Содержание

Строение и функции глаза, анатомия глаза

Человек видит не глазами, а посредством глаз, откуда информация передается через зрительный нерв, хиазму, зрительные тракты в определенные области затылочных долей коры головного мозга, где формируется та картина внешнего мира, которую мы видим. Все эти органы и составляют наш зрительный анализатор или зрительную систему.

Наличие двух глаз позволяет сделать наше зрение стереоскопичным (то есть формировать трехмерное изображение). Правая сторона сетчатки каждого глаза передает через зрительный нерв «правую часть» изображения в правую сторону головного мозга, аналогично действует левая сторона сетчатки. Затем две части изображения — правую и левую — головной мозг соединяет воедино.

Так как каждый глаз воспринимает «свою» картинку, при нарушении совместного движения правого и левого глаз может быть расстроено бинокулярное зрение. Попросту говоря, у вас начнет двоиться в глазах или вы будете одновременно видеть две совсем разные картинки.

Основные функции глаза

  • оптическая система, проецирующая изображение;
  • система, воспринимающая и «кодирующая» полученную информацию для головного мозга;
  • «обслуживающая» система жизнеобеспечения.

Строение глаза

Глаз можно назвать сложным оптическим прибором. Его основная задача — «передать» правильное изображение зрительному нерву.

Роговица — прозрачная оболочка, покрывающая переднюю часть глаза. В ней отсутствуют кровеносные сосуды, она имеет большую преломляющую силу. Входит в оптическую систему глаза. Роговица граничит с непрозрачной внешней оболочкой глаза — склерой. См. строение роговицы.

Передняя камера глаза — это пространство между роговицей и радужкой. Она заполнена внутриглазной жидкостью.

Радужка — по форме похожа на круг с отверстием внутри (зрачком). Радужка состоит из мышц, при сокращении и расслаблении которых размеры зрачка меняются. Она входит в сосудистую оболочку глаза. Радужка отвечает за цвет глаз (если он голубой — значит, в ней мало пигментных клеток, если карий — много). Выполняет ту же функцию, что диафрагма в фотоаппарате, регулируя светопоток.

Зрачок — отверстие в радужке. Его размеры обычно зависят от уровня освещенности. Чем больше света, тем меньше зрачок.

Хрусталик — «естественная линза» глаза. Он прозрачен, эластичен — может менять свою форму, почти мгновенно «наводя фокус», за счет чего человек видит хорошо и вблизи, и вдали. Располагается в капсуле, удерживается ресничным пояском. Хрусталик, как и роговица, входит в оптическую систему глаза.

Стекловидное тело — гелеобразная прозрачная субстанция, расположенная в заднем отделе глаза. Стекловидное тело поддерживает форму глазного яблока, участвует во внутриглазном обмене веществ. Входит в оптическую систему глаза.

Сетчатка — состоит из фоторецепторов (они чувствительны к свету) и нервных клеток. Клетки-рецепторы, расположенные в сетчатке, делятся на два вида: колбочки и палочки. В этих клетках, вырабатывающих фермент родопсин, происходит преобразование энергии света (фотонов) в электрическую энергию нервной ткани, т. е. фотохимическая реакция.

Палочки обладают высокой светочувствительностью и позволяют видеть при плохом освещении, также они отвечают за периферическое зрение. Колбочки, наоборот, требуют для своей работы большего количества света, но именно они позволяют разглядеть мелкие детали (отвечают за центральное зрение), дают возможность различать цвета. Наибольшее скопление колбочек находится в центральной ямке (макуле), отвечающей за самую высокую остроту зрения. Сетчатка прилегает к сосудистой оболочке, но на многих участках неплотно. Именно здесь она и имеет тенденцию отслаиваться при различных заболеваниях сетчатки.

Склера — непрозрачная внешняя оболочка глазного яблока, переходящая в передней части глазного яблока в прозрачную роговицу. К склере крепятся 6 глазодвигательных мышц. В ней находится небольшое количество нервных окончаний и сосудов.

Сосудистая оболочка — выстилает задний отдел склеры, к ней прилегает сетчатка, с которой она тесно связана. Сосудистая оболочка ответственна за кровоснабжение внутриглазных структур. При заболеваниях сетчатки очень часто вовлекается в патологический процесс. В сосудистой оболочке нет нервных окончаний, поэтому при ее заболевании не возникают боли, обычно сигнализирующие о каких-либо неполадках.

Зрительный нерв — при помощи зрительного нерва сигналы от нервных окончаний передаются в головной мозг.

Полезно почитать

Общие вопросы о лечении в клинике

Морские биологи МГУ изучили строение нервной системы примитивной мшанки

Сотрудники МГУ изучили строение нервной системы необычной круглоротой мшанки, построили её компьютерную модель и сравнили с другими мшанками. Исследование показало, что вид Crisia eburnea относится к наиболее примитивным представителям своего типа. Работа проходила в рамках проекта «Ноев ковчег» при поддержке Российского научного фонда (РНФ). Результаты исследования опубликованы в журнале Frontiers in Zoology.

По оценкам учёных, на нашей планете обитает около 8.7 миллионов видов живых организмов, не считая бактерий и архей. Около 2.2 миллионов из них приходится на биоразнообразие океана. Однако 91% процент морского биоразнообразия до сих пор не описан. Большая доля видов морских экосистем приходится на беспозвоночных животных. Эволюция уже известных групп остаётся загадкой.

Морские биологи МГУ изучают биоразнообразие морских экосистем и ведут поиск места малоизученных групп организмов на эволюционном дереве. Так, сотрудники кафедры зоологии беспозвоночных с помощью лазерного сканирующего и электронного микроскопов изучили строение нервной системы необычной круглоротой мшанки Crisia eburnea и сравнили его с другими мшанками. На основании морфологических данных учёные провели филогенетический анализ и реконструировали эволюционную историю вида.

«Детали тонкого строения церебрального ганглия позволяют утверждать, что круглоротые мшанки — одни из наиболее примитивных представителей современных Bryozoa. Этот вывод подтверждается так же и тем, что общая архитектура нервной системы Crisia eburnea сочетает признаки представителей других групп мшанок — покрыторотых и голоротых», — пояснила старший научный сотрудник кафедры зоологии беспозвоночных биологического факультета МГУ Елена Темерева.

Мшанки — это тип весьма примитивных сидячих водных беспозвоночных животных, который вместе с плеченогими и форонидами объединяют в группу лофофорат. Мшанки обычно живут колониями, которые выглядят как бархатистый налёт на поверхности камней, свай, водных растениях и упавших в воду предметов. В высоту эти организмы редко превышают 3 мм, а площадь колонии может занимать несколько квадратных метров. Нервная система мшанок представлена единственным ганглием, расположенным между анальным и ротовым отверстиями, а также многочисленными нервными трактами.

Все три типа лофофорат обладают характерным щупальцевым аппаратом — лофофором, — с помощью которого животные улавливают пищу из воды. Несмотря на схожий образ жизни и общие черты в строении лофофора, споры об эволюции этой группы до сих пор под не утихают в научном сообществе. Ранее Елена Темерева, проанализировав нервы, возбуждающие лофофоры всех трёх групп, выяснила, что все лофофораты, вероятнее всего произошли от единого предка, однако мшанки от этой эволюционной ветви отделились раньше плеченогих и форонид. Анализ нервной системы форонид показал, что предком мшанок вероятнее всего была протофоронида. Таким образом, детективная история эволюции лофофорат поэтапно раскрывается усилиями морских биологов МГУ и их коллег.

Кожа: строение и функции кожи человека

Что такое кожа
Кожа покрывает все наше тело и является самым крупным органом человека. У взрослого человека площадь кожи составляет около 2 квадратных метров. Вместе с подкожной жировой клетчаткой ее вес составляет в среднем 16-17% от общей массы тела [3].

Она защищает наш организм от окружающей среды, поддерживая его гомеостаз (саморегулирующийся процесс). Кожа обеспечивает естественную терморегуляцию: предотвращает перегрев или переохлаждение организма. Она участвует в дыхании и обменных процессах.
На коже, как в зеркале, отражаются наши эмоции и физическое состояние.
Строение кожи
Если говорить про строение кожи, то она состоит из трех основных слоя: эпидермис, дерма и гиподерма (подкожно-жировая клетчатка). Рассмотрим строение кожи чуть детальнее.
Эпидермис
Epi переводится с греческого как “над”, dermis — кожа. Эпидермисом называют верхний слой кожи, его толщина около 0,05-0,1 мм [1].
В строении эпидермиса выделяют четыре слоя [2]:
• базальный
• шиповатый
• зернистый
• роговой (наружный слой)
Каждые 3-4 недели происходит обновление эпидермиса. Этот процесс начинается в базальном (зачатковом) слое. Клетки поднимаются к верхнему роговому слою, преобразуясь в другие виды клеток на этом пути.
Клетки на базальной мембране созревают и превращаются в кератиноциты. Кератиноциты делятся и перемещаются ближе к внешнему слою — роговому. По мере выталкивания клеток к поверхности, они становятся более плоскими. В конце они теряют свое ядро, отмирают и превращаются в чешуйки, из которых и состоит роговой слой. Таким образом создается барьер от внешней среды. Процесс обновления рогового слоя постоянен, мы теряем около 40 000 чешуек в минуту. Если кожа здорова этот процесс незаметен глазу. [1].
Дерма
Под эпидермисом находится более глубокий слой — дерма (dermis — кожа). Ее толщина составляет почти 2 мм. Она представлена соединительной тканью, основу которой составляют прочные белковые волокна-коллаген и эластин. Прочной нашу кожу делает коллаген, упругой — эластин.
В дерме расположена сложная сеть из кровеносных и лимфатических сосудов, нервных окончаний,также в дерме расположены волосяные фолликулы, потовые и сальные железы. По строению дерму можно разделить на два уровня: поверхностная папиллярная дерма и глубокая ретикулярная дерма.
Гиподерма (подкожная жировая клетчатка)
Гиподерма ( или subcutis (sub — под, cutis — название дермы и верхнего слоя кожи))- это самый крупный и самый тяжелый слой, без него кожа бы весила 3 кг, а с ним может весить до 20 кг [3].
Благодаря гиподерме, тело человека обретает мягкие черты, без нее четко виднелись бы кости и суставы. В строении этого слоя участвуют рыхлая соединительная ткань и жир. Гиподерма пронизана кровеносными сосудами и нервными окончаниями, но более крупными, чем в дерме.
Конечно, строение кожи гораздо сложнее, но эти три слоя, из которых кожа состоит, представляют собой основные ее “этажи”.
Функции кожи
Функции кожи очень разнообразны и у каждого ее слоя есть свои задачи.
Эпидермис в первую очередь создает защитный барьер и обладает кислотной мантией. Он защищает от воздействия различных вредных веществ и аллергенов, а такжемеханических воздействий. Защитная функция кожи — одна из наиболее важных.
Кислоты на роговом слое понижают pH и связывают воду, сохраняя верхний слой кожи увлажненным. Уровень pH важен для микробиома кожи — совокупности микроорганизмов на поверхности кожи человека которые выполняют важные защитные и регуляторные функции.
В шиповатом слое находятся клетки Лангерганса, которые отвечают за иммунную защиту кожи. Клетки Меркеля тоже расположены в верхнем слое и среди их функций — обеспечение кожной чувствительности [2].
Еще в эпидермисе есть пигментные клетки меланоциты, определяющие цвет кожи и выполняющие функцию защиты от УФ лучей [2].
Дерма регулирует теплоотдачу тела. Чтобы снизить температуру тела, потовые железы выводят влагу на поверхность кожи. Чтобы согреть нас, она уменьшает приток крови к коже что способствует сохранению тепла внутри организма.
Благодаря дерме наша кожа прочная и эластичная. Здесь расположены волосяные фолликулы, из которых растут волосы.
Кровеносные сосуды дермы снабжают кожу кислородом и питательными веществами, поддерживают иммунную систему. Нервные окончания, расположенные в дерме, передают важную информацию мозгу, например о жаре или о боли.
В гиподерме накапливаются и хранятся питательные вещества. Подкожно-жировая клетчатка предотвращает переохлаждение организма. Она создает дополнительную защиту для внутренних органов.
Как видите, невозможно переоценить важность для человека функций кожи.
Уход за кожей

Лицо
Уход за кожей лица зависит от состояния вашей кожи (чувствительность, выделения сальных желез, возрастные изменения и др.) и лучше, чтобы его подобрал дерматолог. Базовый уход включает в себя очищение, увлажнение и защиту от солнца. Средства подбираются индивидуально.
Тело
Одним из основных правил по уходу за кожей является отказ от ежедневного купания с мылом. Каждый день принимать душ без вреда для кожи можно только используя воду, так как у нее нейтральное значение pH. Если вы хотите использовать моющее средство, оно должно быть без запаха, без цвета и почти не должно пениться. Используя мыло, с высоким pH, мы разрушаем защитный барьер, а для полного восстановления эпидермису требуется 4 недели.

Для кожи человека полезнее принимать душ, чем ванну. Так как при долгом лежании в пенной ванне кожа выщелачивается.
Будьте осторожны с различными маслами. Они являются агрессивными очищающими средствами и не подходят для ухода. Из-за частого использования масла на коже могут появиться сухие экземы. Гораздо лучше для выполнения функции увлажнения подходят жиросодержащие кремы, мази или липолосьоны [1].
Ноги
Не стоит агрессивно удалять ороговевший слой, так как он защищает мягкие ткани от сдавливания. Его избыток можно убрать пилкой .
На ороговевшем слое ног могут возникать трещины, и кожа может становится шершавой. Для того, чтобы опасные бактерии не проникали через трещины на коже, можно использовать жирную мазь. Нанесите ее перед сном и оберните стопы в непроницаемую для воздуха пленку. Такая процедура позволит мази проникнуть даже в ороговевший слой [1].
Используемая литература:
1. Адлер Й. Что скрывает кожа. 2 квадратных метра, которые диктуют, как нам жить. М.: Издательство «Э», 2017, с. 13.
2. Быков В.Л. Частная гистология человека. 2 изд. СПб.: СОТИС, 1999, с. 215.
3. Медицинская энциклопедия. Кожа[Электронный ресурс] URL: dic.academic.ru/dic.nsf/enc_medicine/14590

Клетка как биологическая система (соответствие) | ЕГЭ по биологии

Строение клетки. Взаимосвязь строения и функций частей и органоидов клетки — основа ее целостности

Строение клетки

Строение прокариотических и эукариотических клеток

Основными структурными компонентами клеток являются плазматическая мембрана, цитоплазма и наследственный аппарат. В зависимости от особенностей организации различают два основных типа клеток: прокариотические и эукариотические. Главным отличием прокариотических клеток от эукариотических является организация их наследственного аппарата: у прокариот он находится непосредственно в цитоплазме (эта область цитоплазмы называется нуклеоидом) и не отделен от нее мембранными структурами, тогда как у эукариот бульшая часть ДНК сосредоточена в ядре, окруженном двойной мембраной. Кроме того, генетическая информация прокариотических клеток, находящаяся в нуклеоиде, записана в кольцевой молекуле ДНК, а у эукариот молекулы ДНК незамкнутые.

В отличие от эукариот, цитоплазма прокариотических клеток содержит также небольшое количество органоидов, тогда как для эукариотических характерно значительное разнообразие этих структур.

Строение и функции биологических мембран

Строение биомембраны. Мембраны, ограничивающие клетки и мембранные органоиды эукариотических клеток, имеют общий химический состав и строение. В их состав входят липиды, белки и углеводы. Липиды мембраны представлены в основном фосфолипидами и холестерином. Большинство белков мембран относится к сложным белкам, например гликопротеинам. Углеводы не встречаются в мембране самостоятельно, они связаны с белками и липидами. Толщина мембран составляет 7–10 нм.

Согласно общепринятой в настоящее время жидкостно-мозаичной модели строения мембран, липиды образуют двойной слой, или липидный бислой, в котором гидрофильные «головки» молекул липидов обращены наружу, а гидрофобные «хвосты» спрятаны вовнутрь мембраны. Эти «хвосты» благодаря своей гидрофобности обеспечивают разделение водных фаз внутренней среды клетки и ее окружения. С липидами с помощью различных типов взаимодействия связаны белки. Часть белков расположена на поверхности мембраны. Такие белки называют периферическими, или поверхностными. Другие белки частично или полностью погружены в мембрану — это интегральные, или погруженные белки. Белки мембран выполняют структурную, транспортную, каталитическую, рецепторную и другие функции.

Мембраны не похожи на кристаллы, их компоненты постоянно находятся в движении, вследствие чего между молекулами липидов возникают разрывы — поры, через которые в клетку могут попадать или покидать ее различные вещества.

Биологические мембраны различаются по расположению в клетке, химическому составу и выполняемым функциям. Основные типы мембран — плазматическая и внутренние. Плазматическая мембрана содержит около 45 % липидов (в т. ч. гликолипидов), 50 % белков и 5 % углеводов. Цепочки углеводов, входящих в состав сложных белков-гликопротеинов и сложных липидов-гликолипидов, выступают над поверхностью мембраны. Гликопротеины плазмалеммы чрезвычайно специфичны. Так, например, по ним происходит взаимное узнавание клеток, в том числе сперматозоида и яйцеклетки.

На поверхности животных клеток углеводные цепочки образуют тонкий поверхностный слой — гликокаликс. Он выявлен почти во всех животных клетках, но степень его выраженности неодинакова (10–50 мкм). Гликокаликс обеспечивает непосредственную связь клетки с внешней средой, в нем происходит внеклеточное пищеварение; в гликокаликсе размещены рецепторы. Клетки бактерий, растений и грибов, помимо плазмалеммы, окружены еще и клеточными оболочками.

Внутренние мембраны эукариотических клеток разграничивают различные части клетки, образуя своеобразные «отсеки» — компартменты, что способствует разделению различных процессов обмена веществ и энергии. Они могут различаться по химическому составу и выполняемым функциям, но общий план строения у них сохраняется.

Функции мембран:

  1. Ограничивающая. Заключается в том, что они отделяют внутреннее пространство клетки от внешней среды. Мембрана является полупроницаемой, то есть ее свободно преодолевают только те вещества, которые необходимы клетке, при этом существуют механизмы транспорта необходимых веществ.
  2. Рецепторная. Связана в первую очередь с восприятием сигналов окружающей среды и передачей этой информации внутрь клетки. За эту функцию отвечают специальные белки-рецепторы. Мембранные белки отвечают еще и за клеточное узнавание по принципу «свой-чужой», а также за образование межклеточных соединений, наиболее изученными из которых являются синапсы нервных клеток.
  3. Каталитическая. На мембранах расположены многочисленные ферментные комплексы, вследствие чего на них происходят интенсивные синтетические процессы.
  4. Энерготрансформирующая. Связана с образованием энергии, ее запасанием в виде АТФ и расходованием.
  5. Компартментализация. Мембраны разграничивают также пространство внутри клетки, разделяя тем самым исходные вещества реакции и ферменты, которые могут осуществлять соответствующие реакции.
  6. Образование межклеточных контактов. Несмотря на то, что толщина мембраны настолько мала, что ее невозможно различить невооруженным глазом, она, с одной стороны, служит достаточно надежным барьером для ионов и молекул, в особенности водорастворимых, а с другой — обеспечивает их перенос в клетку и наружу.
  7. Транспортная.

Мембранный транспорт. В связи с тем, что клетки как элементарные биологические системы являются открытыми системами, для обеспечения обмена веществ и энергии, поддержания гомеостаза, роста, раздражимости и других процессов требуется перенос веществ через мембрану — мембранный транспорт. В настоящее время транспорт веществ через мембрану клетки делят на активный, пассивный, эндо- и экзоцитоз.

Пассивный транспорт — это вид транспорта, который происходит без затраты энергии от большей концентрации к меньшей. Растворимые в липидах небольшие неполярные молекулы (О2, СО2) легко проникают в клетку путем простой диффузии. Нерастворимые же в липидах, в том числе заряженные небольшие частицы, подхватываются белкамипереносчиками или проходят через специальные каналы (глюкоза, аминокислоты, К+, PO43-). Такой вид пассивного транспорта называется облегченной диффузией. Вода поступает в клетку через поры в липидной фазе, а также по специальным каналам, выстланным белками. Транспорт воды через мембрану называется осмосом.

Осмос имеет чрезвычайно важное значение в жизни клетки, так как если ее поместить в раствор с более высокой концентрацией солей, чем в клеточном растворе, то вода начнет выходить из клетки, и объем живого содержимого начнет уменьшаться. У животных клеток происходит съеживание клетки в целом, а у растительных — отставание цитоплазмы от клеточной стенки, которое называется плазмолизом. При помещении клетки в менее концентрированный, чем цитоплазма, раствор, транспорт воды происходит в обратном направлении — в клетку. Однако существуют пределы растяжимости цитоплазматической мембраны, и животная клетка в конце концов разрывается, а у растительной этого не позволяет сделать прочная клеточная стенка. Явление заполнения клеточным содержимым всего внутреннего пространства клетки называется деплазмолизом. Внутриклеточную концентрацию солей следует учитывать при приготовлении лекарственных препаратов, особенно для внутривенного введения, так как это может приводить к повреждению клеток крови (для этого используют физиологический раствор с концентрацией 0,9 % хлорида натрия). Это не менее важно при культивировании клеток и тканей, а также органов животных и растений.

Активный транспорт протекает с затратой энергии АТФ от меньшей концентрации вещества к большей. Он осуществляется с помощью специальных белков-насосов. Белки перекачивают через мембрану ионы К+, Na+, Са2+ и другие, что способствует транспорту важнейших органических веществ, а также возникновению нервных импульсов и т. д.

Эндоцитоз — это активный процесс поглощения веществ клеткой, при котором мембрана образует впячивания, а затем формирует мембранные пузырьки — фагосомы, в которых заключены поглощаемые объекты. Затем с фагосомой сливается первичная лизосома, и образуется вторичная лизосома, или фаголизосома, или пищеварительная вакуоль. Содержимое пузырька расщепляется ферментами лизосом, а продукты расщепления поглощаются и усваиваются клеткой. Непереваренные остатки удаляются из клетки путем экзоцитоза. Различают два основных вида эндоцитоза: фагоцитоз и пиноцитоз.

Фагоцитоз — это процесс захвата клеточной поверхностью и поглощения клеткой твердых частиц, а пиноцитоз — жидкости. Фагоцитоз протекает в основном в животных клетках (одноклеточные животные, лейкоциты человека), он обеспечивает их питание, а часто и защиту организма . Путем пиноцитоза происходит поглощение белков, комплексов антиген-антитела в процессе иммунных реакций и т. д. Однако путем пиноцитоза или фагоцитоза в клетку также попадают многие вирусы. В клетках растений и грибов фагоцитоз практически невозможен, так как они окружены прочными клеточными оболочками.

Экзоцитоз — процесс, обратный эндоцитозу. Таким образом выделяются непереваренные остатки пищи из пищеварительных вакуолей, выводятся необходимые для жизнедеятельности клетки и организма в целом вещества. Например, передача нервных импульсов происходит благодаря выделению посылающим импульс нейроном химических посредников — медиаторов, а в растительных клетках так выделяются вспомогательные углеводы клеточной оболочки.

Клеточные оболочки клеток растений, грибов и бактерий. Снаружи от мембраны клетка может выделять прочный каркас — клеточную оболочку, или клеточную стенку.

У растений основу клеточной оболочки составляет целлюлоза, упакованная в пучки по 50–100 молекул. Промежутки между ними заполняют вода и другие углеводы. Оболочка растительной клетки пронизана канальцами — плазмодесмами, через которые проходят мембраны эндоплазматической сети. По плазмодесмам осуществляется транспорт веществ между клетками. Однако транспорт веществ, например воды, может происходить и по самим клеточным стенкам. Со временем в клеточной оболочке растений накапливаются различные вещества, в том числе дубильные или жироподобные, что приводит к одревеснению или опробковению самой клеточной стенки, вытеснению воды и отмиранию клеточного содержимого. Между клеточными стенками соседних клеток растений располагаются желеобразные прокладки — срединные пластинки, которые скрепляют их между собой и цементируют тело растения в целом. Они разрушаются только в процессе созревания плодов и при опадании листьев.

Клеточные стенки клеток грибов образованы хитином — углеводом, содержащим азот. Они достаточно прочны и являются внешним скелетом клетки, но все же, как и у растений, препятствуют фагоцитозу.

У бактерий в состав клеточной стенки входит углевод с фрагментами пептидов — муреин, однако его содержание существенно различается у разных групп бактерий. Поверх от клеточной стенки могут выделяться также иные полисахариды, образующие слизистую капсулу, защищающую бактерии от внешних воздействий.

Оболочка определяет форму клетки, служит механической опорой, выполняет защитную функцию, обеспечивает осмотические свойства клетки, ограничивая растяжение живого содержимого и предотвращая разрыв клетки, увеличивающейся вследствие поступления воды. Кроме того, клеточную стенку преодолевают вода и растворенные в ней вещества, прежде чем попасть в цитоплазму или, наоборот, при выходе из нее, при этом по клеточным стенкам вода транспортируется быстрее, чем по цитоплазме.

Цитоплазма

Цитоплазма — это внутреннее содержимое клетки. В нее погружены все органоиды клетки, ядро и разнообразные продукты жизнедеятельности.

Цитоплазма связывает все части клетки между собой, в ней протекают многочисленные реакции обмена веществ. Цитоплазма отделяется от окружающей среды и делится на отсеки мембранами, то есть клеткам присуще мембранное строение. Она может находиться в двух состояниях — золя и геля. Золь — это полужидкое, киселеобразное состояние цитоплазмы, при котором процессы жизнедеятельности протекают наиболее интенсивно, а гель — более плотное, студнеобразное состояние, затрудняющее протекание химических реакций и транспорт веществ.

Жидкая часть цитоплазмы без органоидов называется гиалоплазмой. Гиалоплазма, или цитозоль, представляет собой коллоидный раствор, в котором находится своеобразная взвесь достаточно крупных частиц, например белков, окруженных диполями молекул воды. Осаждения этой взвеси не происходит вследствие того, что они имеют одинаковый заряд и отталкиваются друг от друга.

Органоиды

Органоиды — это постоянные компоненты клетки, выполняющие определенные функции.

В зависимости от особенностей строения их делят на мембранные и немембранные. Мембранные органоиды, в свою очередь, относят к одномембранным (эндоплазматическая сеть, комплекс Гольджи и лизосомы) или двумембранным (митохондрии, пластиды и ядро). Немембранными органоидами являются рибосомы, микротрубочки, микрофиламенты и клеточный центр. Прокариотам из перечисленных органоидов присущи только рибосомы.

Строение и функции ядра. Ядро — крупный двумембранный органоид, лежащий в центре клетки или на ее периферии. Размеры ядра могут колебаться в пределах 3–35 мкм. Форма ядра чаще сферическая или эллипсоидная, однако имеются также палочковидные, веретеновидные, бобовидные, лопастные и даже сегментированные ядра. Некоторые исследователи считают, что форма ядра соответствует форме самой клетки.

Большинство клеток имеет одно ядро, но, например, в клетках печени и сердца их может быть два, а в ряде нейронов — до 15. Волокна скелетных мышц содержат обычно много ядер, однако они не являются клетками в полном смысле этого слова, поскольку образуются в результате слияния нескольких клеток.

Ядро окружено ядерной оболочкой, а его внутреннее пространство заполнено ядерным соком, или нуклеоплазмой (кариоплазмой), в которую погружены хроматин и ядрышко. Ядро выполняет такие важнейшие функции, как хранение и передача наследственной информации, а также контроль жизнедеятельности клетки.

Роль ядра в передаче наследственной информации была убедительно доказана в экспериментах с зеленой водорослью ацетабулярией. В единственной гигантской клетке, достигающей в длину 5 см, различают шляпку, ножку и ризоид. При этом она содержит только одно ядро, расположенное в ризоиде. В 1930-е годы И. Хеммерлинг пересадил ядро одного вида ацетабулярии с зеленой окраской в ризоид другого вида, с коричневой окраской, у которого ядро было удалено. Через некоторое время у растения с пересаженным ядром выросла новая шляпка, как у водоросли- донора ядра. В то же время отделенные от ризоида шляпка или ножка, не содержащие ядра, через некоторое время погибали.

Ядерная оболочка образована двумя мембранами — наружной и внутренней, между которыми есть пространство. Межмембранное пространство сообщается с полостью шероховатой эндоплазматической сети, а наружная мембрана ядра может нести рибосомы. Ядерная оболочка пронизана многочисленными порами, окантованными специальными белками. Через поры происходит транспорт веществ: в ядро попадают необходимые белки (в т. ч. ферменты), ионы, нуклеотиды и другие вещества, и покидают его молекулы РНК, отработанные белки, субъ единицы рибосом. Таким образом, функциями ядерной оболочки являются отделение содержимого ядра от цитоплазмы, а также регуляция обмена веществ между ядром и цитоплазмой.

Нуклеоплазмой называют содержимое ядра, в которое погружены хроматин и ядрышко. Она представляет собой коллоидный раствор, по химическому составу напоминающий цитоплазму. Ферменты нуклеоплазмы катализируют обмен аминокислот, нуклеотидов, белков и др. Нуклеоплазма связана с гиалоплазмой через ядерные поры. Функции нуклеоплазмы, как и гиалоплазмы, состоят в обеспечении взаимосвязи всех структурных компонентов ядра и осуществлении ряда ферментных реакций.

Хроматином называют совокупность тонких нитей и гранул, погруженных в нуклеоплазму. Выявить его можно только при окрашивании, так как коэффициенты преломления хроматина и нуклеоплазмы приблизительно одинаковы. Нитчатый компонент хроматина называют эухроматином, а гранулярный — гетерохроматином. Эухроматин слабо уплотнен, поскольку с него считывается наследственная информация, тогда как более спирализованный гетерохроматин является генетически неактивным.

Хроматин представляет собой структурное видоизменение хромосом в неделящемся ядре. Таким образом, хромосомы постоянно присутствуют в ядре, изменяется лишь их состояние в зависимости от функции, которую ядро выполняет в данный момент.

В состав хроматина в основном входят белки-нуклеопротеины (дезоксирибонуклеопротеины и рибонуклеопротеины), а также ферменты, важнейшие из которых связаны с синтезом нуклеиновых кислот, и некоторые другие вещества.

Функции хроматина состоят, во-первых, в синтезе специфических для данного организма нуклеиновых кислот, которые направляют синтез специфических белков, во-вторых, в передаче наследственных свойств от материнской клетки дочерним, для чего хроматиновые нити в процессе деления упаковываются в хромосомы.

Ядрышко — сферическое, хорошо заметное под микроскопом тельце диаметром 1–3 мкм. Оно формируется на участках хроматина, в которых закодирована информация о структуре рРНК и белках рибосом. Ядрышко в ядре часто одно, однако в тех клетках, где происходят интенсивные процессы жизнедеятельности, ядрышек может быть два и более. Функции ядрышек — синтез рРНК и сборка субъединиц рибосом путем объединения рРНК с белками, поступающими из цитоплазмы.

Митохондрии — двумембранные органоиды округлой, овальной или палочковидной формы, хотя встречаются и спиралевидные (в сперматозоидах). Диаметр митохондрий составляет до 1 мкм, а длина — до 7 мкм. Пространство внутри митохондрий заполнено матриксом. Матрикс — это основное вещество митохондрий. В него погружены кольцевая молекула ДНК и рибосомы. Наружная мембрана митохондрий гладкая, она непроницаема для многих веществ. Внутренняя мембрана имеет выросты — кристы, увеличивающие площадь поверхности мембран для протекания химических реакций. На поверхности мембраны расположены многочисленные белковые комплексы, составляющие так называемую дыхательную цепь, а также грибовидные ферменты АТФ-синтетазы. В митохондриях протекает аэробный этап дыхания, в ходе которого происходит синтез АТФ.

Пластиды — крупные двумембранные органоиды, характерные только для растительных клеток. Внутреннее пространство пластид заполнено стромой, или матриксом. В строме находится более или менее развитая система мембранных пузырьков — тилакоидов, которые собраны в стопки — граны, а также собственная кольцевая молекула ДНК и рибосомы. Различают четыре основных типа пластид: хлоропласты, хромопласты, лейкопласты и пропластиды.

Хлоропласты — это зеленые пластиды диаметром 3–10 мкм, хорошо различимые под микроскопом. Они содержатся только в зеленых частях растений — листьях, молодых стеблях, цветках и плодах. Хлоропласты в основном имеют овальную или эллипсоидную формы, но могут быть также чашевидными, спиралевидными и даже лопастными. Количество хлоропластов в клетке в среднем составляет от 10 до 100 штук. Однако, например, у некоторых водорослей он может быть один, иметь значительные размеры и сложную форму — тогда его называют хроматофором. В других случаях количество хлоропластов может достигать нескольких сотен, при этом их размеры невелики. Окраска хлоропластов обусловлена основным пигментом фотосинтеза — хлорофиллом, хотя в них содержатся и дополнительные пигменты — каротиноиды. Каротиноиды становятся заметными только осенью, когда хлорофилл в стареющих листьях разрушается. Основной функцией хлоропластов является фотосинтез. Световые реакции фотосинтеза протекают на мембранах тилакоидов, на которых закреплены молекулы хлорофилла, а темновые реакции — в строме, где содержатся многочисленные ферменты.

Хромопласты — это желтые, оранжевые и красные пластиды, содержащие пигменты каротиноиды. Форма хромопластов может также существенно варьировать: они бывают трубчатыми, сферическими, кристаллическими и др. Хромопласты придают окраску цветкам и плодам растений, привлекая опылителей и распространителей семян и плодов.

Лейкопласты — это белые или бесцветные пластиды в основном округлой или овальной формы. Они распространены в нефотосинтезирующих частях растений, например в кожице листа, клубнях картофеля и т. д. В них откладываются в запас питательные вещества, чаще всего крахмал, но у некоторых растений это могут быть белки или масло.

Пластиды образуются в растительных клетках из пропластид, которые имеются уже в клетках образовательной ткани и представляют собой небольшие двумембранные тельца. На ранних этапах развития разные виды пластид способны превращаться друг в друга: при попадании на свет лейкопласты клубня картофеля и хромопласты корнеплода моркови зеленеют.

Пластиды и митохондрии называют полуавтономными органоидами клетки, так как они имеют собственные молекулы ДНК и рибосомы, осуществляют синтез белка и делятся независимо от деления клеток. Эти особенности объясняются происхождением от одноклеточных прокариотических организмов. Однако «самостоятельность » митохондрий и пластид является ограниченной, так как их ДНК содержит слишком мало генов для свободного существования, остальная же информация закодирована в хромосомах ядра, что позволяет ему контролировать данные органоиды.

Эндоплазматическая сеть (ЭПС), или эндоплазматический ретикулум (ЭР), — это одномембранный органоид, представляющий собой сеть мембранных полостей и канальцев, занимающих до 30 % содержимого цитоплазмы. Диаметр канальцев ЭПС составляет около 25–30 нм. Различают два вида ЭПС — шероховатую и гладкую. Шероховатая ЭПС несет рибосомы, на ней происходит синтез белков. Гладкая ЭПС лишена рибосом. Ее функция — синтез липидов и углеводов, а также транспорт, запасание и обезвреживание токсических веществ. Она особенно развита в тех клетках, где происходят интенсивные процессы обмена веществ, например в клетках печени — гепатоцитах — и волокнах скелетных мышц. Вещества, синтезированные в ЭПС, транспортируются в аппарат Гольджи. В ЭПС происходит также сборка мембран клетки, однако их формирование завершается в аппарате Гольджи.

Аппарат Гольджи, или комплекс Гольджи, — одномембранный органоид, образованный системой плоских цистерн, канальцев и отшнуровывающихся от них пузырьков. Структурной единицей аппарата Гольджи является диктиосома — стопка цистерн, на один полюс которой приходят вещества из ЭПС, а с противоположного полюса, подвергшись определенным превращениям, они упаковываются в пузырьки и направляются в другие части клетки. Диаметр цистерн — порядка 2 мкм, а мелких пузырьков — около 20–30 мкм. Основные функции комплекса Гольджи — синтез некоторых веществ и модификация (изменение) белков, липидов и углеводов, поступающих из ЭПС, окончательное формирование мембран, а также транспорт веществ по клетке, обновление ее структур и образование лизосом. Свое название аппарат Гольджи получил в честь итальянского ученого Камилло Гольджи, впервые обнаружившего данный органоид (1898).

Лизосомы — небольшие одномембранные органоиды до 1 мкм в диаметре, в которых содержатся гидролитические ферменты, участвующие во внутриклеточном пищеварении. Мембраны лизосом слабопроницаемы для этих ферментов, поэтому выполнение лизосомами своих функций происходит очень точно и адресно. Так, они принимают активное участие в процессе фагоцитоза, образуя пищеварительные вакуоли, а в случае голодания или повреждения определенных частей клетки переваривают их, не затрагивая иных. Недавно была открыта роль лизосом в процессах клеточной гибели.

Вакуоль — это полость в цитоплазме растительных и животных клеток, ограниченная мембраной и заполненная жидкостью. В клетках простейших обнаруживаются пищеварительные и сократительные вакуоли. Первые принимают участие в процессе фагоцитоза, так как в них происходит расщепление питательных веществ. Вторые обеспечивают поддержание водно-солевого баланса за счет осморегуляции. У многоклеточных животных в основном встречаются пищеварительные вакуоли.

В растительных клетках вакуоли присутствуют всегда, они окружены специальной мембраной и заполнены клеточным соком. Мембрана, окружающая вакуоль, по химическому составу, строению и выполняемым функциям близка к плазматической мембране. Клеточный сок представляет собой водный раствор различных неорганических и органических веществ, в том числе минеральных солей, органических кислот, углеводов, белков, гликозидов, алкалоидов и др. Вакуоль может занимать до 90 % объема клетки и оттеснять ядро на периферию. Эта часть клетки выполняет запасающую, выделительную, осмотическую, защитную, лизосомную и другие функции, поскольку в ней накапливаются питательные вещества и отходы жизнедеятельности, она обеспечивает поступление воды и поддержание формы и объема клетки, а также содержит ферменты расщепления многих компонентов клетки. К тому же биологически активные вещества вакуолей способны препятствовать поеданию этих растений многими животными. У ряда растений за счет разбухания вакуолей происходит рост клетки растяжением.

Вакуоли имеются также и в клетках некоторых грибов и бактерий, однако у грибов они выполняют только функцию осморегуляции, а у цианобактерий поддерживают плавучесть и участвуют в процессах усвоения азота из воздуха.

Рибосомы — небольшие немембранные органоиды диаметром 15–20 мкм, состоящие из двух субъединиц — большой и малой. Субъединицы рибосом эукариот собираются в ядрышке, а затем транспортируются в цитоплазму. Рибосомы прокариот, митохондрий и пластид меньше по величине, чем рибосомы эукариот. В состав субъединиц рибосом входят рРНК и белки.

Количество рибосом в клетке может достигать нескольких десятков миллионов: в цитоплазме, митохондриях и пластидах они находятся в свободном состоянии, а на шероховатой ЭПС — в связанном. Они принимают участие в синтезе белка, в частности, осуществляют процесс трансляции — биосинтеза полипептидной цепи на молекуле иРНК. На свободных рибосомах синтезируются белки гиалоплазмы, митохондрий, пластид и собственные белки рибосом, тогда как на прикрепленных к шероховатой ЭПС рибосомах осуществляется трансляция белков для выведения из клеток, сборки мембран, образования лизосом и вакуолей.

Рибосомы могут находиться в гиалоплазме поодиночке или собираться в группы при одновременном синтезе на одной иРНК сразу нескольких полипептидных цепей. Такие группы рибосом называются полирибосомами, или полисомами.

Микротрубочки — это цилиндрические полые немембранные органоиды, которые пронизывают всю цитоплазму клетки. Их диаметр составляет около 25 нм, толщина стенки — 6–8 нм. Они образованы многочисленными молекулами белка тубулина, которые сначала формируют 13 нитей, напоминающих бусы, а затем собираются в микротрубочку. Микротрубочки образуют цитоплазматическую сеть, которая придает клетке форму и объем, связывают плазматическую мембрану с другими частями клетки, обеспечивают транспорт веществ по клетке, принимают участие в движении клетки и внутриклеточных компонентов, а также в делении генетического материала. Они входят в состав клеточного центра и органоидов движения — жгутиков и ресничек.

Микрофиламенты, или микронити, также являются немембранными органоидами, однако они имеют нитевидную форму и образованы не тубулином, а актином. Они принимают участие в процессах мембранного транспорта, межклеточном узнавании, делении цитоплазмы клетки и в ее движении. В мышечных клетках взаимодействие актиновых микрофиламентов с миозиновыми нитями обеспечивает сокращение.

Микротрубочки и микрофиламенты образуют внутренний скелет клетки — цитоскелет. Он представляет собой сложную сеть волокон, обеспечивающих механическую опору для плазматической мембраны, определяет форму клетки, расположение клеточных органоидов и их перемещение в процессе деления клетки.

Клеточный центр — немембранный органоид, располагающийся в животных клетках вблизи ядра; в растительных клетках он отсутствует. Его длина составляет около 0.2–0.3 мкм, а диаметр — 0.1–0.15 мкм. Клеточный центр образован двумя центриолями, лежащими во взаимно перпендикулярных плоскостях, и лучистой сферой из микротрубочек. Каждая центриоль образована девятью группами микротрубочек, собранных по три, т. е. триплетами. Клеточный центр принимает участие в процессах сборки микротрубочек, делении наследственного материала клетки, а также в образовании жгутиков и ресничек.

Органоиды движения. Жгутики и реснички представляют собой выросты клетки, покрытые плазмалеммой. Основу этих органоидов составляют девять пар микротрубочек, расположенных по периферии, и две свободные микротрубочки в центре. Микротрубочки связаны между собой различными белками, обеспечивающими их согласованное отклонение от оси — колебание. Колебания энергозависимы, то есть на этот процесс тратится энергия макроэргических связей АТФ. Восстановление утраченных жгутиков и ресничек является функцией базальных телец, или кинетосом, расположенных в их основании.

Длина ресничек составляет около 10–15 нм, а жгутиков — 20–50 мкм. За счет строго направленных движений жгутиков и ресничек осуществляется не только движение одноклеточных животных, сперматозоидов и др., но и происходит очистка дыхательных путей, продвижение яйцеклетки по маточным трубам, поскольку все эти части организма человека выстланы реснитчатым эпителием.

Включения

Включения — это непостоянные компоненты клетки, которые образуются и исчезают в процессе ее жизнедеятельности. К ним относят как запасные вещества, например, зерна крахмала или белка в растительных клетках, гранулы гликогена в клетках животных и грибов, волютина у бактерий, капли жира во всех типах клеток, так и отходы жизнедеятельности, в частности, непереваренные в результате фагоцитоза остатки пищи, образующие так называемые остаточные тельца.

Взаимосвязь строения и функций частей и органоидов клетки — основа ее целостности

Каждая из частей клетки, с одной стороны, является обособленной структурой со специфическим строением и функциями, а с другой — компонентом более сложной системы, называемой клеткой. Бульшая часть наследственной информации эукариотической клетки сосредоточена в ядре, однако само ядро не в состоянии обеспечить ее реализацию, поскольку для этого необходимы как минимум цитоплазма, выступающая как основное вещество, и рибосомы, на которых и происходит этот синтез. Большинство рибосом расположено на гранулярной эндоплазматической сети, откуда белки чаще всего транспортируются в комплекс Гольджи, а затем после модификации — в те части клетки, для которых они предназначены, или выводятся наружу. Мембранные упаковки белков и углеводов могут встраиваться в мембраны органоидов и цитоплазматическую мембрану, обеспечивая их постоянное обновление. От комплекса Гольджи отшнуровываются также выполняющие важнейшие функции лизосомы и вакуоли. Например, без лизосом клетки быстро превратились бы в свое образную свалку отработанных молекул и структур.

Протекание всех этих процессов требует энергии, вырабатываемой митохондриями, а у растений — и хлоропластами. И хотя эти органоиды являются относительно автономными, т. к. имеют собственные молекулы ДНК, часть их белков все равно кодируется ядерным геномом и синтезируется в цитоплазме.

Таким образом, клетка представляет собой неразрывное единство составляющих ее компонентов, каждый из которых выполняет свою уникальную функцию.

Обмен веществ и превращения энергии — свойства живых организмов. Энергетический и пластический обмен, их взаимосвязь. Стадии энергетического обмена. Брожение и дыхание. Фотосинтез, его значение, космическая роль. Фазы фотосинтеза. Световые и темновые реакции фотосинтеза, их взаимосвязь. Хемосинтез. Роль хемосинтезирующих бактерий на Земле

Обмен веществ и превращения энергии — свойства живых организмов

Клетку можно уподобить миниатюрной химической фабрике, на которой происходят сотни и тысячи химических реакций.

Обмен веществ — совокупность химических превращений, направленных на сохранение и самовоспроизведение биологических систем.

Он включает в себя поступление веществ в организм в процессе питания и дыхания, внутриклеточный обмен веществ, или метаболизм, а также выделение конечных продуктов обмена.

Обмен веществ неразрывно связан с процессами превращения одних видов энергии в другие. Например, в процессе фотосинтеза световая энергия запасается в виде энергии химических связей сложных органических молекул, а в процессе дыхания она высвобождается и расходуется на синтез новых молекул, механическую и осмотическую работу, рассеивается в виде тепла и т. д.

Протекание химических реакций в живых организмах обеспечивается благодаря биологическим катализаторам белковой природы — ферментам, или энзимам. Как и другие катализаторы, ферменты ускоряют протекание химических реакций в клетке в десятки и сотни тысяч раз, а иногда и вообще делают их возможными, но не изменяют при этом ни природы, ни свойств конечного продукта (продуктов) реакции и не изменяются сами. Ферменты могут быть как простыми, так и сложными белками, в состав которых, кроме белковой части, входит и небелковая — кофактор (кофермент). Примерами ферментов являются амилаза слюны, расщепляющая полисахариды при длительном пережевывании, и пепсин, обеспечивающий переваривание белков в желудке.

Ферменты отличаются от катализаторов небелковой природы высокой специфичностью действия, значительным увеличением с их помощью скорости реакции, а также возможностью регуляции действия за счет изменения условий протекания реакции либо взаимодействия с ними различных веществ. К тому же и условия, в которых протекает ферментный катализ, существенно отличаются от тех, при которых идет неферментный: оптимальной для функционирования ферментов в организме человека является температура $37°С$, давление должно быть близким к атмосферному, а $рН$ среды может существенно колебаться. Так, для амилазы необходима щелочная среда, а для пепсина — кислая.

Механизм действия ферментов заключается в снижении энергии активации веществ (субстратов), вступающих в реакцию, за счет образования промежуточных фермент-субстратных комплексов.

Энергетический и пластический обмен, их взаимосвязь

Метаболизм складывается из двух одновременно протекающих в клетке процессов: пластического и энергетического обменов.

Пластический обмен (анаболизм, ассимиляция) представляет собой совокупность реакций синтеза, которые идут с затратой энергии АТФ. В процессе пластического обмена синтезируются органические вещества, необходимые клетке. Примером реакций пластического обмена являются фотосинтез, биосинтез белка и репликация (самоудвоение) ДНК.

Энергетический обмен (катаболизм, диссимиляция) — это совокупность реакций расщепления сложных веществ до более простых. В результате энергетического обмена выделяется энергия, запасаемая в виде АТФ. Наиболее важными процессами энергетического обмена являются дыхание и брожение.

Пластический и энергетический обмены неразрывно связаны, поскольку в процессе пластического обмена синтезируются органические вещества и для этого необходима энергия АТФ, а в процессе энергетического обмена органические вещества расщепляются и высвобождается энергия, которая затем будет израсходована на процессы синтеза.

Энергию организмы получают в процессе питания, а высвобождают ее и переводят в доступную форму в основном в процессе дыхания. По способу питания все организмы делятся на автотрофов и гетеротрофов. Автотрофы способны самостоятельно синтезировать органические вещества из неорганических, а гетеротрофы используют исключительно готовые органические вещества.

Стадии энергетического обмена

Несмотря на всю сложность реакций энергетического обмена, его условно подразделяют на три этапа: подготовительный, анаэробный (бескислородный) и аэробный (кислородный).

На подготовительном этапе молекулы полисахаридов, липидов, белков, нуклеиновых кислот распадаются на более простые, например, глюкозу, глицерин и жирные кислоты, аминокислоты, нуклеотиды и др. Этот этап может протекать непосредственно в клетках либо в кишечнике, откуда расщепленные вещества доставляются с током крови.

Анаэробный этап энергетического обмена сопровождается дальнейшим расщеплением мономеров органических соединений до еще более простых промежуточных продуктов, например, пировиноградной кислоты, или пирувата. Он не требует присутствия кислорода, и для многих организмов, обитающих в иле болот или в кишечнике человека, является единственным способом получения энергии. Анаэробный этап энергетического обмена протекает в цитоплазме.

Бескислородному расщеплению могут подвергаться различные вещества, однако довольно часто субстратом реакций оказывается глюкоза.{+} + 2Н_2О$.

Образование АТФ из АДФ происходит вследствие прямого переноса фосфат-аниона с предварительно фосфорилированного сахара и называется субстратным фосфорилированием.

Аэробный этап энергетического обмена может происходить только в присутствии кислорода, при этом промежуточные соединения, образовавшиеся в процессе бескислородного расщепления, окисляются до конечных продуктов (углекислого газа и воды) и выделяется большая часть энергии, запасенной в химических связях органических соединений. Она переходит в энергию макроэргических связей 36 молекул АТФ. Этот этап также называется тканевым дыханием. В случае отсутствия кислорода промежуточные соединения превращаются в другие органические вещества, и этот процесс называется брожением.

Дыхание

Механизм клеточного дыхания схематически изображен на рис.

Аэробное дыхание происходит в митохондриях, при этом пировиноградная кислота сначала утрачивает один атом углерода, что сопровождается синтезом одного восстановительного эквивалента $НАДН + Н^{+}$ и молекулы ацетилкофермента А (ацетил-КоА):

$С_3Н_4О_3 + НАД + Н~КоА → СН_3СО~КоА + НАДН + Н^{+} + СО_2↑$.{+}$.

При брожении с помощью микроорганизмов из пировиноградной кислоты могут образоваться также уксусная, масляная, муравьиная кислоты и др.

АТФ, полученная в результате энергетического обмена, расходуется в клетке на различные виды работы: химическую, осмотическую, электрическую, механическую и регуляторную. Химическая работа заключается в биосинтезе белков, липидов, углеводов, нуклеиновых кислот и других жизненно важных соединений. К осмотической работе относят процессы поглощения клеткой и выведения из нее веществ, которые во внеклеточном пространстве находятся в концентрациях, больших, чем в самой клетке. Электрическая работа тесно взаимосвязана с осмотической, поскольку именно в результате перемещения заряженных частиц через мембраны формируется заряд мембраны и приобретаются свойства возбудимости и проводимости. Механическая работа сопряжена с движением веществ и структур внутри клетки, а также клетки в целом. К регуляторной работе относят все процессы, направленные на координацию процессов в клетке.

Фотосинтез, его значение, космическая роль

Фотосинтезом называют процесс преобразования энергии света в энергию химических связей органических соединений с участием хлорофилла.

В результате фотосинтеза образуется около 150 млрд тонн органического вещества и приблизительно 200 млрд тонн кислорода ежегодно. Этот процесс обеспечивает круговорот углерода в биосфере, не давая накапливаться углекислому газу и препятствуя тем самым возникновению парникового эффекта и перегреву Земли. Образующиеся в результате фотосинтеза органические вещества не расходуются другими организмами полностью, значительная их часть в течение миллионов лет образовала залежи полезных ископаемых (каменного и бурого угля, нефти). В последнее время в качестве топлива начали использовать также рапсовое масло («биодизель») и спирт, полученный из растительных остатков. Из кислорода под действием электрических разрядов образуется озон, который формирует озоновый экран, защищающий все живое на Земле от губительного действия ультрафиолетовых лучей.

Наш соотечественник, выдающийся физиолог растений К. А. Тимирязев (1843–1920) назвал роль фотосинтеза «космической», поскольку он связывает Землю с Солнцем (космосом), обеспечивая приток энергии на планету.

Фазы фотосинтеза. Световые и темновые реакции фотосинтеза, их взаимосвязь

В 1905 году английский физиолог растений Ф. Блэкмен обнаружил, что скорость фотосинтеза не может увеличиваться беспредельно, какой-то фактор ограничивает ее. На основании этого он выдвинул предположение о наличии двух фаз фотосинтеза: световой и темновой. При низкой интенсивности освещения скорость световых реакций возрастает пропорционально нарастанию силы света, и, кроме того, данные реакции не зависят от температуры, поскольку для их протекания не нужны ферменты. Световые реакции протекают на мембранах тилакоид.

Скорость темновых реакций, напротив, возрастает с повышением температуры, однако по достижении температурного порога в $30°С$ этот рост прекращается, что свидетельствует о ферментативном характере указанных превращений, происходящих в строме. Следует отметить, что свет также оказывает на темновые реакции определенное влияние, несмотря на то, что они называются темновыми.

Световая фаза фотосинтеза протекает на мембранах тилакоидов, несущих несколько типов белковых комплексов, основными из которых являются фотосистемы I и II, а также АТФсинтаза. В состав фотосистем входят пигментные комплексы, в которых, кроме хлорофилла, присутствуют и каротиноиды. Каротиноиды улавливают свет в тех областях спектра, в которых этого не делает хлорофилл, а также защищают хлорофилл от разрушения светом высокой интенсивности.

Кроме пигментных комплексов, фотосистемы включают и ряд белков-акцепторов электронов, которые последовательно передают друг другу электроны от молекул хлорофилла. Последовательность этих белков называется электронтранспортной цепью хлоропластов.

С фотосистемой II также ассоциирован специальный комплекс белков, который обеспечивает выделение кислорода в процессе фотосинтеза. Этот кислородвыделяющий комплекс содержит ионы марганца и хлора.{-} + {1}/{2}O_2↑$.

Генетическая информация в клетке. Гены, генетический код и его свойства. Матричный характер реакций биосинтеза. Биосинтез белка и нуклеиновых кислот

Генетическая информация в клетке

Воспроизведение себе подобных является одним из фундаментальных свойств живого. Благодаря этому явлению существует сходство не только между организмами, но и между отдельными клетками, а также их органоидами (митохондриями и пластидами). Материальной основой этого сходства является передача зашифрованной в последовательности нуклеотидов ДНК генетической информации, которая осуществляется благодаря процессам репликации (самоудвоения) ДНК. Реа лизуются все признаки и свойства клеток и организмов благодаря белкам, структуру которых в первую очередь и определяют последовательности нуклеотидов ДНК. Поэтому первостепенное значение в процессах метаболизма играет именно биосинтез нуклеиновых кислот и белка. Структурной единицей наследственной информации является ген.

Гены, генетический код и его свойства

Наследственная информация в клетке не является монолитной, она разбита на отдельные «слова» — гены.

Ген — это элементарная единица генетической информации.

Работы по программе «Геном человека», которые проводились одновременно в нескольких странах и были завершены в начале нынешнего века, дали нам понимание того, что у человека всего около 25–30 тыс. генов, но информация с большей части нашей ДНК не считывается никогда, так как в ней содержится огромное количество бессмысленных участков, повторов и генов, кодирующих признаки, утратившие значение для человека (хвост, оволосение тела и др.). Кроме того, был расшифрован ряд генов, отвечающих за развитие наследственных заболеваний, а также генов-мишеней лекарственных препаратов. Однако практическое применение результатов, полученных в ходе реализации данной программы, откладывается до тех пор, пока не будут расшифрованы геномы большего количества людей и станет понятно, чем же все-таки они различаются.

Гены, кодирующие первичную структуру белка, рибосомальной или транспортной РНК называются структурными, а гены, обеспечивающие активацию или подавление считывания информации со структурных генов, — регуляторными. Однако даже структурные гены содержат регуляторные участки.

Наследственная информация организмов зашифрована в ДНК в виде определенных сочетаний нуклеотидов и их последовательности — генетического кода. Его свойствами являются: триплетность, специфичность, универсальность, избыточность и неперекрываемость. Кроме того, в генетическом коде отсутствуют знаки препинания.

Каждая аминокислота закодирована в ДНК тремя нуклеотидами — триплетом, например, метионин закодирован триплетом ТАЦ, то есть код триплетен. С другой стороны, каждый триплет кодирует только одну аминокислоту, в чем заключается его специфичность или однозначность. Генетический код универсален для всех живых организмов, то есть наследственная информация о белках человека может считываться бактериями и наоборот. Это свидетельствует о единстве происхождения органического мира. Однако 64 комбинациям нуклеотидов по три соответствует только 20 аминокислот, вследствие чего одну аминокислоту может кодировать 2–6 триплетов, то есть генетический код избыточен, или вырожден. Три триплета не имеют соответствующих аминокислот, их называют стоп-кодонами, так как они обозначают окончание синтеза полипептидной цепи.

Последовательность оснований в триплетах ДНК и кодируемые ими аминокислоты

*Стоп-кодон, означающий конец синтеза полипептидной цепи.

Сокращения названий аминокислот:

Ала — аланин

Арг — аргинин

Асн — аспарагин

Асп — аспарагиновая кислота

Вал — валин

Гис — гистидин

Гли — глицин

Глн — глутамин

Глу — глутаминовая кислота

Иле — изолейцин

Лей — лейцин

Лиз — лизин

Мет — метионин

Про — пролин

Сер — серин

Тир — тирозин

Тре — треонин

Три — триптофан

Фен — фенилаланин

Цис — цистеин

Если начать считывание генетической информации не с первого нуклеотида в триплете, а со второго, то произойдет не только сдвижка рамки считывания — синтезированный таким образом белок будет совсем иным не только по последовательности нуклеотидов, но и по структуре и свойствам. Между триплетами отсутствуют какие бы то ни было знаки препинания, поэтому нет никаких препятствий для сдвижки рамки считывания, что открывает простор для возникновения и сохранения мутаций.

Матричный характер реакций биосинтеза

Клетки бактерий способны удваиваться каждые 20–30 минут, а клетки эукариот — каждые сутки и даже чаще, что требует высокой скорости и точности репликации ДНК. Кроме того, каждая клетка содержит сотни и тысячи копий многих белков, особенно ферментов, следовательно, для их воспроизведения неприемлем «штучный» способ их производства. Более прогрессивным способом является штамповка, которая позволяет получить многочисленные точные копии продукта и к тому же снизить его себестоимость. Для штамповки необходима матрица, с которой осуществляется оттиск.

В клетках принцип матричного синтеза заключается в том, что новые молекулы белков и нуклеиновых кислот синтезируются в соответствии с программой, заложенной в структуре ранее существовавших молекул тех же нуклеиновых кислот (ДНК или РНК).

Биосинтез белка и нуклеиновых кислот

Репликация ДНК. ДНК представляет собой двухцепочечный биополимер, мономерами которого являются нуклеотиды. Если бы биосинтез ДНК происходил по принципу ксерокопирования, то неизбежно возникали бы многочисленные искажения и погрешности в наследственной информации, которые в конечном итоге привели бы к гибели новых организмов. Поэтому процесс удвоения ДНК происходит иным, полуконсервативным способом: молекула ДНК расплетается, и на каждой из цепей синтезируется новая цепь по принципу комплементарности. Процесс самовоспроизведения молекулы ДНК, обеспечивающий точное копирование наследственной информации и передачу ее из поколения в поколение, называется репликацией (от лат. репликацио — повторение). В результате репликации образуются две абсолютно точные копии материнской молекулы ДНК, каждая из которых несет по одной копии материнской.

Процесс репликации на самом деле крайне сложен, так как в нем участвует целый ряд белков. Одни из них раскручивают двойную спираль ДНК, другие разрывают водородные связи между нуклеотидами комплементарных цепей, третьи (например, фермент ДНК-полимераза) подбирают по принципу комплементарности новые нуклеотиды и т. д. Образовавшиеся в результате репликации две молекулы ДНК в процессе деления расходятся по двум вновь образующимся дочерним клеткам.

Ошибки в процессе репликации возникают крайне редко, однако если они и происходят, то очень быстро устраняются как ДНК-полимеразами, так и специальными ферментами репарации, поскольку любая ошибка в последовательности нуклеотидов может привести к необратимому изменению структуры и функций белка и, в конечном итоге, неблагоприятно сказаться на жизнеспособности новой клетки или даже особи.

Биосинтез белка. Как образно выразился выдающийся философ XIX века Ф. Энгельс: «Жизнь есть форма существования белковых тел». Структура и свойства белковых молекул определяются их первичной структурой, т. е. последовательностью аминокислот, зашифрованной в ДНК. От точности воспроизведения этой информации зависит не только существование самого полипептида, но и функционирование клетки в целом, поэтому процесс синтеза белка имеет огромное значение. Он, по-видимому, является самым сложным процессом синтеза в клетке, поскольку здесь участвует до трехсот различных ферментов и других макромолекул. Кроме того, он протекает с высокой скоростью, что требует еще большей точности.

В биосинтезе белка выделяют два основных этапа: транскрипцию и трансляцию.

Транскрипция (от лат. транскрипцио — переписывание) — это биосинтез молекул иРНК на матрице ДНК.

Поскольку молекула ДНК содержит две антипараллельных цепи, то считывание информации с обеих цепей привело бы к образованию совершенно различных иРНК, поэтому их биосинтез возможен только на одной из цепей, которую называют кодирующей, или кодогенной, в отличие от второй, некодирующей, или некодогенной. Обеспечивает процесс переписывания специальный фермент РНК-полимераза, который подбирает нуклеотиды РНК по принципу комплементарности. Этот процесс может протекать как в ядре, так и в органоидах, имеющих собственную ДНК, — митохондриях и пластидах.

Синтезированные в процессе транскрипции молекулы иРНК проходят сложный процесс подготовки к трансляции (митохондриальные и пластидные иРНК могут оставаться внутри органоидов, где и происходит второй этап биосинтеза белка). В процессе созревания иРНК к ней присоединяются первые три нуклеотида (АУГ) и хвост из адениловых нуклеотидов, длина которого определяет, сколько копий белка может синтезироваться на данной молекуле. Только потом зрелые иРНК покидают ядро через ядерные поры.

Параллельно в цитоплазме происходит процесс активации аминокислот, в ходе которого аминокислота присоединяется к соответствующей свободной тРНК. Этот процесс катализируется специальным ферментом, на него затрачивается АТФ.

Трансляция (от лат. трансляцио — передача) — это биосинтез полипептидной цепи на матрице иРНК, при котором происходит перевод генетической информации в последовательность аминокислот полипептидной цепи.

Второй этап синтеза белка чаще всего происходит в цитоплазме, например на шероховатой ЭПС. Для его протекания необходимы наличие рибосом, активация тРНК, в ходе которой они присоединяют соответствующие аминокислоты, присутствие ионов Mg2+, а также оптимальные условия среды (температура, рН, давление и т. д.).

Для начала трансляции (инициации) к готовой к синтезу молекуле иРНК присоединяется малая субъединица рибосомы, а затем по принципу комплементарности к первому кодону (АУГ) подбирается тРНК, несущая аминокислоту метионин. Лишь после этого присоединяется большая субъединица рибосомы. В пределах собранной рибосомы оказываются два кодона иРНК, первый из которых уже занят. К соседнему с ним кодону присоединяется вторая тРНК, также несущая аминокислоту, после чего между остатками аминокислот с помощью ферментов образуется пептидная связь. Рибосома передвигается на один кодон иРНК; первая из тРНК, освободившаяся от аминокислоты, возвращается в цитоплазму за следующей аминокислотой, а фрагмент будущей полипептидной цепи как бы повисает на оставшейся тРНК. К новому кодону, оказавшемуся в пределах рибосомы, присоединяется следующая тРНК, процесс повторяется и шаг за шагом полипептидная цепь удлиняется, т. е. происходит ее элонгация.

Окончание синтеза белка (терминация) происходит, как только в молекуле иРНК встретится специфическая последовательность нуклеотидов, которая не кодирует аминокислоту (стоп-кодон). После этого рибосома, иРНК и полипептидная цепь разделяются, а вновь синтезированный белок приобретает соответствующую структуру и транспортируется в ту часть клетки, где он будет выполнять свои функции.

Трансляция является весьма энергоемким процессом, поскольку на присоединение одной аминокислоты к тРНК расходуется энергия одной молекулы АТФ, еще несколько используются для продвижения рибосомы по молекуле иРНК.

Для ускорения синтеза определенных белковых молекул к молекуле иРНК могут присоединяться последовательно несколько рибосом, которые образуют единую структуру — полисому.

Клетка — генетическая единица живого. Хромосомы, их строение (форма и размеры) и функции. Число хромосом и их видовое постоянство. Соматические и половые клетки. Жизненный цикл клетки: интерфаза и митоз. Митоз — деление соматических клеток. Мейоз. Фазы митоза и мейоза. Развитие половых клеток у растений и животных. Деление клетки — основа роста, развития и размножения организмов. Роль мейоза и митоза

Клетка — генетическая единица живого

Несмотря на то, что нуклеиновые кислоты являются носителем генетической информации, реализация этой информации невозможна вне клетки, что легко доказывается на примере вирусов. Данные организмы, содержащие зачастую только ДНК или РНК, не могут самостоятельно воспроизводиться, для этого они должны использовать наследственный аппарат клетки. Даже проникнуть в клетку без помощи самой клетки они не могут, кроме как с использованием механизмов мембранного транспорта или благодаря повреждению клеток. Большинство вирусов нестабильно, они гибнут уже после нескольких часов пребывания на открытом воздухе. Следовательно, клетка является генетической единицей живого, обладающей минимальным набором компонентов для сохранения, изменения и реализации наследственной информации, а также ее передачи потомкам.

Бульшая часть генетической информации эукариотической клетки сосредоточена в ядре. Особенностью ее организации является то, что, в отличие от ДНК прокариотической клетки, молекулы ДНК эукариот не замкнуты и образуют сложные комплексы с белками — хромосомы.

Хромосомы, их строение (форма и размеры) и функции

Хромосома (от греч. хрома — цвет, окраска и сома — тело) — это структура клеточного ядра, которая содержит гены и несет определенную наследственную информацию о признаках и свойствах организма.

Иногда хромосомами называют и кольцевые молекулы ДНК прокариот. Хромосомы способны к самоудвоению, они обладают структурной и функциональной индивидуальностью и сохраняют ее в ряду поколений. Каждая клетка несет всю наследственную информацию организма, но в ней работает только небольшая часть.

Основой хромосомы является двухцепочечная молекула ДНК, упакованная с белками. У эукариот с ДНК взаимодействуют гистоновые и негистоновые белки, тогда как у прокариот гистоновые белки отсутствуют.

Лучше всего хромосомы видны под световым микроскопом в процессе деления клетки, когда они в результате уплотнения приобретают вид палочковидных телец, разделенных первичной перетяжкой — центромеройна плечи. На хромосоме может быть также и вторичная перетяжка, которая в некоторых случаях отделяет от основной части хромосомы так называемый спутник. Концевые участки хромосом называются теломерами. Теломеры препятствуют слипанию концов хромосом и обеспечивают их прикрепление к оболочке ядра в неделящейся клетке. В начале деления хромосомы удвоены и состоят из двух дочерних хромосом — хроматид, скрепленных в центромере.

По форме различают равноплечие, неравноплечие и палочковидные хромосомы. Размеры хромосом существенно варьируют, однако средняя хромосома имеет размеры 5 $×$ 1,4 мкм.

В некоторых случаях хромосомы в результате многочисленных удвоений ДНК содержат сотни и тысячи хроматид: такие гигантские хромосомы называются политенными. Они встречаются в слюнных железах личинок дрозофилы, а также в пищеварительных железах аскариды.

Число хромосом и их видовое постоянство. Соматические и половые клетки

Согласно клеточной теории клетка является единицей строения, жизнедеятельности и развития организма. Таким образом, такие важнейшие функции живого, как рост, размножение и развитие организма обеспечиваются на клеточном уровне. Клетки многоклеточных организмов можно разделить на соматические и половые.

Соматические клетки — это все клетки тела, образующиеся в результате митотического деления.

Изучение хромосом позволило установить, что для соматических клеток организма каждого биологического вида характерно постоянное число хромосом. Например, у человека их 46. Набор хромосом соматических клеток называют диплоидным (2n), или двойным.

Половые клетки, или гаметы, — это специализированные клетки, служащие для полового размножения.

В гаметах содержится всегда вдвое меньше хромосом, чем в соматических клетках (у человека — 23), поэтому набор хромосом половых клеток называется гаплоидным (n), или одинарным. Его образование связано с мейотическим делением клетки.

Количество ДНК соматических клеток обозначается как 2c, а половых — 1с. Генетическая формула соматических клеток записывается как 2n2c, а половых — 1n1с.

В ядрах некоторых соматических клеток количество хромосом может отличаться от их количества в соматических клетках. Если это различие больше на один, два, три и т. д. гаплоидных набора, то такие клетки называют полиплоидными (три-, тетра-, пентаплоидными соответственно). В таких клетках процессы метаболизма протекают, как правило, очень интенсивно.

Количество хромосом само по себе не является видоспецифическим признаком, поскольку различные организмы могут иметь равное количество хромосом, а родственные — разное. Например, у малярийного плазмодия и лошадиной аскариды по две хромосомы, а у человека и шимпанзе — 46 и 48 соответственно.

Хромосомы человека делятся на две группы: аутосомы и половые хромосомы (гетерохромосомы). Аутосом в соматических клетках человека насчитывается 22 пары, они одинаковы для мужчин и женщин, а половых хромосом только одна пара, но именно она определяет пол особи. Существует два вида половых хромосом — X и Y. Клетки тела женщины несут по две X-хромосомы, а мужчин — X и Y.

Кариотип — это совокупность признаков хромосомного набора организма (число хромосом, их форма и величина).

Условная запись кариотипа включает общее количество хромосом, половые хромосомы и возможные отклонения в наборе хромосом. Например, кариотип нормального мужчины записывается как 46, XY, а кариотип нормальной женщины — 46, XX.

Жизненный цикл клетки: интерфаза и митоз

Клетки не возникают каждый раз заново, они образуются только в результате деления материнских клеток. После разделения дочерним клеткам требуется некоторое время для формирования органоидов и приобретения соответствующей структуры, которая обеспечила бы выполнение определенной функции. Этот отрезок времени называется созреванием.

Промежуток времени от появления клетки в результате деления до ее разделения или гибели называется жизненным циклом клетки.

У эукариотических клеток жизненный цикл делится на две основные стадии: интерфазу и митоз.

Интерфаза — это промежуток времени в жизненном цикле, в который клетка не делится и нормально функционирует. Интерфаза делится на три периода: G1-, S- и G2-периоды.

G1-период (пресинтетический, постмитотический) — это период роста и развития клетки, в который происходит активный синтез РНК, белков и других веществ, необходимых для полного жизнеобеспечения вновь образовавшейся клетки. К концу этого периода клетка может начать готовиться к удвоению ДНК.

В S-периоде (синтетическом) происходит сам процесс репликации ДНК. Единственным участком хромосомы, который не подвергается репликации, является центромера, поэтому образовавшиеся молекулы ДНК не расходятся полностью, а остаются скрепленными в ней, и в начале деления хромосома имеет X-образный вид. Генетическая формула клетки после удвоения ДНК — 2n4c. Также в S-периоде происходит удвоение центриолей клеточного центра.

G2-период (постсинтетический, премитотический) характеризуется интенсивным синтезом РНК, белков и АТФ, необходимых для процесса деления клетки, а также разделением центриолей, митохондрий и пластид. До конца интерфазы хроматин и ядрышко остаются хорошо различимыми, целостность ядерной оболочки не нарушается, а органоиды не изменяются.

Часть клеток организма способна выполнять свои функции в течение всей жизни организма (нейроны нашего головного мозга, мышечные клетки сердца), а другие существуют непродолжительное время, после чего погибают (клетки кишечного эпителия, клетки эпидермиса кожи). Следовательно, в организме должны постоянно происходить процессы деления клеток и образования новых, которые замещали бы отмершие. Клетки, способные к делению, называют стволовыми. В организме человека они находятся в красном костном мозге, в глубоких слоях эпидермиса кожи и других местах. Используя эти клетки, можно вырастить новый орган, добиться омоложения, а также клонировать организм. Перспективы использования стволовых клеток совершенно ясны, однако морально-этические аспекты этой проблемы все еще обсуждаются, поскольку в большинстве случаев используются эмбриональные стволовые клетки, полученные из убитых при аборте зародышей человека.

Продолжительность интерфазы в клетках растений и животных составляет в среднем 10– 20 часов, тогда как митоз занимает около 1–2 часов.

В ходе последовательных делений в многоклеточных организмах дочерние клетки становятся все более разнообразными, поскольку в них происходит считывание информации со все большего числа генов.

Некоторые клетки со временем перестают делиться и погибают, что может быть связано с завершением выполнения определенных функций, как в случае клеток эпидермиса кожи и клеток крови или с повреждением этих клеток факторами окружающей среды, в частности возбудителями болезней. Генетически запрограммированная смерть клетки называется апоптозом, тогда как случайная гибель — некрозом.

Митоз — деление соматических клеток. Фазы митоза

Митоз — способ непрямого деления соматических клеток.

Во время митоза клетка проходит ряд последовательных фаз, в результате которых каждая дочерняя клетка получает такой же набор хромосом, как и в материнской клетке.

Митоз делится на четыре основные фазы: профазу, метафазу, анафазу и телофазу. Профаза — наиболее длительная стадия митоза, в процессе которой происходит конденсация хроматина, в результате чего становятся видны X-образные хромосомы, состоящие из двух хроматид (дочерних хромосом). При этом исчезает ядрышко, центриоли расходятся к полюсам клетки, и начинает формироваться ахроматиновое веретено (веретено деления) из микротрубочек. В конце профазы ядерная оболочка распадается на отдельные пузырьки.

В метафазе хромосомы выстраиваются по экватору клетки своими центромерами, к которым прикрепляются микротрубочки полностью сформированного веретена деления. На этой стадии деления хромосомы наиболее уплотнены и имеют характерную форму, что позволяет изучить кариотип.

В анафазе происходит быстрая репликация ДНК в центромерах, вследствие которой хромосомы расщепляются и хроматиды расходятся к полюсам клетки, растягиваемые микротрубочками. Распределение хроматид должно быть абсолютно равным, поскольку именно этот процесс обеспечивает поддержание постоянства числа хромосом в клетках организма.

На стадии телофазы дочерние хромосомы собираются на полюсах, деспирализуются, вокруг них из пузырьков формируются ядерные оболочки, а во вновь образовавшихся ядрах возникают ядрышки.

После деления ядра происходит деление цитоплазмы — цитокинез, в ходе которого и происходит более или менее равномерное распределение всех органоидов материнской клетки.

Таким образом, в результате митоза из одной материнской клетки образуется две дочерних, каждая из которых является генетической копией материнской (2n2c).

В больных, поврежденных, стареющих клетках и специализированных тканях организма может происходить несколько иной процесс деления — амитоз. Амитозом называют прямое деление эукариотических клеток, при котором не происходит образования генетически равноценных клеток, так как клеточные компоненты распределяются неравномерно. Он встречается у растений в эндосперме, а у животных — в печени, хрящах и роговице глаза.

Мейоз. Фазы мейоза

Мейоз — это способ непрямого деления первичных половых клеток (2n2с), в результате которого образуются гаплоидные клетки (1n1с), чаще всего половые.

В отличие от митоза, мейоз состоит из двух последовательных делений клетки, каждому из которых предшествует интерфаза. Первое деление мейоза (мейоз I) называется редукционным, так как при этом количество хромосом уменьшается вдвое, а второе деление (мейоз II) — эквационным, так как в его процессе количество хромосом сохраняется.

Интерфаза I протекает подобно интерфазе митоза. Мейоз I делится на четыре фазы: профазу I, метафазу I, анафазу I и телофазу I. В профазе I происходят два важнейших процесса — конъюгация и кроссинговер. Конъюгация — это процесс слияния гомологичных (парных) хромосом по всей длине. Образовавшиеся в процессе конъюгации пары хромосом сохраняются до конца метафазы I.

Кроссинговер — взаимный обмен гомологичными участками гомологичных хромосом. В результате кроссинговера хромосомы, полученные организмом от обоих родителей, приобретают новые комбинации генов, что обусловливает появление генетически разнообразного потомства. В конце профазы I, как и в профазе митоза, исчезает ядрышко, центриоли расходятся к полюсам клетки, а ядерная оболочка распадается.

В метафазе I пары хромосом выстраиваются по экватору клетки, к их центромерам прикреп ляются микротрубочки веретена деления.

В анафазе I к полюсам расходятся целые гомологичные хромосомы, состоящие из двух хроматид.

В телофазе I вокруг скоплений хромосом у полюсов клетки образуются ядерные оболочки, формируются ядрышки.

Цитокинез I обеспечивает разделение цитоплазм дочерних клеток.

Образовавшиеся в результате мейоза I дочерние клетки (1n2c) генетически разнородны, поскольку их хромосомы, случайным образом разошедшиеся к полюсам клетки, содержат неодинаковые гены.

Сравнительная характеристика митоза и мейоза

Признак Митоз Мейоз
Какие клетки вступают в деление? Соматические (2n) Первичные половые клетки (2n)
Число делений 1 2
Сколько и каких клеток образуется в процессе деления? 2 соматические (2n) 4 половые (n)
Интерфаза Подготовка клетки к делению, удвоение ДНК Подготовка клетки к делению, удвоение ДНК Очень короткая, удвоения ДНК не происходит
Фазы   Мейоз I Мейоз II
Профаза Конденсация хромосом, исчезновение ядрышка, распад ядерной оболочки Конденсация хромосом, исчезновение ядрышка, распад ядерной оболочки, могут происходить конъюгация и кроссинговер Конденсация хромосом, исчезновение ядрышка, распад ядерной оболочки
Метафаза Хромосомы выстраиваются по экватору, формируется веретено деления По экватору располагаются пары хромосом, формируется веретено деления Хромосомы выстраиваются по экватору, формируется веретено деления
Анафаза К полюсам расходятся хроматиды К полюсам расходятся гомологичные хромосомы из двух хроматид К полюсам расходятся хроматиды
Телофаза Хромосомы деспирализуются, формируются новые ядерные оболочки и ядрышки Хромосомы деспирализуются, формируются новые ядерные оболочки и ядрышки Хромосомы деспирализуются, формируются новые ядерные оболочки и ядрышки

Интерфаза II очень короткая, так как в ней не происходит удвоения ДНК, то есть отсутствует S-период.

Мейоз II также делится на четыре фазы: профазу II, метафазу II, анафазу II и телофазу II. В профазе II протекают те же процессы, что и в профазе I, за исключением конъюгации и кроссинговера.

В метафазе II хромосомы располагаются вдоль экватора клетки.

В анафазе II хромосомы расщепляются в центромерах и к полюсам растягиваются уже хроматиды.

В телофазе II вокруг скоплений дочерних хромосом формируются ядерные оболочки и ядрышки.

После цитокинеза II генетическая формула всех четырех дочерних клеток — 1n1c, однако все они имеют различный набор генов, что является результатом кроссинговера и случайного сочетания хромосом материнского и отцовского организмов в дочерних клетках.

Развитие половых клеток у растений и животных

Гаметогенез (от греч. гамете — жена, гаметес — муж и генезис — происхождение, возникновение) — это процесс образования зрелых половых клеток.

Так как для полового размножения чаще всего необходимы две особи — женская и мужская, продуцирующие различные половые клетки — яйцеклетки и спермии, то и процессы образования этих гамет должны быть различны.

Характер процесса в существенной степени зависит и от того, происходит ли он в растительной или животной клетке, поскольку у растений при образовании гамет происходит только митоз, а у животных — и митоз, и мейоз.

Развитие половых клеток у растений. У покрытосеменных растений образование мужских и женских половых клеток происходит в различных частях цветка — тычинках и пестиках соответственно.

Перед образованием мужских половых клеток — микрогаметогенезом (от греч. микрос — маленький) — происходит микроспорогенез, то есть формирование микроспор в пыльниках тычинок. Этот процесс связан с мейотическим делением материнской клетки, в результате которого возникают четыре гаплоидные микроспоры. Микрогаметогенез сопряжен с митотическим делением микроспоры, дающим мужской гаметофит из двух клеток — крупной вегетативной (сифоногенной) и мелкой генеративной. После деления мужской гаметофит покрывается плотными оболочками и образует пыльцевое зерно. В некоторых случаях еще в процессе созревания пыльцы, а иногда только после переноса на рыльце пестика генеративная клетка делится митотически с образованием двух неподвижных мужских половых клеток — спермиев. Из вегетативной клетки после опыления формируется пыльцевая трубка, по которой спермии проникают в завязь пестика для оплодотворения.

Развитие женских половых клеток у растений называется мегагаметогенезом (от греч. мегас — большой). Он происходит в завязи пестика, чему предшествует мегаспорогенез, в результате которого из материнской клетки мегаспоры, лежащей в нуцеллусе, путем мейотического деления формируются четыре мегаспоры. Одна из мегаспор трижды делится митотически, давая женский гаметофит — зародышевый мешок с восемью ядрами. При последующем обособлении цитоплазм дочерних клеток одна из образовавшихся клеток становится яйцеклеткой, по бокам от которой лежат так называемые синергиды, на противоположном конце зародышевого мешка формируются три антипода, а в центре в результате слияния двух гаплоидных ядер образуется диплоидная центральная клетка.

Развитие половых клеток у животных. У животных различают два процесса образования половых клеток — сперматогенез и овогенез.

Сперматогенез (от греч. сперма, сперматос — семя и генезис — происхождение, возникновение) — это процесс образования зрелых мужских половых клеток — сперматозоидов. У человека он протекает в семенниках, или яичках, и делится на четыре периода: размножение, рост, созревание и формирование.

В период размножения первичные половые клетки делятся митотически, вследствие чего образуются диплоидные сперматогонии. В период роста сперматогонии накапливают питательные вещества в цитоплазме, увеличиваются в размерах и превращаются в первичные сперматоциты, или сперматоциты 1-го порядка. Лишь после этого они вступают в мейоз (период созревания), в результате которого образуется сначала два вторичных сперматоцита, или сперматоцита 2-го порядка, а затем — четыре гаплоидных клетки с еще достаточно большим количеством цитоплазмы — сперматиды. В период формирования они утрачивают почти всю цитоплазму и формируют жгутик, превращаясь в сперматозоиды.

Сперматозоиды, или живчики, — очень мелкие подвижные мужские половые клетки, имеющие головку, шейку и хвостик.

В головке, кроме ядра, находится акросома — видоизмененный комплекс Гольджи, обеспечивающий растворение оболочек яйцеклетки в процессе оплодотворения. В шейке находятся центриоли клеточного центра, а основу хвостика образуют микротрубочки, непосредственно обеспечивающие движение сперматозоида. В нем также расположены митохондрии, обеспечивающие сперматозоид энергией АТФ для движения.

Овогенез (от греч. оон — яйцо и генезис — происхождение, возникновение) — это процесс образования зрелых женских половых клеток — яйцеклеток. У человека он происходит в яичниках и состоит из трех периодов: размножения, роста и созревания. Периоды размножения и роста, аналогичные таковым в сперматогенезе, происходят еще во время внутриутробного развития. При этом из первичных половых клеток в результате митоза образуются диплоидные оогонии, которые превращаются затем в диплоидные первичные ооциты, или ооциты 1-го порядка. Мейоз и последующий цитокинез, протекающие в период созревания, характеризуются неравномерностью деления цитоплазмы материнской клетки, так что в итоге сначала получается один вторичный ооцит, или ооцит 2-го порядка, и первое полярное тельце, а затем из вторичного ооцита — яйцеклетка, сохраняющая весь запас питательных веществ, и второе полярное тельце, тогда как первое полярное тельце делится на два. Полярные тельца забирают избыток генетического материала.

У человека яйцеклетки вырабатываются с промежутком 28–29 суток. Цикл, связанный с созреванием и выходом яйцеклеток, называется менструальным.

Яйцеклетка — крупная женская половая клетка, которая несет не только гаплоидный набор хромосом, но и значительный запас питательных веществ для последующего развития зародыша.

Яйцеклетка у млекопитающих покрыта четырьмя оболочками, снижающими вероятность ее повреждения различными факторами. Диаметр яйцеклетки у человека достигает 150–200 мкм, тогда как у страуса он может составлять несколько сантиметров.

Деление клетки — основа роста, развития и размножения организмов. Роль митоза и мейоза

Если у одноклеточных организмов деление клетки приводит к увеличению количества особей, т. е. размножению, то у многоклеточных этот процесс может иметь различное значение. Так, деление клеток зародыша, начиная с зиготы, является биологической основой взаимосвязанных процессов роста и развития. Подобные же изменения наблюдаются у человека в подростковом возрасте, когда число клеток не только увеличивается, но и происходит качественное изменение организма. В основе размножения многоклеточных организмов также лежит деление клетки, например при бесполом размножении благодаря этому процессу из части организма происходит восстановление целостного, а при половом — в процессе гаметогенеза образуются половые клетки, дающие впоследствии новый организм. Следует отметить, что основные способы деления эукариотической клетки — митоз и мейоз — имеют различное значение в жизненных циклах организмов.

В результате митоза происходит равномерное распределение наследственного материала между дочерними клетками — точными копиями материнской. Без митоза было бы невозможным существование и рост многоклеточных организмов, развивающихся из единственной клетки — зиготы, поскольку все клетки таких организмов должны содержать одинаковую генетическую информацию.

В процессе деления дочерние клетки становятся все более разнообразными по строению и выполняемым функциям, что связано с активацией у них все новых групп генов вследствие межклеточного взаимодействия. Таким образом, митоз необходим для развития организма.

Этот способ деления клеток необходим для процессов бесполого размножения и регенерации (восстановления) поврежденных тканей, а также органов.

Мейоз, в свою очередь, обеспечивает постоянство кариотипа при половом размножении, так как уменьшает вдвое набор хромосом перед половым размножением, который затем восстанавливается в результате оплодотворения. Кроме того, мейоз приводит к появлению новых комбинаций родительских генов благодаря кроссинговеру и случайному сочетанию хромосом в дочерних клетках. Благодаря этому потомство получается генетически разнообразным, что дает материал для естественного отбора и является материальной основой эволюции. Изменение числа, формы и размеров хромосом, с одной стороны, может привести к появлению различных отклонений в развитии организма и даже его гибели, а с другой — может привести к появлению особей, более приспособленных к среде обитания.

Таким образом, клетка является единицей роста, развития и размножения организмов.

Биологи открыли новый тип строения плаценты у животных

Колония циклостомной мшанки Crisia eburnea c несколькими «плацентарными инкубаторами» — гонозооидами

Результаты фундаментального исследования, поддержанного грантом РНФ, опубликованы в журнале BMC Ecology and Evolution.

Биологам хорошо известно, что клетки живых организмов умеют вести себя самым необычным образом. Случается так, что они сливаются друг с другом, образуя единую структуру с большим количеством ядер — синцитий, окруженный общей мембраной. Такое «поведение» позволяет им быстро обмениваться питательными веществами, не тратя время и ресурсы на преодоление клеточных мембран. Бывает, что похожая структура возникает в результате совершенно другого процесса — не слияния, а роста клетки, которая начинает копировать ядра и значительно увеличивается в размерах. В результате этого образуется ценоцит. Если первое явление характерно в основном для животных, например, в плаценте человека синцитием покрыты выросты эмбриональной оболочки, внедряющиеся в стенку матки, то второе — в основном удел растений и грибов. В обоих случаях получаются достаточно объемные структуры неправильной формы, напоминающие ткань.

Начиная работать с циклостоматами, мы вместе с аспиранткой Ульяной Неклюдовой (первым автором вышедшей статьи) предполагали, что обнаружим у них именно синцитий, известный в плацентах других организмов, а обнаружили ценоциты — многоклеточные структуры, которые нетипичны для животных.

Руководитель проекта, профессор кафедры зоологии беспозвоночных СПбГУ Андрей Островский

«Эмбрионы этой группы мшанок не просто прилегают к плаценте, как это бывает обычно, а погружены в нее, буквально впаяны. Плацента состоит из нескольких крупных ценоцитов, связанных друг с другом цитоплазматическими мостиками и двумя типами клеточных контактов. Ценоциты имеют разную ультраструктуру, что указывает на то, что часть из них выполняет питающую, а часть — проводящую функции. Кроме того, появление такой сложной плаценты могло стать необходимым условием возникновения в этой группе животных полиэмбрионии, когда ранний эмбрион, вырастая, расщепляется на множество (более сотни) вторичных эмбрионов, каждый из которых развивается в личинку. Такая исключительно редкая комбинация репродуктивных признаков (живорождение, плацентотрофия и полиэмбриония) встречается еще только у одной группы существ на Земле — у броненосцев из рода Dasypus», — рассказал руководитель проекта, профессор кафедры зоологии беспозвоночных СПбГУ Андрей Островский.

Ультраструктурный срез участка эмбриона (темный, слева внизу), окруженного плацентой — участком многоядерного ценоцита (трансмиссионная электронная микроскопия)

Образцы исследователи собрали рядом с Морской биологической станцией СПбГУ на Белом море. Им также удалось узнать, что плацента формируется из органа, который исходно отвечает за высовывание щупалец. Все мшанки выметывают спермии в воду, откуда их захватывают щупальца зооидов из других колоний. Для высовывания щупалец используется снабженный кольцевыми мышцами орган — мембранная сумка. Именно она после оплодотворения становится основой плаценты из ценоцитов, которая будет питать эмбрионы. Такое явление смены функции в эволюции получило название экзаптации.

В целом подавляющее большинство мшанок сначала выводят оплодотворенное яйцо из внутренней полости во внешнюю среду, а затем перемещают ее в специальную выводковую камеру, где осуществляется вынашивание. Однако циклостомные мшанки и здесь поступают иначе: их личинки развиваются прямо в полости гонозооида — члена колонии, ставшего плацентарным инкубатором. Процесс выхода потомства продолжается практически все лето — созревшие личинки постепенно покидают гонозооид.

Гистологический срез гонозооида, заполненного личинками и эмбрионами, погруженными в плаценту из ценоцитов (световая микроскопия)

«Полиэмбриония считается эволюционно провальным делом: вроде как детей много, но все они клоны — нет генетического разнообразия, — объясняет Андрей Островский. — Обычно именно тот факт, что потомки разные, обеспечивает лучшую выживаемость. И тут возникает вопрос — почему полиэмбриония, ископаемым свидетельствам наличия которой у Cyclostomata около 200 миллионов лет, оказалось такой устойчивой? А с ней и сама группа. В чем подвох? Возможно, это объясняется тем, что, продуцируя личинки-клоны на протяжении нескольких месяцев подряд, мшанки «сталкивают» их с постоянно меняющейся окружающей средой. Получается, что варьируют здесь не геномы, а условия, в которых эти геномы оказываются».

Исследование поддержано грантами Российского научного фонда № 18-14-00086 и Австрийского научного фонда № P27933-B29.

Общее строение тела человека – Opiq

Сходные по строению, функциям и происхождению клетки вместе с межклеточным веществом образуют ткань.

Все ткани в теле человека выполняют одну основную функцию. Например, кровь – это соединительная ткань, она связывает различные части организма в единое целое (переносит кислород и питательные вещества ко всем частям тела, выравнивая температуру). С другой стороны, различные части ткани, такие как клетки крови, выполняют разные функции: красные кровяные тельца связывают и транспортируют кислород, а белые участвуют в защите организма.

В теле человека можно выделить четыре основных типа тканей: эпителиальную, соединительную, мышечную и нервную.

Нервная ткань формирует головной и спинной мозг. Нервная ткань образована нервными клетками (нейронами). Они воспринимают раздражения, анализируют их и передают дальше. Нервные клетки состоят из тела и многочисленных отростков. Один из отростков обычно длинный (нейрит, или аксон), остальные – короткие (дендриты). Отростки выполняют разные функции: короткие отростки проводят раздражение к телу клетки, а длинный отросток – от тела клетки. Отходящие от нервных клеток длинные отростки объединяются в нервы.

Мышечная ткань образована мышечными клетками. Эти клетки способны к сокращению, благодаря чему человек может двигаться. Существует три вида мышечной ткани.

Соединительная ткань связывает организм в единое целое и формирует скелет. Отличается большим количеством межклеточного вещества. В организме человека соединительная ткань представлена различными формами:

Эпителиальная ткань выполняет защитную функцию. Клетки ткани расположены вплотную друг к другу. Эпителий покрывает поверхность тела и выстилает внутренние полости. Способностью клеток эпителия к быстрому размножению обеспечивается скорое зарастание поверхностных ран. Выстланные эпителием железы производят различные секреты, например пищеварительные соки желудка и кишечника.

Строение клетки Биология 7 класс (Памятка)

Биология «Клетка»

Клетка-это элементарная структурная ,функциональная и генетическая единица всего живого.

Строение :

  • Клеточная мембрана-эластичная молекулярная структура , состоящая из белков и липидов. Отделяет содержимое любой клетки от внешней среды.

  • Цитоплазма- вязкое зернистое содержимое клетки , постоянно движется , в ней протекают все жизненные процессы клетки.

  • Ядро- центральное место в цитоплазме (плотное округлое тельце).

Хромосомы – внутриклеточные структуры ядра.

Ядро с хромосомами:

Регулируют процессы , протекающие в клетке при размножении

Обеспечивают хранение и передачу наследственной информации

  • Эндоплазматическая сеть- внутриклеточный органоид эукариотной клетки , представляющий собой разветлённую систему из окружённых мембраной уплощенных полостей , пузырьков и канальцев.

  • Рибосомы – осуществляют синтез белка

  • Митохондрии – энергетические станции клетки , окисление органических веществ , накопление энергии.

  • Аппарат Гольджи –накопление белков ,жиров, углеводов, их концентрация для дальнейшего использования в процессе жизнедеятельности клетки, синтез жиров и углеводов , из которых формируются мембраны клетки.

  • Лизосомы – (от греч. лизос –«растворение» , сома – «тело»). Расщепление белков , жиров , углеводов , Сливаясь , несколько лизосом образуют пищеварительную вакуоль .

  • Клеточный центр- две центриоли обеспечивают равномерное распределение наследственного материала при делении клетки, формирование веретена деления.

У прокариот, в сравнении с эукариотами отсутствуют – митохондрии

В мембранах эукариот имеет два слоя липидов

Легко пройдёт через липидный слой мембраны : эфир

Прохождение через мембрану ионов натрия и калия происходит путём активного переноса

Выведение веществ из клетки называется экзоцитозом

Рецепторная функция мембраны связана с белками и углеводами

Ядро представляет собой структуру двумембранную

Формирование лизосом клетки происходит в аппарате Гольджи

На рибосомах в процессе биосинтеза образуются белки первичной структуры

Одна из важнейших функций лизосом переваривание отмёрших клеток

Структурная биология

Как ученые используют белковые структуры для разработки новых лекарств?

Лекарства обычно действуют, блокируя или поддерживая активность определенных белков в организме. Используя подход, называемый разработкой лекарств на основе структуры, ученые могут создать шаблон для белка и использовать его для создания новых лекарств. Они начинают с компьютерной модели структуры белка, которую они хотят изучать. Например, компьютерная модель позволит исследователям изучить, как два белка работают вместе.Затем, если ученые захотят отключить один белок, они попытаются создать молекулу, которая блокирует или изменяет это взаимодействие.

Какой пример лекарства, разработанного с использованием структурной разработки лекарств?

Исследователи использовали дизайн лекарств на основе структуры для разработки некоторых препаратов против ВИЧ. Протеаза ВИЧ — это фермент, который поддерживает жизнь вируса. Знание его структуры позволило исследователям определить виды молекул, которые могут остановить работу протеазы ВИЧ. Ученые использовали компьютерные модели для точной настройки молекул, которые могли бы остановить производство вирусов.Эта работа привела к созданию лекарств, называемых ингибиторами протеазы.

Как ученые определяют белковые структуры?

Исследователи используют несколько методов визуализации для определения структуры белков и других сложных молекул. Криоэлектронная микроскопия (крио-ЭМ) позволяет ученым «видеть» отдельные белки, а также более крупные структуры, такие как молекулярные комплексы (группы белков, которые объединяются и функционируют как единое целое), вирусы или органеллы (специализированные структуры внутри клетки, которые выполнять определенные функции).Рентгеновская кристаллография и спектроскопия ядерного магнитного резонанса (ЯМР) также позволяют исследователям просматривать белки. На сегодняшний день исследователи использовали эти методы, чтобы разгадать структуру более 122 000 белков. Банк данных о белках хранит эти структуры и дает ученым доступ к ним.

Что такое крио-ЭМ и как оно работает?

В крио-ЭМ исследователи быстро замораживают клетку, вирус, молекулярный комплекс или другую структуру, так что молекулы воды не успевают образовать кристаллы.Это сохраняет образец в его естественном состоянии. Ученые используют электронный микроскоп, чтобы взорвать замороженный образец электронным лучом. Это создает двумерную проекцию образца на цифровом детекторе. Создавая сотни проекций образца под разными углами, а затем вычисляя среднее значение этих углов, ученые создают трехмерную модель его структуры. Последние достижения в области крио-ЭМ позволяют получать детализированные изображения белков и других биологических структур, включая более крупные структуры, такие как комплексы РНК-белок.

Структурная биология | Аргоннская национальная лаборатория

Мы предоставляем детали на атомном уровне для широкого спектра молекулярных систем с использованием рентгеновской структурной молекулярной биологии на основе источников света, тем самым улучшая понимание многих биологических и клеточных процессов. Наши кристаллические структуры раскрывают детали макромолекул и их взаимодействия, обеспечивают атомную основу и важные ключи к разгадке основных механизмов биохимических реакций, облегчают понимание клеточных процессов и помогают определить биологические концепции.

Мы разработали множество высокопроизводительных методов и инструментов в области протеомики, молекулярной и структурной биологии, которые необходимы для определения трехмерной структуры. К ним относятся технологии клонирования генов, экспрессии рекомбинантных белков, очистки и характеристики, кристаллизации, сбора данных, структурного решения и анализа, и они могут применяться в широком спектре биологических проектов. Эти подходы также помогают улучшить качество конструкций и снизить стоимость определения структуры.

Мы структурно охарактеризовали различные биологические системы: ферменты, участвующие в цикле Кальвина и переработке углеводов; двухкомпонентные системы и молекулярные сенсоры; молекулярные шапероны и белки теплового шока; регуляторы транскрипции; Система CRISPR и макромолекулярные комплексы, включающие белок-лиганд, белок-белок и белок-ДНК. В отдельную категорию проектов входят эссенциальные ферменты, факторы вирулентности; и белки, ответственные за устойчивость основных патогенов человека к антибиотикам.В этих проектах большое внимание уделяется структурам комплексов с небольшими лигандами и ингибиторами. Мы также изучаем белки и ферменты из почвенных, морских и человеческих микробиомов, а также из некультивируемых организмов, описываемых как «микробная темная материя». Наши исследования в области структурной биологии основаны на тесном сотрудничестве и включают в себя ряд весьма успешных взаимодействий с исследователями из национальных лабораторий, академических кругов и исследовательских институтов.

Структурная биология — Кафедра химии и биохимии

Структурная биология — это изучение трехмерной структуры важных биологических молекул и макромолекул, таких как углеводы, белки и нуклеиновые кислоты.Трехмерная структура этих молекул обычно определяет их функцию. Определяя их атомные структуры, мы можем получить существенное представление о том, как они функционируют и почему мутации или делеции вызывают определенные заболевания. Анализ структуры белков на атомном уровне также позволяет рационально сконструировать небольшие молекулы, которые манипулируют их функциями и, следовательно, обладают мощным терапевтическим потенциалом.

Двумя основными методами, которые используются для определения деталей структуры макромолекул на атомном уровне, являются рентгеновская кристаллография и спектроскопия ядерного магнитного резонанса (ЯМР).В нашем отделе эти методы используются для изучения функции белков, участвующих в иммунном ответе млекопитающих, сборке ретровирусов и структуре углеводов на клеточной поверхности. В течение последних нескольких лет другие методы, такие как масс-спектрометрия с ионизацией электрораспылением (ESI-MS), также были разработаны для изучения макромолекулярной структуры, недоступной с помощью ЯМР или рентгеновской кристаллографии. Этот подход используется в нашем отделе для исследования структур нуклеиновых кислот и белков-нуклеиновых кислот в ретровирусах.

ФАКУЛЬТЕТ ИССЛЕДОВАНИЙ В СТРУКТУРНОЙ БИОЛОГИИ

Буш, К. Аллен
Трехмерная структура, конформация и динамика сложных олигосахаридов и полисахаридов с помощью ЯМР-спектроскопии и компьютерного молекулярного моделирования.

Garcin, Elsa
Рентгеновская кристаллография, малоугловое рассеяние рентгеновских лучей (SAXS)

Лу, Уюань
Рентгеновская кристаллография

Smith, Aaron
Трансляция белка, посттрансляционная модификация, а также захват и доставка гема и патогенного железа

Саммерс, Майкл
Применение ядерного магнитного резонанса для изучения структуры и функции ретровирусов.

Новая общедоступная база данных структур белков, предсказанных искусственным интеллектом, может изменить биологию | Наука

Компьютеры теперь могут быстро и надежно предсказывать трехмерную форму большинства белков, таких как структура плодовой мушки.

DeepMind

Роберт Ф.Сервис

На прошлой неделе две группы представили кульминацию многолетней работы компьютерных ученых, биологов и физиков: передовые программы моделирования, которые могут предсказывать точные трехмерные атомные структуры белков и некоторых молекулярных комплексов. И вот теперь пришла самая большая отдача от этой работы. Одна из этих команд сообщает, что сегодня она использовала свои недавно созданные программы искусственного интеллекта (ИИ) для расшифровки структур 350 000 белков человека и 20 модельных организмов, таких как бактерий Escherichia coli, бактерий, дрожжей и плодовых мушек, которые являются основой биологических исследований. исследовательская работа.В ближайшие месяцы группа заявляет, что планирует расширить свой список смоделированных белков, чтобы охватить все каталогизированные белки, около 100 миллионов молекул.

«Это ошеломляет», — говорит Джон Моулт, эксперт по фолдингу белков из Университета Мэриленда в Шейди-Гроув, проводящий раз в два года конкурс под названием «Критическая оценка прогнозирования структуры белка» (CASP). Моулт говорит, что структурные биологи десятилетиями мечтали о том, что точные компьютерные модели однажды увеличат чрезвычайно точные формы белков, полученные с помощью экспериментальных методов, таких как рентгеновская кристаллография.«Я никогда не думал, что мечта осуществится», — говорит Моулт.

Компьютерная модель под названием AlphaFold — это работа исследователей DeepMind, британской компании по искусственному интеллекту, принадлежащей Alphabet, материнской компании Google. Осенью 2020 года AlphaFold опередила конкурентов CASP, получив средний балл точности 92,4 из 100, что значительно опережает следующего ближайшего конкурента. Но поскольку исследователи DeepMind не раскрыли деталей того, как они теоретически отображали формы белков, в частности, лежащий в основе компьютерный код AlphaFold, другие команды остались разочарованными и не смогли развить прогресс.Это начало меняться на прошлой неделе. 15 июля исследователи под руководством Минкьюнга Бэка и Дэвида Бейкера из Вашингтонского университета в Сиэтле сообщили онлайн в Science , что они создали высокоточную программу предсказания структуры белка под названием RoseTTAFold, которую они опубликовали. В тот же день Nature опубликовала подробности AlphaFold в статье исследователей DeepMind во главе с Демисом Хассабисом и Джоном Джампером.

Обе программы используют ИИ для выявления закономерностей сворачивания в огромных базах данных решенных белковых структур.Программы вычисляют наиболее вероятную структуру неизвестных белков, также учитывая основные физические и биологические правила, регулирующие взаимодействие соседних аминокислот в белке. В своей статье Бэк и Бейкер использовали RoseTTAFold для создания структурной базы данных сотен рецепторов, связанных с G-белком, класса обычных мишеней для лекарств.

Теперь исследователи DeepMind сообщают в Nature о создании 350 000 предсказанных структур — более чем в два раза больше, чем было решено ранее экспериментальными методами.Исследователи говорят, что AlphaFold произвела структуры почти для 44% всех белков человека, покрывая почти 60% всех аминокислот, кодируемых геномом человека. AlphaFold определила, что многие другие человеческие белки «неупорядочены», то есть их форма не имеет единой структуры. Такие неупорядоченные белки могут в конечном итоге принять структуру, когда они связываются с белком-партнером, говорит Бейкер. Они также могут естественным образом принимать множественные конформации, говорит Дэвид Агард, структурный биолог из Калифорнийского университета в Сан-Франциско.

База данных новых предсказаний DeepMind в отношении белков, собранная совместно с сотрудниками Европейской лаборатории молекулярной биологии (EMBL), находится в свободном доступе в Интернете. «Замечательно, что они сделали это доступным», — говорит Бейкер. «Это действительно увеличит темпы исследований».

Поскольку трехмерная структура белка в значительной степени определяет его функцию, библиотека DeepMind может помочь биологам разобраться, как тысячи неизвестных белков выполняют свою работу. «Мы в EMBL считаем, что это изменит понимание того, как устроена жизнь», — говорит генеральный директор лаборатории Эдит Херд.

Сотрудники

DeepMind говорят, что AlphaFold2 уже стимулировал разработку новых ферментов, которые разрушают пластик в окружающей среде быстрее, чем те, что были обнаружены ранее, и открыли новые возможности для лекарств для лечения забытых болезней. «Это будет один из самых важных наборов данных с момента картирования генома человека», — говорит Юэн Бирни, директор Европейского института биоинформатики EMBL.

Маловероятно, что удары на этом прекратятся. Прогнозы помогут экспериментаторам, решающим конструкции, говорит Бэк.Данные экспериментов по рентгеновской кристаллографии и криоэлектронной микроскопии могут быть трудными для интерпретации, говорят Бэк и другие, и наличие модели может помочь. «В краткосрочной перспективе это увеличит усилия по определению структуры», — прогнозирует она. «И со временем он также постепенно заменит [экспериментальные] усилия по определению структуры».

Если это произойдет, структурные биологи не останутся без работы. Бейкер отмечает, что как экспериментаторы, так и ученые-вычислители уже начинают направлять свои усилия на решение более сложной задачи — понять, какие именно белки взаимодействуют друг с другом и какие молекулярные изменения происходят во время этих взаимодействий.«Это приведет к перезагрузке поля», — говорит Бейкер. «Это очень интересное время».

Структурная и вычислительная биология и биофизика

Структура мальбранхамида в комплексе с Са2 + · кальмодулином

Структурная основа ингибирования CRISPR-Cas12a анти-CRISPR белками

Структурные биологи Ричард Кун, Мэтью Теркельсен и Майкл Россманн обнаружили новые детали икосаэдрических вирусов, не создавая симметрии во время визуализации структуры вируса.

Точное прогнозирование функции белков за счет сочетания поиска в базе данных и построения филогенетического дерева

Предыдущий Следующий

О нас

Область исследований структурной и вычислительной биологии и биофизики включает преподавателей с интересами на молекулярном уровне (то есть на клеточном уровне и ниже). Исследование включает такие темы, как:

  • определение структур белков и нуклеиновых кислот
  • структура и механизм белков и ферментов РНК (включая белки, участвующие в развитии рака)
  • Биохимия мембран и строение мембранных белков
  • структуры высокомолекулярных комплексов
  • исследование структуры и механизма распространения вирусов (включая новые патогены, такие как вирусы Западного Нила и денге)
  • экспериментальное и вычислительное исследование макромолекулярных взаимодействий
  • регуляция экспрессии генов с помощью эпигенетических механизмов, таких как хромосомная и нуклеосомная структура
  • Строение и функция стенок растительных клеток и цитоскелета
  • Ответ клеток на стресс высокой солености
  • геномика, транскриптомика, протеомика, систематика и вычислительная системная биология и другие темы на стыке эксперимента и вычислений

Эта группа использует широкий спектр экспериментальных подходов, начиная от рентгеновской кристаллографии, ЯМР, криоэлектронной микроскопии, электронной томографии и передовых спектроскопических методов исследования и определения молекулярных структур до вычислительных методов применительно к нуклеиновой кислоте и белку. структуры, биоинформатика, геномика и системная биология, включая молекулярную динамику, машинное обучение и сетевой анализ.

Аспиранты в этой области обязательно имеют разное происхождение, поскольку несколько программ бакалавриата предоставляют широкие возможности обучения в таких областях, как структурная или вычислительная биология.

Мы проводим обучение для студентов с высшим образованием, начиная от биологии и молекулярной биологии до химии, физики и информатики, и поощряем заявки от студентов, не участвующих в традиционных программах биологии.

Преподаватели и студенты в группе участвуют в большом количестве междисциплинарных мероприятий и общих ресурсов, включая Крио-ЭМ-центр Purdue, Центр исследований рака Purdue, Центр фундаментальных и прикладных мембранных наук, Энергетический центр, Институт воспаления Purdue, иммунологию. и инфекционные заболевания (PI 4 D), Центр биологических наук Биндли и Центр структурной биологии Марки.

Основное внешнее финансирование исследований предоставляется NIH, NSF, USDA и многочисленными частными фондами.

Новости структурной, биофизической и вычислительной биологии

Биологические строительные блоки | CancerQuest

Клетка — основная единица жизни.Все организмы состоят из одной или нескольких клеток. Как будет показано ниже, люди состоят из многих миллионов клеток. Чтобы понять, что происходит при раке, важно понимать, как работают нормальные клетки. Первый шаг — обсудить структуру и основные функции клеток.

Сначала мы познакомимся с общими строительными блоками ячеек. Все клетки, независимо от их функции или расположения в организме, имеют общие черты и процессы. Удивительно, но клетки почти полностью состоят всего из четырех основных типов молекул.Выше показана клетка, окруженная примерами этих молекул строительных блоков.

Поскольку они присутствуют в живых существах, эти строительные блоки называются биомолекулами. В следующих разделах описываются структуры и функции каждого из этих основных строительных блоков. Дополнительную информацию по темам на этой странице также можно найти в большинстве вводных учебников по биологии, мы рекомендуем «Биология Кэмпбелла», 11-е издание.

Углеводы

Первый класс биомолекул, который мы обсудим, — это углеводы.Эти молекулы состоят из элементов углерода (C), водорода (H) и кислорода (O). Обычно эти молекулы известны как сахара . Углеводы могут иметь размер от очень маленького до очень большого. Как и все другие биомолекулы, углеводы часто выстраиваются в длинные цепочки, связывая вместе более мелкие единицы. Это похоже на добавление бусин к браслету, чтобы сделать его длиннее. Общий термин для отдельного элемента или шарика — это мономер . Термин для длинной цепочки мономеров — это полимер .

Примеры углеводов включают сахара, содержащиеся в молоке (лактоза) и столовый сахар (сахароза). Ниже представлена ​​структура мономера сахара глюкозы, основного источника энергии для нашего тела.

Сфера Палка Поверхность Повернуть

Углеводы выполняют в клетках несколько функций. Они являются отличным источником энергии для множества различных процессов, происходящих в наших клетках. Некоторые углеводы могут иметь структурную функцию.Например, материал, который заставляет растения стоять высоко и придает древесине ее жесткие свойства, представляет собой полимерную форму глюкозы, известную как целлюлоза. Другие типы сахарных полимеров составляют запасенные формы энергии, известные как крахмал и гликоген. Крахмал содержится в растительных продуктах, таких как картофель, а гликоген — в животных. Ниже показана короткая молекула гликогена. Вы можете сами манипулировать молекулой, чтобы хорошо рассмотреть.

Палка Линия Заполнение пространства Повернуть

Углеводы необходимы клеткам для взаимодействия друг с другом.Они также помогают клеткам прилипать друг к другу и к материалу, окружающему клетки в организме. Способность организма защищаться от вторжения микробов и удаления инородных материалов из тела (например, улавливание пыли и пыльцы слизью в носу и горле) также зависит от свойств углеводов.

Узнайте больше о том, как доктор Майкл Пирс использует углеводы для исследования рака.

Белки

Как и углеводы, белки состоят из более мелких единиц.Мономеры, из которых состоят белки, называются аминокислотами . Существует около двадцати различных аминокислот. Структура простейшей аминокислоты, глицина, показана ниже.

Сфера Палка Повернуть

Белки выполняют множество функций в живых организмах, включая следующие:

  • Они помогают формировать многие структурные элементы тела, включая волосы, ногти и мышцы.Белки являются основным структурным компонентом клеток и клеточных мембран.
  • Они помогают транспортировать материалы через клеточные мембраны. Примером может служить захват глюкозы клетками из кровотока. Мы вернемся к этой важной способности, когда обсудим устойчивость раковых клеток к химиотерапевтическим агентам.
  • Они действуют как биологические катализаторы. Большая группа белков, известных как ферменты, способна ускорять химические реакции, необходимые для правильной работы клеток.Например, существует множество ферментов, которые участвуют в расщеплении пищи, которую мы едим, и обеспечении доступности питательных веществ.
  • Взаимодействия между клетками очень важны для поддержания организации и функционирования клеток и органов. Белки часто отвечают за поддержание контакта между соседними клетками и между клетками и их локальной средой. Хорошим примером может служить взаимодействие клеток: клетки, которые удерживают клетки нашей кожи вместе. Эти взаимодействия зависят от белков соседних клеток, которые плотно связываются друг с другом.Как мы увидим, изменения в этих взаимодействиях необходимы для развития метастатического рака.
  • Белки контролируют активность клеток, включая решения относительно деления клеток. Раковые клетки неизменно имеют дефекты в этих типах белков. Мы вернемся к этим белкам более подробно, когда будем говорить о регуляции деления клеток.
  • Многие гормоны, сигналы, которые проходят по телу и изменяют поведение клеток и органов, состоят из белка.Ниже показан инсулин, небольшой белковый гормон, регулирующий усвоение глюкозы из кровотока.

Заполнение пространства Лента Проволочная рама Повернуть

Липиды

Термин липид относится к широкому спектру биомолекул, включая жиры, масла, воски и стероидные гормоны. Независимо от их структуры, местоположения или функции в клетке / теле, все липиды имеют общие черты, которые позволяют группировать их вместе.

  • Не растворяются в воде; они гидрофобны.
  • Как и углеводы, они состоят в основном из углерода, водорода и кислорода.

Гидрофобная природа липидов обуславливает их множество применений в биологических системах. Жиры являются хорошим источником накопленной энергии, а масла и воски используются для образования защитных слоев на нашей коже, предотвращая заражение. Некоторые липиды, стероидные гормоны, являются важными регуляторами клеточной активности. Мы вернемся к этому во время обсуждения информационного потока в ячейках.Активность стероидных гормонов, таких как эстроген, связана с раком женской репродуктивной системы. Процедуры, основанные на этих знаниях, будут подробно обсуждаться в разделе лечения на сайте.

Заполнение пространства Палка Проволочная рама Повернуть

Изображенный выше пример триацилглицерина или жира. Три длинные цепи состоят только из углерода и водорода, что придает молекуле гидрофобные свойства.Когда вы читаете о содержании насыщенных и ненасыщенных жиров на этикетке пищевых продуктов, они имеют в виду различия в этих длинных углеводородных цепях.

Основная функция липидов — образование биологических мембран. Клетки окружены тонким слоем липидов. Слой состоит из липидов особого типа, которые обладают как гидрофобными, так и гидрофильными свойствами. Гидрофильные концы этих молекул обращены к заполненной водой среде внутри клеток и водной среде вне клеток.Внутри двух слоев существует гидрофобная область. Мембрана, окружающая клетки, богата белками и другими липидами, такими как холестерин.

Большинство химических веществ не могут проникать через липидный бислой. Вода и некоторые другие небольшие молекулы могут свободно проходить через мембрану, в то время как другие молекулы должны активно транспортироваться через белковые каналы, встроенные в мембрану. Мембраны также содержат комбинацию биомолекул, которые были описаны до сих пор. Как видно выше, белки могут быть связаны с углеводами с образованием гликопротеинов.Гликопротеины играют важную роль в клетке: клеточные взаимодействия обсуждались ранее, и изменения количества или типов этих белков наблюдаются при раке. Точно так же сочетание липидов и углеводов приводит к образованию гликолипидов.

Нуклеиновые кислоты

Вся информация, необходимая для управления и построения клеток, хранится в этих молекулах.

Существует два основных типа нуклеиновых кислот: дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК).Обе эти молекулы являются полимерами. Они состоят из мономерных субъединиц, подобных ранее описанным углеводам и белкам. Мономеры, используемые для создания нуклеиновых кислот, называются нуклеотидами. Нуклеотиды часто обозначаются однобуквенными аббревиатурами A, C, G, T и U. Как и все мономеры, описанные до сих пор, мономеры, используемые для построения ДНК, похожи друг на друга, но не совсем похожи. Одно из различий между ДНК и РНК — это подмножество нуклеотидов, используемых для создания полимеров.ДНК содержит A, C, G и T, в то время как РНК содержит A, C, G и U.

Дезоксирибонуклеиновая кислота (ДНК)

ДНК

состоит из двух длинных цепочек (полимеров) нуклеотидов, скрученных друг вокруг друга и образующих спиральную или спиральную структуру, показанную ниже. Скрученные молекулы расположены определенным образом, причем определенные нуклеотиды всегда находятся напротив друг друга. Нуклеотид, содержащий аденин (A), всегда соединяется с нуклеотидом, содержащим тимин (T).Точно так же гуанин (G) всегда соединяется с цитозином (C). Если вы внимательно посмотрите на график ниже, вы увидите, что пары нуклеотидов взаимодействуют в середине спирали. Полимеры, образующие ДНК, могут быть очень длинными, достигая миллионов нуклеотидов на каждую отдельную молекулу ДНК. На следующем рисунке изображена короткая цепь двухцепочечной ДНК.

Сфера Палка Поверхность Повернуть

ДНК

находится в ядре клетки, структура которой будет описана в следующем разделе сайта.Все ядерные клетки человеческого тела имеют одинаковое содержание ДНК независимо от их функции. Разница в том, какие части ДНК используются в той или иной клетке. Например, клетки печени содержат ту же ДНК, что и клетки, из которых состоят мышцы. Резко различающиеся активности этих двух типов клеток зависят от участков ДНК, которые активны в клетках. ДНК — это форма хранения генетической информации, которая действует как образец для клеток. Как мы увидим, изменения в последовательности ДНК могут приводить к изменениям в поведении клеток.Нерегулируемый рост, а также многие другие изменения, наблюдаемые при раке, в конечном итоге являются результатом мутаций, изменений в структуре ДНК.

Рибонуклеиновая кислота

Рибонуклеиновая кислота (РНК) во многом похожа на ДНК. Это полимер нуклеотидов, который несет информацию, содержащуюся в генах. Помимо некоторых химических различий между РНК и ДНК, существуют важные функциональные различия.

  • РНК копируется из ДНК в ядре, и большая часть ее отправляется в цитозоль.
  • РНК — это рабочая форма информации, хранящейся в ДНК.
  • РНК одноцепочечная, а не двухцепочечная

Информация, хранящаяся в ДНК, работает для клеток так же, как архитектор использует план. Конкретное производство РНК позволяет клетке использовать только те страницы «плана», которые требуются в любой конкретный момент. Очень важно производить правильные РНК в правильное время. При раке производство или регуляция определенных РНК не происходит должным образом.Точно так же, как неправильное прочтение чертежа приведет к возникновению дефектов в здании, неправильное производство РНК вызывает изменения в поведении клеток, которые могут привести к раку. Эта важная тема будет подробно рассмотрена в разделе, посвященном функции генов. Сначала мы исследуем более сложные формы биомолекул, а затем познакомимся с некоторыми ключевыми функциональными компонентами эукариотических клеток.

Комбинации

Теперь мы познакомились с основными классами биомолекул.

  • углеводы
  • липиды
  • белков
  • нуклеиновых кислот

Эти биомолекулы работают вместе, чтобы выполнять определенные функции и создавать важные структурные особенности клеток. Например, в разделе, посвященном липидам, мы впервые увидели схему мембраны ниже.

Помимо липидного бислоя, состоящего из липидов особого типа, мембрана содержит множество белков и сахаров. Как показано, белки и сахара могут быть объединены с образованием гликопротеинов.К липидам также можно добавлять сахара для образования гликолипидов.

Многие из белков, которые важны для развития и / или выявления рака, являются гликопротеинами. Например, диагностические тесты на рак простаты включают тестирование образцов крови на наличие гликопротеина, называемого специфическим антигеном простаты или ПСА. Рак яичников можно контролировать по продукции другого гликопротеина, называемого СА-125. CA означает связанный с раком.

Подробнее о тесте CA-125

Часто многие белки и другие биомолекулы соединяются вместе, образуя функциональные структуры в клетках.Далее мы исследуем некоторые из этих более сложных структур, называемых органеллами.

Резюме

Все живые существа, включая клетки, составляющие человеческое тело, состоят из небольшого подмножества различных биомолекул. Существует четыре основных класса, как описано ниже:

  1. Углеводы
    • Углеводы состоят из элементов углерода (C), водорода (H) и кислорода (O).
    • Сахар — это обычные углеводы.
    • Углеводы внутри клеток выполняют несколько функций:
      • Основной источник энергии
      • Обеспечить структуру
      • Связь
      • Клеточная адгезия
      • Защита от посторонних предметов и удаление посторонних предметов
  2. Белки
    • Белки состоят из аминокислот.
    • Белки в живых организмах выполняют несколько функций:
      • Структура волос, мышц, ногтей, компонентов клеток и клеточных мембран
      • Транспорт клеток
      • Биологические катализаторы или ферменты
      • Поддержание контакта ячейки
      • Контрольная активность клеток
      • Передача сигналов через гормоны
  3. Липиды
    • Широкий спектр биомолекул, включая жиры, масла, воски и стероидные гормоны.
    • Липиды не растворяются в воде (они гидрофобны) и в основном состоят из углерода (C), водорода (H) и кислорода (O).
    • Липиды в живых организмах выполняют несколько функций:
      • Образует биологические мембраны
      • Жиры могут храниться как источник энергии
      • Масла и воски обеспечивают защиту за счет покрытия участков, которые могут быть заражены микробами (например, кожа или уши)
      • Стероидные гормоны регулируют активность клеток, изменяя экспрессию генов
  4. Нуклеиновые кислоты
    • Вся информация, необходимая для управления и построения клеток, хранится в этих молекулах.
    • Нуклеиновые кислоты состоят из нуклеотидов, обозначенных аббревиатурой A, C, G, T и U.
    • Существует два основных типа нуклеиновых кислот, дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК):
      • ДНК
        • ДНК имеет структуру двойной спирали, состоящей из нуклеотидов A, C, G и T.
        • ДНК находится в ядре клетки.
        • ДНК — это форма хранения генетической информации.
      • РНК
        • РНК обычно одноцепочечная и состоит из нуклеотидов A, G, C и U.
        • РНК скопирована с ДНК и является рабочей формой информации.
        • РНК производится в ядре, а мРНК экспортируется в цитозоль.

Дополнительные биомолекулы могут быть получены путем объединения этих четырех типов. Например, многие белки модифицируются путем добавления углеводных цепей. Конечный продукт называется гликопротеином.

Если материал окажется для вас полезным, пожалуйста, сделайте ссылку на наш веб-сайт.

Структура клеток и вирусов


Введение в структуру клеток и вирусов

На первый взгляд лепесток цветка или кожа на тыльной стороне руки человека могут показаться гладкими и бесшовными, как если бы они состояли из единого нечеткого вещества. В действительности, однако, многие крошечные индивидуальные единицы, называемые клетками, составляют эти объекты и почти все другие компоненты растений и животных. В среднем человеческое тело содержит более 75 триллионов клеток, но многие формы жизни существуют в виде отдельных клеток, которые выполняют все функции, необходимые для независимого существования.Большинство клеток слишком малы, чтобы их можно было увидеть невооруженным глазом, и для тщательного исследования требуется использование мощных оптических и электронных микроскопов.

Относительный масштаб биологических организмов, а также полезный диапазон нескольких различных устройств обнаружения показаны на рисунке 1. Самый простой датчик изображения, глаз, был единственным средством, которым люди могли визуально наблюдать за миром вокруг себя в течение тысяч лет. . Хотя он отлично подходит для наблюдения за самыми разными объектами, сила глаза имеет свои пределы: все, что меньше ширины человеческого волоса, может пройти незамеченным для органа.Поэтому, когда в конце 1600-х годов были разработаны световые микроскопы с достаточным увеличением, был открыт целый новый мир крошечных чудес. Электронные микроскопы, изобретенные в середине двадцатого века, позволили обнаруживать даже более мелкие объекты, чем световые микроскопы, включая более мелкие молекулы, вирусы и ДНК. Однако способность обнаружения большинства электронных микроскопов, используемых сегодня, не позволяет визуализировать такие невероятно маленькие структуры, как электронные орбитальные системы отдельных атомов.Атомы считаются наименьшими единицами элемента, обладающими характеристиками этого элемента, но клетки — это наименьшие структурные единицы организма, способные функционировать независимо.

Тем не менее, до середины семнадцатого века ученые не знали, что клетки вообще существуют. Только в 1665 году биолог Роберт Гук в свой микроскоп заметил, что ткани растений делятся на крошечные отсеки, которые он назвал «целлюлами» или клетками. Однако прошло еще 175 лет, прежде чем ученые начали понимать истинную важность клеток.В своих исследованиях клеток растений и животных в начале девятнадцатого века немецкий ботаник Матиас Якоб Шлейден и немецкий зоолог Теодор Шванн признали фундаментальное сходство между двумя типами клеток. В 1839 году они предположили, что все живые существа состоят из клеток, и эта теория положила начало современной биологии.

С тех пор биологи многое узнали о клетке и ее частях; из чего он сделан, как функционирует, как растет и как воспроизводится.Неизвестный вопрос, который все еще активно исследуется, заключается в том, как развивались клетки, то есть как живые клетки произошли из неживых химических веществ.

Многочисленные научные дисциплины: физика, геология, химия и эволюционная биология используются для исследования вопроса клеточной эволюции. Одна из теорий предполагает, что вещества, выбрасываемые в воздух в результате извержений вулканов, подвергались бомбардировке молнией и ультрафиолетовым излучением, производя более крупные и более стабильные молекулы, такие как аминокислоты и нуклеиновые кислоты.Дождь перенес эти молекулы на поверхность Земли, где они образовали изначальный суп из строительных блоков клетки.

Вторая теория предполагает, что клеточные строительные блоки формировались в глубоководных гидротермальных источниках, а не в лужах или озерах на поверхности Земли. Третья теория предполагает, что эти ключевые химические вещества упали на Землю с метеоритами из космоса.

Учитывая основные строительные блоки и подходящие условия, казалось бы, начало формирования клеток — лишь вопрос времени.В лаборатории наблюдали, как молекулы липидов (жиров) соединяются вместе, образуя сферы, похожие на плазматическую мембрану клетки. Возможно, через миллионы лет случайные столкновения липидных сфер с простыми нуклеиновыми кислотами, такими как РНК, неизбежно приведут к появлению первых примитивных клеток, способных к самовоспроизведению.

Несмотря на все, что было изучено о клетках за более чем 300 лет, и вряд ли последнее из них — открытие генетической наследственности и ДНК, клеточная биология по-прежнему остается интересной областью исследований.Одним из недавних дополнений является исследование того, как физические силы внутри клетки взаимодействуют, чтобы сформировать стабильную биомеханическую архитектуру. Это называется «тенсегрити» (сокращение от «целостность напряжения»), понятие и слово, первоначально придуманное Бакминстером Фуллером. Это слово относится к конструкциям, которые являются механически стабильными, потому что напряжения распределяются и уравновешиваются по всей конструкции, а не потому, что отдельные компоненты обладают большой прочностью.

В сфере живых клеток тенсегрити помогает объяснить, как клетки выдерживают физические нагрузки, как на них влияют движения органелл и как изменение цитоскелета инициирует биохимические реакции или даже влияет на действие генов.Когда-нибудь тенсегрити может даже объяснить механические правила, которые заставили молекулы собираться в первые клетки.

Клетки животных — Клетки животных являются типичными клетками эукариотического типа, заключенными в плазматическую мембрану и содержащими связанные с мембраной ядро ​​и органеллы.

Бактерии — одна из самых ранних прокариотических клеток, которая эволюционировала, бактерии существуют уже не менее 3,5 миллиардов лет и живут почти во всех мыслимых условиях.

Растительные клетки — Основная растительная клетка имеет конструкцию, аналогичную животной клетке, но не имеет центриолей, лизосом, ресничек или жгутиков. У него есть дополнительные структуры, в том числе жесткая клеточная стенка, центральная вакуоль, плазмодесматы и хлоропласты.

Структура вируса — Вирусы не являются живыми в строгом смысле этого слова, но воспроизводятся и имеют тесные, если паразитические, отношения со всеми живыми организмами.

Клетки в движении — В многоклеточных тканях, например, в тканях животных и людей, отдельные клетки используют различные механизмы передвижения, чтобы маневрировать в пространствах внеклеточного матрикса и поверх поверхностей других клеток.Примерами являются быстрое перемещение клеток в развивающихся эмбрионах, распространение злокачественных раковых клеток от одного органа к другому и миграция нервных аксонов к синаптическим мишеням. В отличие от одноклеточных плавающих организмов, ползающие клетки в культуре не обладают ресничками или жгутиками, но имеют тенденцию перемещаться посредством скоординированной проекции цитоплазмы в повторяющихся циклах растяжения и ретракции, которые деформируют всю клетку. Цифровые видеоролики, представленные в этой галерее, исследуют паттерны подвижности клеток животных у самых разных морфологически различных образцов.

Флуоресцентная микроскопия клеток в культуре — Серьезные попытки культивирования целых тканей и изолированных клеток были впервые предприняты в начале 1900-х годов как метод исследования поведения клеток животных в изолированной и строго контролируемой среде. Термин культура ткани возник потому, что большинство ранних клеток было получено из первичных тканевых эксплантатов, метод, который доминировал в этой области более 50 лет. По мере появления установленных клеточных линий применение четко определенных нормальных и трансформированных клеток в биомедицинских исследованиях стало важным элементом развития клеточной и молекулярной биологии.В этой галерее флуоресцентных изображений исследуется более 30 наиболее распространенных клеточных линий, меченных различными флуорофорами с использованием как традиционных методов окрашивания, так и методов иммунофлуоресценции.

Наблюдение митоза с помощью флуоресцентной микроскопии — Митоз, явление, наблюдаемое у всех высших эукариот, представляет собой механизм, который позволяет ядрам клеток расщепляться и обеспечивать каждую дочернюю клетку полным набором хромосом во время клеточного деления. Это, в сочетании с цитокинезом (деление цитоплазмы), происходит у всех многоклеточных растений и животных, обеспечивая рост организма.Цифровая визуализация с помощью флуоресцентной микроскопии становится мощным инструментом, помогающим ученым понять сложный процесс митоза как на структурном, так и на функциональном уровне.

Mitosis Java Tutorial — Изучите стадии митоза в эукариотических клетках с помощью этого интерактивного руководства по Java. Шагайте через профазу, метафазу, анафазу и телофазу, пока хромосомы медленно конденсируются, выравниваются и делятся, прежде чем разделиться на дочерние клетки.

Переваривание клеток и секреторный путь — Первичные участки внутриклеточного переваривания — это органеллы, известные как лизосомы, которые представляют собой связанные с мембраной компартменты, содержащие множество гидролитических ферментов.Лизосомы поддерживают внутреннюю кислую среду за счет использования водородного ионного насоса в лизосомной мембране, который перемещает ионы из цитоплазмы в просвет органелл. Высокая внутренняя кислотность необходима для того, чтобы ферменты, содержащиеся в лизосомах, проявляли свою оптимальную активность. Следовательно, если целостность лизосомальной мембраны нарушена и ферментативное содержимое просачивается в клетку, это мало повреждает из-за нейтрального pH цитоплазмы. Однако, если несколько лизосом разрываются одновременно, кумулятивное действие их ферментов может привести к самоперевариванию и гибели клетки.

НАЗАД НА ГЛАВНУЮ СТРАНИЦУ МОЛЕКУЛЯРНЫХ ВЫРАЖЕНИЙ

Вопросы или комментарии? Отправить нам письмо.
© 1995-2021, автор — Майкл В. Дэвидсон и Государственный университет Флориды. Все права защищены. Никакие изображения, графика, программное обеспечение, сценарии или апплеты не могут быть воспроизведены или использованы каким-либо образом без разрешения правообладателей. Использование этого веб-сайта означает, что вы соглашаетесь со всеми юридическими положениями и условиями, изложенными владельцами.
Этот веб-сайт обслуживается нашим

Команда разработчиков графики и веб-программирования
в сотрудничестве с оптической микроскопией в Национальной лаборатории сильного магнитного поля
.
Последнее изменение: пятница, 13 ноября 2015 г., 14:18
Счетчик доступа с 1 октября 2000 г .: 1804862
Микроскопы предоставлены:
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *