Реакции нейтрализации

Реакция нейтрализации (например, серной кислоты) в водоеме за счет бикарбонатов кальция протекает по формуле Са(НС03)24-Н2304=Са304+2Н20+2С02.[ …]

Нейтрализация известняком не всегда эффективна, так как в присутствии серной кислоты гипс, образующийся на поверхности частиц известняка, тормозит дальнейший ход реакции нейтрализации.[ …]

Реакция нейтрализации — это химическая реакция между веществами, имеющими свойства кислоты и основания, которая приводит к потере характерных свойств обоих соединений. Наиболее типичная реакция нейтрализации в водных растворах происходит между гидратированными ионами водорода и ионами гидроксида, содержащимися соответственно в сильных кислотах и основаниях: Н+ + 0Н =Н20. В результате концентрация каждого из этих ионов становится равной той, которая свойственна самой воде (около 10 7), т. е. активная реакция водной среды приближается к рН=7.[ …]

Реакция взаимодействия основания с кислотой, в результате которой получается соль и вода, является реакцией нейтрализации.[ …]

Нейтрализация фильтрацией заключается в том, что сточную жидкость пропускают через слой фильтрующего материала. При прохождении жидкости через такой фильтр реакция нейтрализации должна полностью заканчиваться. В качестве фильтрующего материала для нейтрализации кислот применяют известняк, мрамор и доломит. Этот способ имеет ряд преимуществ: он более прост и дешев, эффективен при неравномерной концентрации кислот в сточных водах.[ …]

Реакцию нейтрализации кислот можно проводить также и с помощью других реагентов типа оснований. Расход этих веществ для нейтрализации 1 г различных кислот (стехиометрично) приведен в табл. 6.[ …]

Реакция нейтрализации и вычисление по этой реакции количества неизвестного вещества имеет очень широкое применение в агрохимических лабораториях. Подобного рода вычисления возможны по всем химическим правильно составленным уравнениям.[ …]

Реакция нейтрализации протекает очень быстро, и при дальнейшем смешивании вся масса сточных вод приобретает одинаковое значение pH в течение нескольких минут.[ …]

Для нейтрализации вод первого типа могут быть использованы любые из указанных выше реагентов. При нейтрализации вод второго типа соли не только выпадают в осадок, но при больших концентрациях могут отлагаться на поверхности нейтрализующего материала и тормозить ход реакции. Нейтрализация вод третьего типа возможна только растворами щелочей.[ …]

При реакции нейтрализации серной кислоты с известью или мелом на 98 частей кислоты получаются 172 части двуводного гипса СаЗОд . 2Н20.[ …]

Способ нейтрализации фильтрованием состоит в том, что кислую сточную воду после предварительного осветления пропускают через слой нейтрализующего материала с такой скоростью, чтобы за время соприкосновения воды с материалом реакция нейтрализации закончилась.[ …]

В камере реакции не только нейтрализуется свободная кислота, но и заканчивается кристаллизация солей кальция и хлопье-образование гидроокисей металлов, что приводит к окончательной стабилизации pH. С этой точки зрения установка датчика после камер реакции является наиболее рациональной. Однако следует иметь в виду, что устройство устойчивой системы регулирования при помощи промышленных приборов крайне осложняется, если время транспортного запаздывания превышает 10— 15 мин. Исходя из этих соображений, нередко приходится отказываться от расположения датчика регулирующего прибора после камеры реакции, рассчитанной на более чем десятиминутное пребывание воды. В этом случае датчик регулирующего прибора можно устанавливать на выходе из смесителя или где-либо по пути движения воды между смесителем и камерой реакции (или отстойником)—там, где реакция нейтрализации прошла с наибольшей полнотой. В эксплуатационных условиях такое место легко найти путем испытания проб, взятых последовательно по пути движения воды, смешанной с реагентом. Там, где во взятой пробе величина pH остается неизменной после тщательного перемешивания, и замеряется значение регулирующего параметра.[ …]

Реагенты для нейтрализации кислых сточных вод выбирают в зависимости от вида кислот и их концентрации. Кроме того, учитывают, образуется ли в процессе реакции нейтрализации осадок. Для нейтрализации минеральных кислот применяют любой щелочной реагент, но чаще всего следующие: известь в виде пушонки или известкового молока, а также карбонаты кальция или магния в виде суспензии.[ …]

Метод основан на реакции нейтрализации салициловой кислоты щелочью. Конец реакции фиксируется потенциометром.[ …]

Выбор реагента для нейтрализации кислых сточных вод зависит от вида кислот и их концентрации, а также от растворимости солей, образующихся в результате химической реакции. Для нейтрализации минеральных кислот применяют любой щелочной реагент, но чаще всего известь в виде пушонки или известкового молока и карбонаты кальция или магния в виде суспензии. Эти реагенты сравнительно дешевы и общедоступны, но имеют ряд недостатков: при этом обязательно устройство усреднителей перед нейтрализационной установкой, затруднительно регулирование дозы реагента по pH нейтрализованной воды, сложно реагентное хозяйство. Скорость реакции между раствором кислоты и твердыми частицами суспензии относительно невелика и зависит от размеров частиц и растворимости образующегося в результате реакции нейтрализации соединения. Поэтому окончательная активная реакция в жидкой фазе устанавливается не сразу, а по истечении некоторого времени (10—15 мин). Сказанное выше относится к сточным водам, содержащим сильные кислоты (Н2504, Н2503), кальциевые соли которых труднорастворимы в воде.[ …]

Чтобы контролировать реакцию нейтрализации, надо знать, какое количество кислоты или щелочи следует добавить в раствор для получения необходимого значения pH. Для решений этой проблемы может быть использован метод эмпирической оценки стехиометрических коэффициентов, которая осуществляется с помощью титрования.[ …]

Как видим, знаменитую реакцию аннигиляции е+ +е = 2Ь можно рассматривать, причем логично и обоснованно, как реакцию нейтрализации — вывод, по-моему, не только интересный, но и изящный.[ …]

Для полного окончания реакции нейтрализации и флокуляции взвеси сточные воды, протекая через резервуар, перемешиваются сжатым воздухом (с целью окисления Ре2+ до Ре3+) или механическим путем. В флоку-лятор (или нейтрализующий резервуар) добавляют соответствующее количество флокулирующих средств, способствующих образованию плотных агломератов из легко осаждаемой взвеси. Флокулятор должен быть в три-шесть раз больше резервуара нейтрализатора.[ …]

Из представленных выше реакций нейтрализации можно подсчитать, что в стехиометрических условиях расход СаО на 1 г соответствующих соединений будет следующим: h3SO4 — 0,56 г; FeS04 — 0,37 г; НС1—0,77 г; FeCl2 — 0,44 г; HN03 — 0,44 г; Fe(N03h — 0,31 г; Н3РО4 —0,86 г.[ …]

Важно подчеркнуть, что в реакциях нейтрализации ОН-, образующихся при растворении карбонатов и силикатов, участвуют не только угольная кислота, но и органические кислоты (особенно фульво- и гуминовые), являющиеся агентом интенсивного разложения пород. Сильная диссоциация многих органических кислот приводит к увеличению в воде концентраций Н . Константы диссоциации таких распространенных в природе соединений, как фульво- и гуминовые кислоты, приближаются к и-10-3-«• 10″5. Это означает, что они могут снижать pH реальных подземных вод до 3 и менее. В связи с зтим такие органические кислоты интенсивно разлагают силикаты с разрушением их кристаллической решетки. Степень такого разложения тем больше, чем ниже минерализация подземных вод и чем более кислыми они являются.[ …]

Пример 6. Вычислить продолжительность реакции нейтрализации кислых растворов известковой суспензией, если реакция проводится в периодическом реакторе идеального смещения (РИС-П) .[ …]

Самую простую систему очистки на основе реакции нейтрализации можно представить в виде измельченного известняка, на который вылили раствор кислоты, а осадок собрали в отстойник.[ …]

Анализ колебаний концентраций и механизм реакций нейтрализации кислотных железосодержащих сточных вод послужили основанием для выбора параметров регулирования этого процесса. Стало очевидным, что регулировать подачу нейтрализующего реагента только по одному показателю pH недостаточно. Необходим второй параметр, который мог бы реагировать на наличие в воде сернокислого железа и влиять на подачу реагента в соответствии с его текущими концентрациями.[ …]

С целью обеспечения1 полноты и ускорения хода реакции нейтрализации и осаждения солей тяжелых металлов в камерах реакции производится непрерывное перемешивание сточных вод пропеллерными или лопастными мешалками с вертикальной осью вращения. Частота вращения мешалки принимается не менее 40 мин-1; при частоте вращения 150 мин-1 продолжительность контакта сточных вод, содержащих ионы тяжелых металлов может быть сокращена до 15 мин.[ …]

Процессы химического улавливания примесей используют для нейтрализации наиболее крупномасштабных загрязнителей окружающей среды: оксидов азота, сернистого ангидрида, сероводорода, галогенов и др. Поскольку конкретные реакции нейтрализации каждого из этих веществ индивидуальны, удобнее имеющиеся способы очистки рассматривать применительно к перечисленным основным газовым загрязнителям.[ …]

Как видим, все получается весьма строго и логично: в обоих случаях реакция нейтрализации сводится к со единению ионов лиония и лиата; в обеих реакциях получается в качестве продукта нейтрализации соль — хлористый калий.[ …]

Цри защелачивании нефти можно не учитывать расход реагентов на сероводород, так как в первую очередь в реакцию вступает хлористый водород как более сильная кислота.[ …]

Реактор можно рассматривать как изолированную систему (потери тепла в окружающую среду незначительные), а процессы нейтрализации, происходящие в нем, являются самопроизвольными и необратимыми. В реакторе будет выделяться в результате реакций нейтрализации около 2,5 Мкал/ч, что, очевидно, соответствует повышению свободной энергии активных веществ отходов при их образовании на промышленных предприятиях.[ …]

Излюбленное критическое замечание по отношению к теории сольвосистем заключалось в том, что она не может описывать кислотно-основные реакции не в «своем растворителе».[ …]

Для предупреждения коррозии канализационных очистных сооружений, нарушения биохимических процессов в биологических окислителях и водоисточниках, а также осаждения из сточных вся солей тяжелых металлов, кислые и щелочные воды подвергаются нейтрализации. Наиболее типичная реакция нейтрализации — это реакция между ионами водорода и гидроксила, приводящая к образованию малодиссоциированной воды; Н++ОЬГ = Н20. В результате реакции концентрация каяедого из этих ионов становится одинаковой (около 107), т.е. активная реакция водной среды приближается к pH = 7.[ …]

Основной причиной образования осадков является взаимодействие сточных вод с пластовыми, когда происходит изменение среды растворов в направлении приближения к pH пластовой воды, т. е. к равновесным пластовым условиям, как правило, близким к нейтральным. Нейтрализация сопровождается гидролизом компонентов сбросных вод. В отдельных случаях за счет контакта с кислыми и щелочными средами может происходить частичное растворение пород, слагающих пласт с последующими, практически неконтролируемыми вторичными образованиями осадков в результате реакций нейтрализации. Кроме того, одной из причин образования осадков может быть введение со сточными водами компонентов, реагирующих с компонентами пластовой воды, в результате чего образуются осадки даже без изменения среды растворов.[ …]

Электроды, используемые для титрования кислот и оснований, являются индикаторными по отношению к концентрации ионов водорода. Мы рассмотрим два типа электродов: сурьмяный и стеклянный, которые, на наш взгляд, могут с успехом применяться в санитарно-химическом анализе для реакции нейтрализации и определения pH растворов.[ …]

Нельзя, однако, согласиться, будто вся азотная кислота, выделяемая нитрифицирующими бактериями при окислении азотистой кислоты в почве, будет нейтрализоваться только за счет разложения фосфоритной муки. Даже в некарбонатных почвах почвенный раствор содержит бикарбонат кальция, который станет прежде всего участвовать в реакции нейтрализации (как наиболее подвижный) азотной кислоты. Кроме того, во всякой почве находится значительное количество обменнопоглощенного кальция, легко вытесняемого в раствор водородными ионами азотной кислоты с образованием кальциевой селитры.[ …]

В клееной бумаге с проклейкой гидрофобным клеем внутри-волоконная диффузия, как свидетельствуют эксперименты, может осуществляться примерно в 1000 раз быстрее, чем через капилляры, проникновению воды в которые препятствуют гидрофобные частицы проклеивающего вещества. Добавление в воду раствора щелочи облегчает диффузию влаги в толщу бумажного листа, так как щелочь способствует набуханию волокон и, следовательно, внутриволоконнбму проникновению влаги. Кроме того, щелочь вступает в реакцию нейтрализации со свободной смолой канифольного клея, вследствие чего создаются условия, способствующие межволоконному проникновению влаги. Именно поэтому добавление в воду щелочного раствора способствует также капиллярному поднятию влаги в полосках бумаги, вертикально подвешенных над поверхностью влаги и касающихся этой поверхности.[ …]

При таком способе изготовления смесей их выпускают в гранулированном виде, что обеспечивает хорошую их рассеваемость и облегчает применение локальным способом при посеве и посадке растений (в рядки, лунки, борозды). Эти удобрения называются уже сложно-смешанными. Для приготовления их берут в желательной пропорции отвешенные количества простых или сложных порошковидных удобрений (простого или двойного суперфосфата, аммофоса или диаммофоса, аммиачной селитры или мочевины и хлористого калия) и основательно их перемешивают в особом бара-бане-грануляторе. При этом добавляют аммиак для нейтрализации свободной фосфорной кислоты суперфосфата. Реакция нейтрализации протекает с выделением тепла и разогреванием смеси, что способствует ее подсушиванию. Если в смесь не вводят аммофоса или диаммофоса, то ее обогащают жидкой фосфорной кислотой. Благодаря вращению барабана из перемешиваемых порошковидных удобрений образуются гранулы. Их охлаждают, просеивают и обрабатывают водоотталкивающими веществами (чтобы исключить отсыревание). Готовые смеси упаковывают в 5-слойные бумажные мешки или в мешки из полиэтилена. Для выпуска тукосмесей по этому принципу в СССР строится 12 больших заводов с автоматизацией процессов.[ …]

Впрочем, отметив, что электрон в основных растворителях находится «в свободном состоянии», мы допустили некоторую неточность. Разумеется, такая ничтожная по размерам частица обладает электростатическим полем исключительно высокой напряженности, и поэтому она будет притягивать к себе полярные молекулы растворителя, то есть будет сольватирована. Сольвати-рованный электрон известен и в водных растворах, где он образуется, например, при облучении воды и водных растворов источниками радиоактивного излучения. Но если в воде сольватированный электрон существует весьма непродолжительное время (всегда «к его услугам» в воде имеется достаточно ионов Н30+, чтобы произошла реакция нейтрализации: Н30+ + £-> У2Н2 ■+ ’ + Н20), то в сильноосновных растворителях сольватированный электрон весьма устойчив. Так, растворы натрия в жидком аммиаке хранятся без каких-либо изменений физических и химических свойств в течение нескольких месяцев.[ …]

Серная кислота из заводского хранилища поступает в емкость, откуда погружным насосом подается в напорный бак, а затем в барабанный реактор. В соответствии с ГОСТом в сульфате алюминия ограничивается содержание свободной серной кислоты и нерастворимого остатка. Выполнение этих требований при непрерывном процессе возможно при наличии автоматической дозировки реагентов — суспензии гидроксида алюминия и серной кислоты. Центробежный насос непрерывно подает суспензию в циркуляционное кольцо, в верхней части которого расположена отборная коробка. Из отборной коробки часть суспензии поступает в барабанный реактор непрерывного действия, а избыток сливается в репульпатор. За счет теплоты разбавления серной кислоты и реакции нейтрализации гидроксида алюминия кислотой температура в реакторе поддерживается в пределах 95—115 °С. Продолжительность пребывания реакционной массы в реакторе составляет 25—40 мин. Плотность реакционной массы 1500 кг/м3. Производительность аппарата составляет 10000 кг/ч при скорости вращения барабана 0,18 с-1. По выходе из реактора концентрированный раствор сульфата алюминия с 13,5 % АЬОз поступает в распыливающие форсунки гранулятора кипящего слоя.[ …]

ru-ecology.info

Общая, теоретическая и неорганическая химия

Реакции нейтрализации

Реакциями нейтрализации называются обменные реакции взаимодействия кислот и оснований, в резуль–тате которых образуются соль и вода.

Рассмотрим различные типы реакций нейтрализации.

1. Нейтрализация сильного основания сильной кис–лотой:

КОН + HNO3 – KNO3 + Н2O.

Молекулярно-ионное уравнение такой реакции Н+ + OН- → Н2O

и отрицательное значение энергии Гиббса ΔG° пока–зывают, что равновесие практически смещено в сто–рону образования воды.

Общим случаем реакции нейтрализации является взаимодействие кислот и оснований, различающихся по силе (степени диссоциации). Эти реакции не дохо–дят до конца вследствие протекания обратной реакции гидролиза соли.

2. Нейтрализация слабой кислоты сильным основа–нием:


или в молекулярно-ионном виде:


В данном случае реакция нейтрализации обратима. Обратима и реакция нейтрализации слабого основа–ния сильной кислотой:


или в молекулярно-ионном виде:


а также – слабого основания слабой кисло–той:


или в молекулярно-ионном виде:

В данных системах равновесие сильно смещено вправо, так как вода значительно более слабый элек–тролит, чем синильная кислота, аммиак и уксусная ки–слота.

Реакции нейтрализации лежат в основе метода нейтра–лизации. Этот метод используют в клинических лабора–ториях для определения кислотности желудочного сока, буферной емкости плазмы крови. В фармакологии его применяют для количественного анализа неорганиче–ских кислот (соляной, серной, борной) и органических кислот (уксусной, бензойной, винной, лимонной, сали–циловой). В биофармацевтических исследованиях методом нейтрализации определяют рКа кислот и рКь оснований, так как по значению этих величин можно прогнозировать способность лекарственных препара–тов проходить через биологические мембраны.

Применяют кислотно-основное титрование для опре–деления рКа аминокислот и рКа диссоциирующих групп, входящих в белки. По кривым титрования белков, полу–ченным при двух различных температурах, можно опре–делить число карбоксильных, имидазольных и других групп. Титрование аминокислот и белков дает возмож–ность определить их изоэлектрические точки.

Под гидролизом понимают реакцию разложения ве–щества водой.

Гидролизу могут подвергаться химические соедине–ния различных классов: белки, жиры, углеводы, эфиры, соли и т. д. В неорганической химии чаще всего встре–чаются с гидролизом солей.

cribs.me

Реакция нейтрализации — Наука и образование

Реакция между кислотой и основанием, в результате которой образуется соль и вода, называется реакцией нейтрализации. 

Мы изучили реакции взаимодействия кислот с металлами и окислами металлов. При этих реакциях образуется соль соответствующего металла. Основания также содержат металлы. Можно предположить, что кислоты будут взаимодействовать с основаниями тоже с образованием солей. Прильем к раствору гидроокиси натрия NaOH раствор соляной кислоты HCl.

Раствор остается бесцветным и прозрачным, но на ощупь можно установить, что при этом выделяется теплота. Выделение теплоты показывает, что между щелочью и кислотой произошла химическая реакция.

Чтобы выяснить сущность этой реакции, проделаем такой опыт. В раствор щелочи поместим бумажку, окрашенную фиолетовым лакмусом. Она, конечно, посинеет. Теперь из бюретки начнем приливать к раствору щелочи малыми порциями раствор кислоты, пока окраска лакмуса опять изменится из синей в фиолетовую. Если лакмус из синего стал фиолетовым, то это означает, что в растворе не стало щелочи. Не стало в растворе и кислоты, так как в ее присутствии лакмус должен был бы окраситься в красный цвет. Раствор сделался нейтральным. Выпарив раствор, мы получили соль – хлористый натрий NaCl.

Образование хлористого натрия при взаимодействии гидроокиси натрия с соляной кислотой выражается уравнением:

NaOH + HCl = NaCl + H2O + Q

Сущность этой реакции заключается в том, что атомы натрия и водорода обмениваются местами. В результате водородный атом кислоты соединяется с гидроксильной группой щелочи в молекулу воды, а атом металла натрия соединяется с остатком кислоты – Cl, образуя молекулу соли. Эта реакция относится к знакомому нам типу реакций обмена.

Вступают ли в реакции с кислотами нерастворимые основания? Насыплем в стакан голубую гидроокись меди. Прибавим воды. Гидроокись меди не растворится. Теперь прильем к ней раствор азотной кислоты. Гидроокись меди растворится и получится прозрачный раствор азотнокислой меди голубого цвета. Реакция выражается уравнением:

Cu(OH)2 + 2HNO3 = Cu(NO3)2 + 2H2O

Нерастворимые в воде основания, как и щелочи, взаимодействуют с кислотами с образованием соли и воды.

С помощью реакции нейтрализации определяют опытным путем нерастворимые кислоты и основания. Гидраты окислов, вступающие в реакцию нейтрализации со щелочами, относятся к кислотам. Убедившись на опыте, что данный гидрат окисла нейтрализуется щелочами, мы пишем его формулу, как формулу кислоты, записывая химический знак водорода на первое место: HNO3, H2SO4.

Кислоты друг с другом с образованием солей не взаимодействуют.

Гидраты окислов, вступающие з реакцию нейтрализации с m лотами, относятся к основаниям. Убедившись на опыте, что данный гидрат окисла нейтрализуется кислотами, мы пишем его формулу в виде Ме(ОН)n, т. е. подчеркиваем присутствие в нем гидроксильных групп.

Основания друг с другом с образованием солей не взаимодействуют.

scibio.ru

Реакция — нейтрализация — Большая Энциклопедия Нефти и Газа, статья, страница 2

Реакция — нейтрализация

Cтраница 2

Реакции нейтрализации, в которых участвует слабая кислота или слабое основание, протекают не полностью, только до установления равновесия.  [16]

Реакции нейтрализации являются экзотермическими процессами ( Н ОН-Н2О 57 3 кДж), следовательно, гидролиз солей эн-дотермичен.  [17]

Реакции нейтрализации являются экзотермическими процессами ( Н ОН — Н2О 57 3 кДж), следовательно, гидролиз солей эндотермичен.  [18]

Реакция нейтрализации — это химическая реакция между веществом, имеющим свойства кислоты, и веществом, имеющим свойства основания, которая приводит к потере характерных свойств обоих соединений. Наиболее типичная реакция нейтрализации в водных растворах происходит между гидратированными ионами водорода и ионами гидро-ксила, содержащимися соответственно в сильных кислотах и основаниях: Н ОН-Н2О.  [19]

Реакция нейтрализации протекает не только в водных, но и в неводных растворах. Химическая природа неводного растворителя влияет на состояние ионов в растворе и на степень диссоциации. Одно и то же вещество может быть в одном растворителе солью, в другом кислотой, в третьем основанием.  [20]

Реакция нейтрализации сопровождается выделением теплоты; поэтому термометр Бекмана предварительно устанавливают таким образом, чтобы в начале опыта ртуть в капилляре термометра была в нижней части шкалы. После того как будет собран калориметр, определяют его постоянную ( см. предыдущую работу), вставив в крышку калориметра пустую ампулу.  [21]

Реакции нейтрализации протекают с выделением тепла. Однако количество тепла, высвобождаемого при смешении разбавленных кислот и щелочей, трудно оценить на ощупь. Концентрированные же кислоты и основания ни в коем случае не следует смешивать друг с другом. Такая смесь становится настолько горячей, что начинает кипеть и сильно расплескиваться.  [22]

Реакции нейтрализации играют решающую роль при формовании, так как они предопределяют кинетику осаждения и структуру образующейся нити. Кроме того, в результате реакции нейтрализации ряд продуктов переходит в неустойчивую форму и разлагается.  [23]

Реакция нейтрализации щелочью нафтеновых кислот и фенолов имеет обратимый характер. Нафтенаты и феноляты в присутствии воды гидролизуются, образуя исходные продукты. Степень гидролиза зависит от условий процесса. Она увеличивается с повышением температуры и понижается с ростом концентрации раствора щелочи. Щелочную очистку целесообразно проводить при невысоких температурах, используя концентрированные растворы.  [24]

Реакции нейтрализации, протекающие в водных растворах, аналогичны реакциям, происходящим в неводных средах.  [25]

Реакция нейтрализации представляет собой ионообменную реакцию и проходит моментально. В отличие от нее реакция этерификации не является ионообменной и протекает медленнее. И реакция образования этилатов, и реакция этерификации обратимы, а следовательно, ограничены состоянием равновесия.  [26]

Реакции нейтрализации являются одновременно и реакциями солеобра-зования.  [27]

Реакция нейтрализации протекает очень быстро, и при дальнейшем смешивании вся масса сточных вод приобретает одинаковое значение рН в течение нескольких минут.  [28]

Реакция нейтрализации, как и всякая химическая реакция, совершается между определенными весовыми количествами реагирующих веществ. NaOH реагируют с 36 5 вес.  [29]

Реакции нейтрализации, в которых участвуют слабые электролиты, обратимы, и при эквивалентных количест — вах кислоты и основания среда раствора, как правило, не получается нейтральной.  [30]

Страницы:      1    2    3    4

www.ngpedia.ru

Специфика протекания процесса химической нейтрализации

Нейтрализация – химическая реакция, происходящая между двумя составами, имеющими свойства кислоты и основания. В результате их взаимодействия происходит потеря свойств обоих веществ, что приводит к выделению соли и воды.

Сфера применения нейтрализации

Вычисления по этой реакции особенно часто используются:

  • в агрохимических лабораториях;
  • в химическом производстве;
  • при обработке отходов.

Метод нейтрализации применяется в клинических лабораториях для определения буферной емкости плазмы крови, кислотности желудочного сока. Активно используется и в фармакологии, когда нужно провести количественный анализ неорганических и органических кислот. Проводить этот процесс можно по всем правильно составленным уравнениям.

Внешние проявления нейтрализации

Процесс нейтрализации кислоты можно наблюдать, если вначале к раствору добавить несколько капель индикатора, который позволит изменить окраску раствора. Когда к этой смеси добавляется щелочь, то окраска полностью исчезает. Но стоит учитывать, что индикаторы меняют свою окраску не строго в эквивалентной точке, а с отклонением. Поэтому даже при правильном выборе индикатора допускается погрешность. Если же он был выбран неправильно, то все результаты оказываются искаженными.

В условиях школьной программы для этого применяют лимонную кислоту и нашатырный спирт. В качестве примера можно рассмотреть процесс реакции между соляной кислотой и едким натром. В результате их взаимодействия образовывается известный всем раствор пищевой соли в воде. Также в качестве индикаторов могут выступать:

  • метиловый оранжевый;
  • лакмус;
  • метиловый красный;
  • фенолфталеин.


Необходимо отметить, что реакция, обратная нейтрализации, называется гидролизом. Его результатом является образование слабой кислоты или основания.

При выборе нейтрализующего вещества обязательно учитываются:

  • промышленные свойства соединения;
  • доступность;
  • себестоимость.

Раньше в качестве нейтрализатора применяли окись магния. Сейчас она не пользуется популярностью, поскольку имеет высокую стоимость и вступает в реакцию достаточно медленно.

Виды реакции нейтрализации

В процессе взаимодействия сильного основания такой же сильной кислотой происходит смещение реакции в сторону образования воды. Вместе с тем этот процесс не доходит до конца, поскольку начинается гидролиз соли.

При нейтрализации слабой кислоты сильным основанием можно говорить об обратимой реакции. Как правило, в таких системах протекание реакции смещается в сторону образования соли, поскольку вода является более слабым электролитом, чем, например, синильная, уксусная кислота или аммиак.

Скорость процесса нейтрализации изменяется в зависимости от специфики используемых веществ. Например, при применении NaOH необходимая степень кислотности появляется практически сразу же. СаО приводит к возникновению нужной реакции только через 15-20 минут, а MgO – через 45 минут. При этом в последних двух случаях наиболее сильное понижение кислотности наблюдается в первые 5 минут после того как было внесено нейтрализующее вещество. Если скорость процесса не очень высокая, то еще больше его начинает тормозить вторичное окисление.

Выделение тепла в процессе нейтрализации 

Часто это происходит под воздействием азотной кислоты. Чем выше ее количество, тем больше выделяется тепла. При получении поваренной соли воздействие тепла приводит к нежелательным последствиям, поскольку она начинает разлагаться с выделением хлора. Из-за выделения тепла можно говорить о том, что все реакции нейтрализации являются экзотермическими. Его выделение происходит из-за возникновения разницы между суммарной энергией ионов Н+ и ОН-, а также энергией образования молекул воды.

xn--80aafyrjrx8f7a.xn--p1ai

Реакция нейтрализации Википедия

Реакция нейтрализа́ции (от лат. neuter — ни тот, ни другой) — реакция взаимодействия кислоты и основания между собой с образованием соли и слабо диссоциирующего вещества (воды).

В большинстве своем, реакции нейтрализации экзотермичны. К примеру, реакция гидроксида натрия и соляной кислоты:

HCl+NaOH⟶NaCl+h3O{\displaystyle {\ce {HCl + NaOH -> NaCl + h3O}}}

В сокращенном ионном виде уравнение записывают так:

H++OH−⟶h3O{\displaystyle {\ce {H+ + OH- -> h3O}}}

Тем не менее, существуют также и эндотермические реакции нейтрализации, например, реакция гидрокарбоната натрия (пищевой соды) и уксусной кислоты.

К понятию нейтрализации также могут относиться реакции сильной кислоты с карбонатами, так как в результате такой реакции получается соль и угольная кислота, которая относится к слабым кислотам (не создает полноценную кислотную среду, не вступает в реакции, и слабо диссоциирует) а также, к нестабильным, поэтому разлагается на углекислый газ и воду — два нейтральных вещества (оксида).

Примеры

Взаимодействие слабой кислоты и сильного основания:

h3SO3+2NaOH⟶Na2SO3+2h3O{\displaystyle {\ce {h3SO3 + 2NaOH -> Na2SO3 + 2h3O}}}

Взаимодействие слабой кислоты и слабого основания:

2Ch4COOH+Cu(OH)2⟶Cu(Ch4COO)2+2h3O{\displaystyle {\ce {2Ch4COOH + Cu(OH)2 -> Cu(Ch4COO)2 + 2h3O}}}

Взаимодействие сильной кислоты с сильным основанием:

HNO3+KOH⟶KNO3+h3O{\displaystyle {\ce {HNO3 + KOH -> KNO3 + h3O}}}

Взаимодействие слабой кислоты с карбонатом или гидрокарбонатом:

Ch4COOH+KHCO3⟶Ch4COOK+h3CO3⟶Ch4COOK+h3O+CO2↑{\displaystyle {\ce {Ch4COOH + KHCO3 -> Ch4COOK + h3CO3 -> Ch4COOK + h3O + CO2 ^}}}

2C2H5COOH+Na2CO3⟶2C2H5COONa+h3CO3⟶2C2H5COONa+h3O+CO2↑{\displaystyle {\ce {2C2H5COOH + Na2CO3 -> 2C2H5COONa + h3CO3 -> 2C2H5COONa + h3O + CO2 ^}}}

Применение

Нейтрализация лежит в основе ряда важнейших методов титриметрического анализа. Также реакцию нейтрализации используют при проливе кислоты или щелочи (соответственно нейтрализуют содой (слабым основанием) или уксусом (слабой кислотой)).

wikiredia.ru

определение, примеры, применение :: SYL.ru

Реакция нейтрализации считается одной из важнейших для кислот и оснований. Именно это взаимодействие предполагает образование воды в качестве одного из продуктов реакции.

Механизм

Проанализируем уравнение реакции нейтрализации на примере взаимодействия гидроксида натрия с соляной (хлороводородной) кислотой. Катионы водорода, образующиеся в результате диссоциации кислоты, связываются с гидроксид-ионами, которые образуются при распаде щелочи (гидроксида натрия). В итоге между ними протекает реакция нейтрализации

H+ + OH- → H2O

Характеристика химического эквивалента

Кислотно-основное титрование взаимосвязано с нейтрализацией. Что такое титрование? Это способ вычисления имеющейся массы основания либо кислоты. Он предполагает измерение количества щелочи либо кислоты с известной концентрацией, которое необходимо брать для полной нейтрализации второго реагента. Любая реакция нейтрализации предполагает применение такого термина как «химический эквивалент».

Для щелочи это то количество основания, которое в случае полной нейтрализации образует один моль гидроксид ионов. Для кислоты химический эквивалент определяется количеством, выделяемым при нейтрализации 1 моль катионов водорода.

Реакция нейтрализации протекает в полном объеме в том случае, если в исходной смеси находится равное количество химических эквивалентов основания и кислоты.

Грамм-эквивалентом считается масса основания (кислоты) в граммах, которые способны образовывать один моль гидроксид-ионов (катионов водорода). Для одноосновной кислоты (азотной, соляной), которые при распаде молекулы на ионы высвобождают по одному катиону водорода, химический эквивалент аналогичен количеству вещества, а 1 грамм-эквивалент соответствует молекулярной массе вещества. Для двухосновной серной кислоты, образующей в процессе электролитической диссоциации два катиона водорода, один моль соответствует двум эквивалентам. Поэтому в кислотно-основном взаимодействии ее грамм-эквивалент равен половине относительной молекулярной массы. Для трехосновной фосфорной кислоты при полной диссоциации, образующей три катиона водорода, один грамм-эквивалент будет равен трети относительной молекулярной массы.

Для оснований принцип определения аналогичен: грамм-эквивалент зависит от валентности металла. Так, для щелочных металлов: натрия, лития, калия — искомая величина совпадает с относительной молекулярной массой. В случае расчета грамм-эквивалента гидроксида кальция, данная величина будет равна половине относительной молекулярной массы гашеной извести.

Пояснение механизма

Попробуем понять, что представляет собой реакция нейтрализации. Примеры такого взаимодействия можно взять разные, остановимся на нейтрализации азотной кислоты гидроксидом бария. Попробуем определить массу кислоты, в которой нуждается реакция нейтрализации. Примеры расчетов приведем ниже. Относительная молекулярная масса азотной кислоты составляет 63, а гидроксида бария 86. Определяем число грамм-эквивалентов основания, содержащегося в 100 граммах. 100 г делим на 86 г/экв и получаем 1 эквивалент Ba(OH)2. Если рассматривать данную проблему через химическое уравнение, то можно составить взаимодействие следующим образом:

2HNO3 + Ba(OH)2 → Ba(NO3)2 + 2H2O

По уравнению отчетливо видна вся химия. Реакция нейтрализации здесь протекает полностью в том случае, когда два моль кислоты вступают в реакцию с одним моль основания.

Особенности нормальной концентрации

Ведя речь о нейтрализации, часто используют нормальную концентрацию основания или щелочи. Что представляет собой данная величина? Нормальность раствора демонстрирует то количество эквивалентов искомого вещества, которое существует в одном литре его раствора. С ее помощью проводят количественные вычисления в аналитической химии.

Например, если нужно определить нормальность и молярность 0,5 литра раствора, полученного после растворения 4 граммов гидроксида натрия в воде, сначала необходимо определить относительную молекулярную массу гидроксида натрия. Она составит 40, молярная масса будет 40 г/моль. Далее определяем количественное содержание в 4 граммах вещества, для этого делим массу на молярную, то есть, 4 г:40 г/моль, получаем 0,1 моль. Поскольку молярная концентрация определяется отношением количества моль вещества к общему объему раствора, можно вычислить молярность щелочи. Для этого 0,1 моль делим на 0,5 литра, в итоге получаем 0,2 моль/л, то есть, 0,2 М щелочи. Так как основание является однокислотным, его молярность численно равна нормальности, то есть соответствует 0,2 н.

Заключение

В неорганической и органической химии реакция нейтрализации, протекающая между кислотой и основанием, имеет особое значение. Благодаря полной нейтрализации исходных компонентов происходит реакция ионного обмена, полноту которой можно проверить с помощью индикаторов на кислую и щелочную среду.

www.syl.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *