы — разлом Сан-Андреас в Калифорнии, где движутся бок о бок Тихоокеанская и Северо-Американская плиты. В случае трансформной границы плиты сталкиваются на время, а затем расходятся, высвобождая много энергии и вызывая сильные землетрясения.

В заключение я хотел бы подчеркнуть, что, хотя тектоника плит включает в себя понятие о движении материков, это не то же самое, что гипотеза дрейфа материков, предложенная в начале ХХ века. Эта гипотеза была отвергнута (справедливо, по мнению автора) геологами из-за некоторых экспериментальных и теоретических неувязок. И тот факт, что наша современная теория включает в себя один аспект из гипотезы дрейфа материков — перемещение материков, — не означает, что ученые отвергли тектонику плит в начале прошлого века только для того, чтобы принять ее позже. Теория, которая принята сейчас, коренным образом отличается от прежней.

См. также:

elementy.ru

Тектонические плиты

Хотелось бы понять, что же собой представляет земная кора? Существует современная теория, которая говорит о том, что в основе нашей Земли лежат некие блоки –тектонические плиты, которые постоянно двигаются относительно друг друга. Эта научная версия вполне объясняет многие природные явления, такие как извержение вулканов, землетрясения, цунами и т.д. В общем-то, горные образования тоже являются последствием движения, а точнее замещения одной плиты на другую.На протяжении тысяч лет тектонические плиты находятся в постоянном движении. Они то и дело растягиваются или сжимаются и, как следствие, просто раскалываются, а линию раскола ученые называют разломами. Эти разломы могут простираться на сотни километров вдоль земли, а могут уходить далеко в толщу земной коры. Плиты состоят из горных пород, которые при движении  трутся друг о друга, это приводит к «содроганию» земли, иначе говоря – землетрясениям. Если обратить внимание на Японию, то можно заметить большое количество постоянных землетрясений, которые проходят в этой стране. Объясняется это тем, что на территории этого государства проходит стык нескольких плит: Североамериканской, Тихоокеанской, Евразийской и Филиппинской. Движение тектонических плит и приводит к тому, что здесь наблюдается геологическая активность и частые землетрясения.К слову сказать,  последнее землетрясение в Японии произошло за счет того, что сдвинулась на 20 см Евразийская плита. При этом в западную сторону продолжают двигаться остальные плиты, а это значит, что новые землетрясения неизбежны.Но самыми впечатляющими границами тектонических плит являются океанские впадины, которые проходят под водой. Мы можем наблюдать только отголоски этих толчков, которые доходят до нас в виде цунами. Сила и мощь природы просто поражает и заставляет почувствовать себя бессильными против мощнейших стихий.Все же в некоторых местах человечество может взглянуть на тектонические плиты земли, границы которых не скрыты под толщей воды, а образуют на суше глубочайшие каньоны. Так, например, на территории Исландии много вулканов, это вполне объясняется тем, что эта страна находится на стыке двух мощнейших плит: Евразийской и Северо-американской. В исландском национальном парке Тингветлир можно увидеть гигантский каньон, который носит название Алманнагья и простирается на 8 км в длину, а его ширина составляет 64 метра. Через продолжение  в виде каньона Алфагья  проходит специальный «мост между континентами».Порой мы можем наблюдать совершенно необычный рельеф – ландшафтный дизайн, который создала сама природа: скалистые берега и крутые обрывы.
Также тектонические плиты, сталкиваясь друг с другом, могут приводить к еще одному, не менее опасному стихийному бедствию – извержению вулканов. Поэтому одним из самых опасных для жизни человека явлений, считается выброс лавины на поверхность земли. Эта огненная смесь пара, газов, наполовину расплавленных пород  мчится через отверстие в земной коре с невероятной скоростью, уничтожая все на своем пути и представляя опасность для жизни всех живых существ.

Однако не стоит считать, что тектонические плиты, движение которых может вызывать мощнейшие стихийные бедствия, всегда приводят к таким последствиям. В основном, движение плит проходит настолько медленно и постепенно, что мы просто не замечаем этого. Только спустя время мы можем отметить, что уровень воды в колодце около дома раньше был значительно выше или ниже, а старый дом в конце улицы заметно осел. Именно благодаря этому движению мы с вами и имеем такой разнообразный рельеф, а значит, и разную флору и фауну, которая бывает характерной  для определенного  материка.

fb.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *