Содержание

Клетка: строение, химический состав и жизнедеятельность

Скорость воспроизведения

05:30

Клетка — это структурно-функциональная единица как растительных, так и животных организмов.

Клетка способна к делению и обмену с окружающей средой. Она осуществляет передачу генетической информации путем самовоспроизведения. Цитология — наука, изучающая клетки. Клетки очень разнообразны по строению, функции, форме, размерам. Клетки состоят из органических (липиды, углеводы, белки и нуклеиновые кислоты) и неорганических веществ (вода и минеральные вещества).

Клетка: строение, химический состав и жизнедеятельность Пройти тест

Следующие уроки

02:59

04:22

05:46

04:03

ее строение, химический состав и жизнедеятельность 8 класс

Тест по биологии Клетка: ее строение, химический состав и жизнедеятельность 8 класс с ответами. Тест включает два варианта, в каждом по 7 вопросов и заданий трех уровней сложности.

Вариант 1

A1. Что происходит под действием ферментов?

1) разрушение клеток
2) синтез и распад веществ в клетке
3) деление клеток
4) сокращение клеток

А2. Как называются постоянные части клетки, расположенные в цитоплазме, каждая из которых выполняет свои особые функции?

1) органоиды
2) мембраны
3) митохондрии
4) рибосомы

А3. В чем заключена наследственная информация организма?

1) в мембране
2) в цитоплазме
3) в ядре
4) в генах

А4. Где органические вещества подвергаются биологическому окислению?

1) в цитоплазме
2) в рибосомах
3) в митохондриях
4) в мембранах

B1. Закончите предложение.

У большей части всех клеток есть три главные составные части — это мембрана, ядро и __________.

В2. Каким образом реагируют на раздражение мышечные клетки?

C1. Как осуществляется обмен веществ между клеткой и внешней средой?

Вариант 2

A1. Какую форму имеют клетки?

1) круглую

2) квадратную
3) овальную
4) разнообразную

А2. Где располагаются хромосомы?

1) в мембране
2) в ядре
3) в молекуле ДНК
4) в цитоплазме

А3. Клетка получает кислород, воду, питательные вещества и удаляет продукты обмена через

1) ядро
2) ядрышко
3) мембрану
4) цитоплазму

А4. Как называется вещество, способное в тысячи раз ускорять реакцию?

1) хромосома
2) катализатор
3) органоид
4) митохондрия

B1. Как называется способность клетки отвечать на раздражение специфической реакцией, определенной ее наследственностью?

В2. Где в клетке содержатся гены?

C1. Для чего служит эндоплазматическая сеть?

Ответы на тест по биологии Клетка: ее строение, химический состав и жизнедеятельность 8 класс


Вариант 1
А1-2
А2-1
А3-4
А4-3
В1. Цитоплазма
В2. Сокращаются
Вариант 2
А1-4
А2-2
А3-3
А4-2
В1. Возбудимость
В2. В хромосомах

Клетка – основа строения, жизнедеятельности и развития организмов. Строение, химический состав, жизненные свойства клетки.

Гурная Татьяна Владимировна

учитель биологии МОАУ «СОШ №11 г. Орска»

Предмет Биология

Класс 8

УМК Биология : 8 класс : учебник для учащихся общеобразовательных учреждений / Драгомилов А.Г., Маш Р.Д.: — 3-е изд., переработ. — М.: Вентана-Граф, 2012. — 272 с.: ил.

Уровень обучения базовый

Тема урока:

Клетка – основа строения, жизнедеятельности и развития организмов. Строение, химический состав, жизненные свойства клетки.

Общее количество часов, отведенное на изучение темы

1

Место урока в системе уроков по теме 1

Цель урока

Создание условий для формирования научного мировоззрения у учащихся о клетке как структурной единице организма человека, ее строении и процессах жизнедеятельности.

Задачи урока

  • организовать познавательную деятельность учащихся по изучению строении клеток организма человека и процессах их жизнедеятельности;

  • воспитывать в учащихся уверенности в своих силах посредствам углубления знаний по предмету;

  • формировать умения работать с текстом, самостоятельно добывать информацию, выделять главное;

  • развивать навыки работы в группах.

Планируемые результаты

  • освоение знаний о клеточном строении организма человека.

  • овладение умениями применять биологические знания для объяснения процессов и явлений живой природы, жизнедеятельности собственного организма; использовать информацию о современных достижениях в области цитологии; работать с дополнительными источниками информации.

  • развитие познавательных интересов, интеллектуальных и творческих способностей в процессе работы с различными источниками информации;

  • воспитание позитивного ценностного отношения к собственному здоровью и здоровью других людей;

  • иcпользование приобретенных знаний и умений в повседневной жизни для заботы о собственном здоровье; оценки последствий своей деятельности по отношению к собственному организму, здоровью других людей.

Техническое обеспечение урока

Телевизор Samsung CS 21z45zQQ

Ноутбук ASUS

Дополнительное методическое и дидактическое обеспечение урока

Карточки для проведения работы в группах. (Приложение 1)

Презентация

Портреты ученых: Роберт Гук, Антони ван Левенгук, Маттиас Шлейден, Теодор Шванн, Рудольф Вирхов.

Тип урока

Урок ознакомления с новым материалом.

Содержание урока

Оргмомент. Учитель приветствует обучающихся. Проверяет готовность класса к уроку. Психологически настраивает на работу «Подари улыбку».

На цветной бумаги нарисованы красивые улыбающиеся мордашки.

Учитель. Улыбка ничего не стоит, но много дает. Она обогащает тех, кто ее получает, не обедняя при этом тех, кто ею одаривает. Она длится мгновение, а в памяти остается порой навсегда. Она создает счастье в доме, порождает атмосферу доброжелательности в деловых взаимоотношениях и служит паролем для друзей. Подарите друг другу улыбку. Улыбайтесь, и вы будете нравиться людям. (Вместе с улыбкой дети обмениваются картинками.

)

Актуализация знаний обучающихся

Проверка знаний. Фронтальный опрос.

1.Раскройте понятия:

2. Назовите признаки человека, позволяющие отнести его к подтипу позвоночных животных.

3. Укажите признаки, определяющие положение человека в классе млекопитающих.

4. Какие признаки являются общими для человека и человекообразных обезьян?

5. Перечислите особенности строения, присущие только человеку.

Мотивационный этап

Сообщение учащегося «История развития цитологии». (Слайд №3)

Цитология– раздел биологии, изучающий живые клетки, их органоиды, их строение, функционирование, процессы клеточного размножения, старения и смерти.

Термин «клетка» впервые употребил Роберт Гук в 1665 году, при описании своих «исследований строения пробки с помощью увеличительных линз». В 1674 году Антони ван Левенгук установил, что вещество, находящееся внутри клетки, определенным образом организовано. Он первым обнаружил клеточные ядра. На этом уровне представление о клетке просуществовало ещё более 100 лет.

Изучение клетки ускорилось в 1830-х годах, когда появились усовершенствованные микроскопы. В 1838—1839 ботаник Маттиас Шлейден и анатом Теодор Шванн практически одновременно выдвинули идею клеточного строения организма. Т. Шванн предложил термин «клеточная теория» и представил эту теорию научному сообществу. Возникновение цитологии тесно связано с созданием клеточной теории — самого широкого и фундаментального из всех биологических обобщений. Согласно клеточной теории, все растения и животные состоят из сходных единиц — клеток, каждая из которых обладает всеми свойствами живого.

Важнейшим дополнением клеточной теории явилось утверждение знаменитого немецкого натуралиста Рудольфа Вирхова, что каждая клетка образуется в результате деления другой клетки.

Учитель. Ребята, из курса ботаники и зоологии вам известно строение растительной и животной клеток. Тело человека образовано огромным количеством клеток, которые по строению и составу сходны с клетками животного организма.

Учитель озвучивает тему урока.

Обучающиеся записывают тему урока в тетрадь.

Этап ознакомления с новым материалом

Работа в группах. Класс делится на три группы. Обучающиеся получают карточки с заданием.

(Слайд№ 4)

Перед началом работы вспоминаем правила работы в группе:

-Говорим вежливо;

— Говорим по очереди, не перебивая друг друга;

— Внимательно слушаем;

— Если непонятно, переспросите партнера;

— Четко высказываем свое мнение;

— Соблюдаем порядок на парте;

— Уважаем мнение собеседника.

1 группа

Используя материал учебника (§3.стр.15-16), выполните задания:

  1. Назовите основные части клетки и объясните их назначение.

  2. Изучите строение клетки. Заполните таблицу.

2 группа

Используя материал учебника (§3.стр.16-17), выполните задания:

  1. Из каких основных веществ состоит клетка?

  2. Изучите химический состав клетки. Заполните таблицу.

3 группа

Используя материал учебника (§3.стр.17-19), выполните задания:

  1. Какими свойствами обладает клетка?

  2. Изучите жизнедеятельность и размножение клеток. Заполните таблицу.

Групповая работа по изучению нового материала.

Обучающиеся распределяют информационные ресурсы между собой, обсуждают информацию, выделяют главное, совместно выполняют работу.

Учитель наблюдает и корректирует работу группы и отдельных обучащихся.

Взаимная проверка и контроль за выполнением задания в группе.

Сообщение учащихся по вызову учителя о полученных результатах, общая дискуссия в классе под руководством учителя, дополнение и исправление, дополнительная информация учителя и формулировка окончательных выводов.

Объединение информации. Заполнение таблиц в рабочей тетради. (слайды №5, №6, №7)

Этап первичного осмысления и закрепления связей и отношений в объектах изучения

1. Каким понятиям соответствуют свойства клеток:

  • Увеличение размеров и массы клетки. (рост)

  • Воспроизведение себе подобных путем деления клетки пополам. (размножение)

  • Созревание в результате которого клетка специализируется. (развитие)

  • Совокупность химических превращений (расщепление, синтез), обеспечивающих рост, жизнедеятельность клетки и обмен веществ с окружающей средой. (обмен веществ)

  • Способность реагировать на различные раздражители окружающей среды деятельностью. (возбудимость)

2. Может ли клетка функционировать без воды? Ответ объясните.

3. Какую роль в клетке выполняют молекулы АТФ

4. Чем отличается рост от развития?

Этап. Постановка задания на дом.

Изучить текст из учебника§3. стр.15-20 ; ответить на вопросы 1-9 стр.19-20 (устно).

Этап подведения итогов урока.

Индивидуальная оценка работы групп и класса в целом.

Рефлексия «БЛАГОДАРЮ»

Учитель. Ребята, предлагаю каждому из вас выбрать только одного из одноклассников, кому хочется сказать спасибо за сотрудничество и пояснить, в чем именно это сотрудничество проявилось.

Обучающиеся называют одноклассников, аргументируя свой выбор.

Учитель. Благодарю вас за работу на уроке.

3. Строение клетки. Клеточные органоиды

Ядрышко представляет собой плотное округлое тело внутри ядра. Обычно в ядре клетки бывает от одного до семи ядрышек. Они хорошо видны между делениями клетки, а во время деления — разрушаются.
 


Функция ядрышек — синтез РНК и белков, из которых формируются особые органоиды — рибосомы.


Рибосомы участвуют в биосинтезе белка. В цитоплазме рибосомы чаще всего расположены на шероховатой эндоплазматической сети. Реже они свободно взвешены в цитоплазме клетки.

 

Эндоплазматическая сеть (ЭПС) участвует в синтезе белков клетки и транспортировке веществ внутри клетки.

 

 

Значительная часть синтезируемых клеткой веществ (белков, жиров, углеводов) не расходуется сразу, а по каналам ЭПС поступает для хранения в особые полости, уложенные своеобразными стопками, «цистернами», и отграниченные от цитоплазмы мембраной. Эти полости получили название аппарат (комплекс) Гольджи. Чаще всего цистерны аппарата Гольджи расположены вблизи от ядра клетки.


Аппарат Гольджи принимает участие в преобразовании белков клетки и синтезирует лизосомы — пищеварительные органеллы клетки.


Лизосомы представляют собой пищеварительные ферменты, «упаковываются» в мембранные пузырьки, отпочковываются и разносятся по цитоплазме.


В комплексе Гольджи также накапливаются вещества, которые клетка синтезирует для нужд всего организма и которые выводятся из клетки наружу.

 

Митохондрии — энергетические органоиды клеток. Они преобразуют питательные вещества в энергию (АТФ), участвуют в дыхании клетки.

 

Митохондрии покрыты двумя мембранами: наружная мембрана гладкая, а внутренняя имеет многочисленные складки и выступы — кристы.

 

 

В мембрану крист встроены ферменты, синтезирующие за счёт энергии питательных веществ, поглощённых клеткой, молекулы аденозинтрифосфата (АТФ).
АТФ — это универсальный источник энергии для всех процессов, происходящих в клетке.


Количество митохондрий в клетках различных живых существ и тканей неодинаково.
Например, в сперматозоидах может быть всего одна митохондрия. Зато в клетках тканей, где велики энергетические затраты (в клетках летательных мышц у птиц, в клетках печени), этих органоидов бывает до нескольких тысяч.

Митохондрии имеют собственную ДНК и могут самостоятельно размножаться (перед делением клетки число митохондрий в ней возрастает так, чтобы их хватило на две клетки).

Митохондрии содержатся во всех эукариотических клетках, а вот в прокариотических клетках их нет. Этот факт, а также наличие в митохондриях ДНК позволило учёным выдвинуть гипотезу о том, что предки митохондрий когда-то были свободноживущими существами, напоминающими бактерии. Со временем они поселились в клетках других организмов, возможно, паразитируя в них. А затем за многие миллионы лет превратились в важнейшие органоиды, без которых ни одна эукариотическая клетка не может существовать.

Плазматическая мембрана

Клетка, ее строение, химический состав и жизнедеятельность

Работа 6.

1. Нарисуйте схемы животной и растительной клеток, видимых под оптическим микроскопом. Укажите на рисунках клеточную оболочку, клеточную мембрану, ядро, цитоплазму, пластиды (где они есть).


Работа 7. Заполните таблицу.

Химический состав клетки
Органические веществаМинеральные вещества
белки, жиры, углеводы, нуклеиновые кислоты вода, минеральные соли

Работа 8. Напишите названия клеточных структур, видимых под электронным микроскопом, соответствующие цифрам на рисунке.


Работа 9. Изобразите схему обмена веществ в клетке.

Клетка потребляетКлетка образуетКлетка выделяет
питательные вещества и кислород расщепляет сложные вещества до простых (выделение энергии) и простые до сложных (затрата энергии) вода, углекислый газ, мочевина и др.

Работа 10. Проведите опыт разложения пероксида водорода ферментом каталазой (или пероксидазой клубня картофеля). Любой фермент — это белок. Если сварить картошку — белок свернется. Сделайте вывод, потеряет ли фермент активность после этого.

Свойства фермента напрямую зависят от его структуры. При сворачивании его структура нарушается и он теряет свои способности.


Работа 11. В некоторых стираьных порошках содержатся ферментные добавки, расщепляющие жиры и белки. Почему не рекомендуется использовать эти порошки для кипячения воды?

Все ферменты — это белки. При кипячении белки сворачиваются и теряют свои функции.


Работа 12. Пользуясь учебником, заполните таблицу.

ОрганиодыФункции
1. Клеточная мембрана функция «таможни». Пропускает в клетку одни вещества, а выпскает другие
2. Эндоплазматическая сеть направляет потоки вещества внутри клеток
3. Митохондрии биологическое окисление органических веществ, выделение энергии
4. Рибосомы синтез белков
5. Хромосомы ядра хранение наследственной информацией

Работа 13. Вставьте, где нужно, слово — рост или развитие.

Увеличение размеров и массы клеток называется рост.

Процесс созревания клетки называется развитие.

Обычно каждый жизненный цикл начинается с рождения и заканчивается гибелью

Решебкин.ру — готовые домашние задания

Наши школьники загружены учебой так, как их родителям и не снилось. Современные технологии дают детям возможность получать гораздо больше информации. Но получить и усвоить – разные вещи. Поэтому помощь в работе, своевременная подсказка или разъяснение никогда не будут лишними. Здесь каждый выбирает то, что ему больше подходит – дополнительные факультативные занятия, самостоятельное штудирование материала, походы к репетиторам или сборники с ГДЗ. На нашем сайте вы сможете найти решебники ко всем предметам, которые детям предстоит изучить с начала школы и до ее окончания. Самые простые, на первый взгляд, дисциплины и предметы, требующие знания сложных формул – здесь есть все, что необходимо для полноценного усвоения школьной программы.

Решебники с готовыми ответами, наверное, самые популярные среди учеников пособия. Они составлены специалистами, работающими в сфере образования и точно знающими, как должен быть сформулирован ответ на любой вопрос. К главным преимуществам ГДЗ можно отнести их форму и формат: сборники представлены в электронном виде, доступны всегда и с любого устройства, все задания расписаны понятно и лаконично, без лишней информации, которая может только запутать школьника.

При работе с решебниками важно соблюдать правила их использования. Готовые ответы не предназначены для списывания, как могут подумать некоторые ученики. Их основное назначение – возможность проверить правильность самостоятельно сделанного задания, что дает шанс не только на оперативное исправление ошибок, но и показывает, какую из тем придется подучить. Такой подход позволяет эффективно справляться с домашней работой, регулярно повторять и систематизировать уже полученные знания, находить ответы на самые сложные вопросы.

Решебники с готовыми ответами – это отличное подспорье и для родителей. Не секрет, что в начальной школе именно на них ложится груз ответственности по выполнению домашки по всем предметам. Ребенка нужно организовать, настроить на занятия и попытаться внятно объяснить материал. Но сегодняшняя учебная программа в корне отличается от той, по которой когда-то занимались взрослые. Изменились и требования к правилам оформления ответов в тетрадях. С ГДЗ родителям не придется тратить на выполнение домашней работы по любому предмету время, а главное нервы. Подсказки в виде готовых ответов помогут быстро и доступно разъяснить ребенку, как необходимо выполнять задания или за несколько минут проверить уже сделанную работу.

Другие плюсы решебников:

  1. Возможность найти ответ на вопрос любого уровня сложности.
  2. Помимо текстовых ответов здесь есть все необходимые иллюстрации, схемы и графики.
  3. Помощь в самостоятельном разборе сложных или пропущенных тем.
  4. Каждое задание дополнено краткими разъяснениями, которые помогают детям понять принцип выполнения заданий.
  5. ГДЗ полностью соответствуют печатным изданиям и своевременно редактируются, что полностью исключает несоответствия в заданиях и ответах.

На нашем сайте вы найдете самую полную базу решебников с готовыми ответами к учебникам, рабочим тетрадям и другим дидактическим пособиям разных авторов. Указатели по классам и предметам, а также продуманная навигация позволят быстро и качественно справиться с любым зданием.

строение, химический состав и жизнедеятельность

Вспомните:

1. Вопрос

Что общего в строении всех живых организмов?

Ответ:

Общим в строении всех живых организмов является клетка — элементарная биологическая единица, структурно — функциональная основа всего живого. Клетка осуществляет самостоятельный обмен веществ, способна к делению (воспроизводству) и саморегуляции. Каждая клетка является микроносителем жизни, поскольку в ней заключена такая генетическая информация, которая достаточна для воспроизведения всего организма.

2. Вопрос

Чем животные клетки отличаются от растительных?

Ответ:

Особенность строения растительной клетки:

— есть пластиды;

— присутствует прочная целлюлозная оболочка;

— автотрофный тип питания, запасной углевод — крахмал;

— синтез макроэргических соединений, который происходит в хлоропластах и митохондриях;

— наличие крупных вакуолей;

— ядерный центр присутствует только у низших растений;

— минеральные соли находятся в виде кристаллов (включений).

Особенность строения животной клетки:

— пластиды отсутствуют;

— непрочная клеточная оболочка, которая называется гликокаликсом;

— гетеротрофный тип питания, запасной углевод — гликоген;

— синтез макроэргических соединений (атф) осуществляется исключительно в митохондриях;

— вакуоли только мелкие, крупные отсутствуют;

— ядерный центр есть у всех эукариот;

— минеральные соли растворены в цитоплазме.

1. Вопрос

Назовите основные части клетки и объясните их назначение.

Ответ:

Основные части клетки: цитоплазма и ядро.

Важнейшая роль бесцветной полужидкой цитоплазмы — объединение всех клеточных структур (компонентов) и обеспечение их химического взаимодействия. Она выполняет и другие функции, в частности, поддерживает тургор клетки.

В ядре содержатся одно или несколько ядрышек, которые, в свою очередь, синтезируют белок и структуры рнк, так же в ядре находятся хромосомы. Они содержат гены, определяющие наследственность организма

2. Вопрос

Какую функцию выполняют клеточные органоиды? Заполните таблицу в рабочей тетради.

3. Вопрос

Из каких основных веществ состоит клетка?

Ответ:

Клетка состоит из неорганических и органических веществ.

Неорганические вещества — это вода и минеральные соли. Особенностью клеток живых организмов является наличие органических веществ. Наиболее важные из них — белки, жиры, углеводы и нуклеиновые, кислоты (дезоксирибонуклеиновая кислота — днк и рибонуклеиновая кислота — рнк). Белки, жиры и углеводы — основной строительный материал цитоплазмы, ядра и органоидов.

4. Вопрос

Может ли клетка функционировать без воды? Ответ объясните.

Ответ:

Основное содержимое клетки это цитоплазма с органоидами. Основное вещество цитоплазмы — вода. Многие вещества цитоплазмы: минеральные соли, глюкоза, аминокислоты образуют истинный раствор, белки — коллоидный. Цитоплазма постоянно движется, перетекает внутри живой клетки, перемещая вместе с собой различные вещества, включения и органоиды.

Если клетку лишить воды, то цитоплазма перестанет существовать, что приведет к гибели клетки.

5*. Вопрос

Прочитайте в приложении текст «о ферментах*. Выполните описанные там опыты и объясните, почему вареный картофельный клубень не способен разложить пероксид водорода. Ответьте на вопрос: стоит ли кипятить белье в мыльном порошке, содержащем ферменты? Поясните ответ.

Ответ:

Вареный клубень картофеля не способен разложить пероксид водорода потому, что фермент каталаза, разлагающий пероксид водорода — это белок, который при кипячении утрачивает свою силу вследствии денатурации.

Ферменты — это белки, которые при высокой температуре подвергаются процессу денатурации — разрушения, и теряют свою эффективность. На пачках мыльного стирального порошка содержащего специальные вещества — ферменты расщепляющие жиры и очищающие ткань от жирных загрязнений, всегда указана температура воды для стирки.

6*. Вопрос

Какими свойствами обладает клетка? Из каких процессов складывается происходящий в ней обмен веществ? В чем проявляется возбудимость клетки?

Ответ:

К общим свойствам клеток организма, поддающимся объективной регистрации и обуславливающим их функции, относят:

— раздражимость — способность клетки отвечать на раздражитель физической, химической или электрической природы;

— возбудимость — способность клетки отвечать реакцией возбуждения на действие раздражителя;

— проводимость — волна возбуждения, распространяющаяся по клеточной поверхности от места действия раздражителя;

— сократимость — укорочение клетки в ответ на раздражение;

— поглощение и усвоение — способность клетки поглощать и использовать питательные вещества с ее поверхности;

— секрецию — способность клетки синтезировать новые вещества и выделять их для использования другими клетками организма;

— экскрецию — способность клетки выделять через свою поверхность конечные продукты метаболизма — чужеродные вещества, остатки клеточных органелл;

— дыхание — способность окислять пищевые вещества, высвобождая из них энергию,

Рост — увеличение массы;

— размножение — воспроизводство подобных клеток.

Обмен веществ между клеткой и внешней средой происходит через кровь и идет постоянно. Кровь приносит к клетке различные питательные вещества, кислород. Из этих питательных веществ образуются более сложные органические вещества (белки, жиры, углеводы) — клетка растет, а затем делится (размножается). Энергия, освободившаяся в результате биологического окисления органических веществ, идет на синтез молекул атф, а затем используется по мере надобности. Продукты распада и окисления органических веществ — более простые органические и неорганические соединения (вода, углекислый газ, мочевина и др.) — выводятся из клетки, а затем из организма.

Клетка обладает возбудимостью, т. е. Способностью реагировать на различные раздражители деятельностью, определенной наследственностью. При возбуждении мышечные клетки сокращаются, железистые клетки выделяют различные жидкости, например пот, слюну или желудочный сок, нервные клетки вырабатывают нервные импульсы — электрохимические сигналы, регулирующие работу органов.

7. Вопрос

Какую роль выполняют молекулы атф?

Ответ:

При расщеплении молекулы атф выделяется энергия необходимая для осуществления жизненных функций в клетке. Синтез атф осуществляется главным образом в митохондриях (животная клетка) и хлоропластах (растительная клетка). Образовавшаяся атф направляется в те участки клетки, где возникает потребность в энергии. Атф — это главный универсальный поставщик энергии в клетках всех живых организмов.

8. Вопрос

Как происходит деление клетки?

Ответ:

Деление клетки начинается с расхождения центриолей — двух особых телец клеточного центра к разным полюсам клетки. От каждой из них отходят нити веретена деления. Хромосомы скручиваются в спираль. Ядерная оболочка исчезает, и хромосомы оказываются в цитоплазме, выстраиваясь у экватора. К парным хромосомам подходят нити веретена деления, соединяя каждую хромосому пары со своей центриолью. Когда хромосомы начинают расходиться, каждая из них направляется к своей центриоли. В образующихся при этом дочерних клетках оказывается по 46 хромосом, причем каждая дочерняя клетка получает одинаковые молекулы днк, а следовательно, и одинаковые гены. После расхождения хромосомы раскручиваются. Наряду с расхождением хромосом происходит деление органоидов цитоплазмы и синтез новых структур. В результате образуется ядерная оболочка в каждой из дочерних клеток, цитоплазма перешнуровывается, и вокруг каждой из только что образованных клеток возникает клеточная мембрана. Каждая образовавшаяся клетка растет и развивается.

9. Вопрос

Чем отличается рост от развития?

Ответ:

Рост клетки — это увеличение ее размеров и массы;

Развитие клетки — это процесс ее созревания, в результате которого клетка специализируется, становится способной совершать свойственную ей работу (функцию): сокращаться, выделять сок и др.

сот | Определение, типы, функции, диаграмма, деление, теория и факты

Рассмотрим, как одноклеточный организм содержит необходимые структуры для питания, роста и воспроизводства.

Клетки — это основные единицы жизни.

Encyclopædia Britannica, Inc. Смотрите все видео для этой статьи

клетка , в биологии, основная мембраносвязанная единица, которая содержит основные молекулы жизни и из которых состоит все живое. Одна клетка сама по себе часто является целостным организмом, например бактерией или дрожжами.По мере созревания другие клетки приобретают особые функции. Эти клетки взаимодействуют с другими специализированными клетками и становятся строительными блоками больших многоклеточных организмов, таких как люди и другие животные. Хотя клетки намного больше атомов, они все же очень маленькие. Самые маленькие из известных клеток — это группа крошечных бактерий, называемых микоплазмами; некоторые из этих одноклеточных организмов представляют собой сферы диаметром всего 0,2 мкм (1 мкм = примерно 0,000039 дюйма) с общей массой 10 -14 грамм, что равно 8 000 000 000 атомов водорода.Клетки человека обычно имеют массу в 400 000 раз больше, чем масса отдельной бактерии микоплазмы, но даже человеческие клетки имеют только около 20 мкм в поперечнике. Для того, чтобы закрыть булавочную головку, потребуется лист из примерно 10 000 человеческих клеток, а каждый человеческий организм состоит из более чем 30 000 000 000 000 клеток.

животная клетка

Основные структуры животной клетки Цитоплазма окружает специализированные структуры клетки, или органеллы. Рибосомы, места синтеза белка, находятся в цитоплазме в свободном состоянии или прикреплены к эндоплазматическому ретикулуму, через который материалы транспортируются по клетке.Энергия, необходимая клетке, выделяется митохондриями. Комплекс Гольджи, стопки сплющенных мешочков, обрабатывает и упаковывает материалы, которые должны высвобождаться из клетки в секреторные пузырьки. Пищеварительные ферменты содержатся в лизосомах. Пероксисомы содержат ферменты, выводящие токсины из опасных веществ. Центросома содержит центриоли, которые играют роль в делении клеток. Микроворсинки — это пальцевидные отростки, обнаруженные на определенных клетках. Реснички, похожие на волосы структуры, которые выходят на поверхность многих клеток, могут создавать движение окружающей жидкости.Ядерная оболочка, двойная мембрана, окружающая ядро, содержит поры, которые контролируют движение веществ в нуклеоплазму и из нее. Хроматин, комбинация ДНК и белков, образующих хромосомы, составляет большую часть нуклеоплазмы. Плотное ядрышко является местом образования рибосом.

© Merriam-Webster Inc.

Популярные вопросы

Что такое ячейка?

Клетка — это масса цитоплазмы, которая снаружи связана клеточной мембраной. Обычно микроскопические по размеру клетки представляют собой мельчайшие структурные единицы живого вещества и составляют все живые существа.Большинство клеток имеют одно или несколько ядер и других органелл, которые выполняют множество задач. Некоторые отдельные клетки представляют собой полноценные организмы, такие как бактерии или дрожжи. Другие представляют собой специализированные строительные блоки многоклеточных организмов, таких как растения и животные.

Что такое клеточная теория?

Теория клетки утверждает, что клетка является фундаментальной структурной и функциональной единицей живого вещества. В 1839 году немецкий физиолог Теодор Шванн и немецкий ботаник Маттиас Шлейден заявили, что клетки являются «элементарными частицами организмов» как у растений, так и у животных, и признали, что одни организмы одноклеточные, а другие — многоклеточные.Эта теория ознаменовала собой большой концептуальный прогресс в биологии и привела к возобновлению внимания к жизненным процессам, происходящим в клетках.

Что делают клеточные мембраны?

Клеточная мембрана окружает каждую живую клетку и отделяет клетку от окружающей среды. Он служит барьером, препятствующим проникновению содержимого клетки и проникновению нежелательных веществ. Он также функционирует как ворота, как для активного, так и для пассивного перемещения необходимых питательных веществ в клетку и вывод продуктов жизнедеятельности из нее.Определенные белки клеточной мембраны участвуют в межклеточной коммуникации и помогают клетке реагировать на изменения в окружающей среде.

В этой статье клетка рассматривается как отдельная единица и как составляющая часть более крупного организма. Как отдельная единица, клетка способна метаболизировать свои собственные питательные вещества, синтезировать многие типы молекул, обеспечивать свою собственную энергию и воспроизводить себя, чтобы производить последующие поколения. Его можно рассматривать как закрытый сосуд, внутри которого одновременно происходят бесчисленные химические реакции.Эти реакции находятся под очень точным контролем, поэтому они способствуют жизни и размножению клетки. В многоклеточном организме клетки становятся специализированными для выполнения различных функций в процессе дифференцировки. Для этого каждая ячейка поддерживает постоянную связь со своими соседями. Получая питательные вещества из окружающей среды и выбрасывая отходы, она прилипает к другим клеткам и взаимодействует с ними. Совместные сборки подобных клеток образуют ткани, а сотрудничество между тканями, в свою очередь, формирует органы, которые выполняют функции, необходимые для поддержания жизни организма.

В этой статье особое внимание уделяется животным клеткам, с некоторым обсуждением процессов синтеза энергии и внеклеточных компонентов, свойственных растениям. (Для подробного обсуждения биохимии растительных клеток, см. Фотосинтез . Для полной обработки генетических событий в ядре клетки, см. Наследственность .)

Брюс М. Альбертс

Природа и функция клеток

A клетка окружена плазматической мембраной, которая образует селективный барьер, позволяющий питательным веществам проникать, а отходам — ​​выходить.Внутренняя часть клетки состоит из множества специализированных отсеков или органелл, каждый из которых окружен отдельной мембраной. Одна из основных органелл, ядро, содержит генетическую информацию, необходимую для роста и размножения клеток. Каждая клетка содержит только одно ядро, тогда как другие типы органелл присутствуют в множестве копий в клеточном содержимом или цитоплазме. Органеллы включают митохондрии, которые отвечают за передачу энергии, необходимую для выживания клеток; лизосомы, которые переваривают нежелательные материалы внутри клетки; а также эндоплазматический ретикулум и аппарат Гольджи, которые играют важную роль во внутренней организации клетки, синтезируя выбранные молекулы, а затем обрабатывая, сортируя и направляя их в нужные места.Кроме того, клетки растений содержат хлоропласты, которые отвечают за фотосинтез, благодаря чему энергия солнечного света используется для преобразования молекул углекислого газа (CO 2 ) и воды (H 2 O) в углеводы. Между всеми этими органеллами есть пространство в цитоплазме, называемое цитозолем. Цитозоль содержит организованный каркас из волокнистых молекул, составляющих цитоскелет, который придает клетке ее форму, позволяет органеллам перемещаться внутри клетки и обеспечивает механизм, с помощью которого сама клетка может двигаться.Цитозоль также содержит более 10 000 различных видов молекул, которые участвуют в клеточном биосинтезе, процессе создания больших биологических молекул из маленьких.

клеток

Клетки животных и растений содержат мембраносвязанные органеллы, включая отдельное ядро. Напротив, бактериальные клетки не содержат органелл.

Британская энциклопедия, Inc. Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Специализированные органеллы характерны для клеток организмов, известных как эукариоты.Напротив, клетки организмов, известных как прокариоты, не содержат органелл и обычно меньше эукариотических клеток. Однако все клетки имеют сильное сходство в биохимических функциях.

эукариотическая клетка

Рисунок эукариотической клетки в разрезе.

Encyclopædia Britannica, Inc.

Молекулы клеток

Понять, как клеточные мембраны регулируют потребление пищи и отходы и как клеточные стенки обеспечивают защиту

Клетки поглощают молекулы через свои плазматические мембраны.

Encyclopædia Britannica, Inc. Посмотреть все видео к этой статье

Клетки содержат особый набор молекул, заключенных в мембрану. Эти молекулы дают клеткам возможность расти и воспроизводиться. Общий процесс клеточного воспроизводства происходит в два этапа: рост клеток и деление клеток. Во время роста клетки клетки поглощают определенные молекулы из своего окружения, избирательно перенося их через клеточную мембрану. Попав внутрь клетки, эти молекулы подвергаются действию узкоспециализированных, больших, тщательно свернутых молекул, называемых ферментами.Ферменты действуют как катализаторы, связываясь с проглоченными молекулами и регулируя скорость их химического изменения. Эти химические изменения делают молекулы более полезными для клетки. В отличие от проглоченных молекул, катализаторы сами химически не изменяются во время реакции, что позволяет одному катализатору регулировать конкретную химическую реакцию во многих молекулах.

Биологические катализаторы создают цепочки реакций. Другими словами, молекула, химически преобразованная одним катализатором, служит исходным материалом или субстратом для второго катализатора и так далее.Таким образом, катализаторы используют небольшие молекулы, принесенные в клетку из внешней среды, для создания все более сложных продуктов реакции. Эти продукты используются для роста клеток и воспроизведения генетического материала. После копирования генетического материала и наличия достаточного количества молекул для поддержки деления клетки клетка делится, образуя две дочерние клетки. Через множество таких циклов клеточного роста и деления каждая родительская клетка может дать начало миллионам дочерних клеток, в процессе преобразования больших количеств неодушевленного вещества в биологически активные молекулы.

Строение и функции ячеек | Клетки: основные единицы жизни

2.3 Структура и функции клетки (ESG4S)

Раздел 3: Структура и функции клетки

В этом разделе учащиеся расширяют свои знания и изучают различные клеточные структуры и связанные с ними функции. Необходимо представить роли органелл внутри клеток и связать структуру и расположение органелл с их функцией.

Ячейки различаются по размеру, форме и структуре и поэтому выполняют специализированные функции.Свяжите это с тканями. Различия между растительными и животными клетками можно отнести к 9-му классу

.

Теория клеток (ESG4T)

Теория клеток, разработанная в 1839 году микробиологами Шлейденом и Шванном, описывает свойства клеток. Это объяснение взаимоотношений между клетками и живыми существами. Теория утверждает, что:

  • Все живые существа состоят из клеток и их продуктов.
  • новых клеток создаются старыми клетками, делящимися на две.
  • клеток — это основные строительные блоки жизни.

Теория клеток применима ко всем живым существам, большим или маленьким. Современное понимание теории клетки расширяет концепции исходной теории клетки, чтобы включить следующее:

  • Активность организма зависит от общей активности независимых клеток.
  • Поток энергии происходит в клетках за счет расщепления углеводов при дыхании.
  • Ячейки содержат информацию, необходимую для создания новых ячеек. Эта информация известна как «наследственная информация» и содержится в ДНК.
  • Содержимое клеток близких видов в основном одинаковое.

ДНК (наследственная информация клеток) передается от «родительских» клеток к «дочерним» клеткам во время деления клеток. Вы узнаете об этом больше в следующей главе: Деление клеток .

Клетки — самая маленькая форма жизни; функциональные и структурные единицы всего живого. Ваше тело содержит несколько миллиардов клеток, сгруппированных по более чем 200 основным типам, с сотнями специфичных для клеток функций.

Некоторые функции, выполняемые клетками, настолько важны для существования жизни, что их выполняют все клетки (например, клеточное дыхание). Другие узкоспециализированные (например, фотосинтез).

На рис. 2.9 показан двухмерный чертеж животной клетки. На схеме показаны структуры, видимые внутри клетки при большом увеличении. Структуры образуют ультраструктуру ячейки.

Рис. 2.9: Диаграмма ультраструктуры клетки животного происхождения.

  1. В парах обсудите различные органы человеческого тела и то, как они функционируют.
  2. Как вы думаете, как функционируют клетки?

Моделирование: 2CP5

Видео: 2CP6

Моделирование: 2CP7

Видео: 2CP8

Видео: 2CP9

Теперь мы рассмотрим некоторые основные клеточные структуры и органеллы в клетках животных и растений.

Клеточная стенка (ESG4V)

Клеточная стенка — это жесткий неживой слой, который находится вне клеточной мембраны и окружает клетку. У растений, бактерий и грибов есть клеточные стенки. У растений стена состоит из целлюлозы.Он состоит из трех слоев, которые помогают поддерживать растение. Эти слои включают среднюю пластинку, первичную клеточную стенку и вторичную клеточную стенку.

Средняя пластина : отделяет одну ячейку от другой. Это тонкий мембранный слой снаружи клетки, состоящий из липкого вещества, называемого пектином.

Первичная клеточная стенка : Находится внутри средней ламели и в основном состоит из целлюлозы.

Вторичная клеточная стенка : расположена рядом с клеточной мембраной.Он состоит из толстого и прочного слоя целлюлозы, который удерживается твердым водонепроницаемым веществом, называемым лигнином. Он содержится только в клетках, которые обеспечивают механическую поддержку растений.

Человеческое тело не может разрушить целлюлозу клеточных стенок, потому что мы не производим фермент целлюлазу.

Рис. 2.10: Микрофотографии диатомовых водорослей с помощью сканирующего электронного микроскопа, показывающие внешний вид клеточной стенки. Шкала: A, B, D: 10 мкм, C 20 мкм

Функции клеточной стенки

  • Основная функция стены — защищать внутренние части растительной клетки, она придает растительным клеткам более однородную и правильную форму и обеспечивает поддержку тела растения.
  • Клеточная стенка полностью проницаема для воды и минеральных солей, что позволяет распределять питательные вещества по всему растению.
  • Отверстия в клеточной стенке, называемые плазмодесмами, содержат нити цитоплазмы, соединяющие соседние клетки. Это позволяет клеткам взаимодействовать друг с другом, позволяя молекулам перемещаться между растительными клетками.

Клеточная мембрана (ESG4W)

Клеточная мембрана , также называемая плазматической мембраной, физически отделяет внутриклеточное пространство (внутри клетки) от внеклеточной среды (вне клетки).Все клетки растений и животных имеют клеточные мембраны. Клеточная мембрана окружает и защищает цитоплазму . Цитоплазма является частью протоплазмы и является живым компонентом клетки.

Клеточная мембрана состоит из двойного слоя (бислоя) специальных липидов (жиров), называемых фосфолипидами . Фосфолипиды состоят из гидрофильных головок (водолюбивых) и гидрофобных хвостов (водобоязненных). Гидрофобная головка фосфолипида составляет полярных (заряженных) и поэтому может растворяться в воде.Гидрофобный хвост неполярный (незаряженный) и не может растворяться в воде.

Липидный бислой формируется спонтанно из-за свойств молекул фосфолипидов. В водной среде полярные головы пытаются образовать водородные связи с водой, в то время как неполярные хвосты пытаются вырваться из воды. Проблема решается формированием бислоя, потому что гидрофильные головки могут указывать наружу и от водородных связей с водой, а гидрофобные хвосты обращены друг к другу и « защищены » от молекул воды (Рисунок 2.11.

Рис. 2.11: Липидный бислой, показывающий расположение фосфолипидов, содержащих гидрофильные полярные головки и гидрофобные неполярные хвосты.

Вспомните структуру липидных молекул из предыдущей главы о химии жизни .

Все обмены между клеткой и окружающей средой должны происходить через клеточную мембрану. Клеточная мембрана избирательно проницаема для ионов (например, водорода, натрия), небольших молекул (кислород, углекислый газ) и более крупных молекул (глюкоза и аминокислоты) и контролирует перемещение веществ в клетки и из них.Клеточная мембрана выполняет множество важных функций внутри клетки, таких как осмос, диффузия, транспортировка питательных веществ в клетку, процессы поглощения и секреции. Клеточная мембрана достаточно прочна, чтобы обеспечить клетке механическую поддержку, и достаточно гибка, чтобы позволить клеткам расти и двигаться.

Структура клеточной мембраны: модель жидкой мозаики

S.J. Сингер и Г.Л. Николсон предложили жидкостную мозаичную модель клеточной мембраны в 1972 году. Эта модель описывает структуру клеточной мембраны как жидкостную структуру с различными белковыми и углеводными компонентами, свободно диффундирующими через мембрану.Структура и функции каждого компонента мембраны представлены в таблице ниже. Таблица 2.2 относится к компонентам клеточной мембраны, показанным на диаграммах на рисунках 2.11 и 2.12.

Рис. 2.12: Жидкая мозаичная модель клеточной мембраны.

Компонент (см. Рисунок 2.12) Структура Функция
Двухслойный фосфолипид Состоит из двух слоев фосфолипидов.Каждый фосфолипид имеет полярную гидрофильную (водорастворимую) головку, а также неполярный гидрофобный (нерастворимый в воде) хвост. Это полупроницаемая структура, которая не позволяет материалам свободно проходить через мембрану, тем самым защищая внутри- и внеклеточную среду клетки.
Мембранные белки Это белки, охватывающие мембрану изнутри клетки (в цитоплазме) за пределы клетки. Мембранные белки имеют гидрофильные и гидрофобные области, которые позволяют им вписываться в клеточную мембрану. Действуют как белки-переносчики, которые контролируют движение определенных ионов и молекул через клеточную мембрану.
Гликопротеины Состоят из коротких углеводных цепей, прикрепленных к полипептидным цепям, и находятся во внеклеточных областях мембраны. Эти белки полезны для распознавания от клетки к клетке.
Гликолипиды Углеводные цепи, прикрепленные к фосфолипидам на внешней поверхности мембраны. Действуют как сайты узнавания для определенных химических веществ и играют важную роль в прикреплении клеток к клеткам с образованием тканей.

Таблица 2.2: Структура и функции компонентов клеточной мембраны.

Дальнейшее описание модели жидкой мозаики можно посмотреть по адресу:

Видео: 2CPC

Движение через мембраны (ESG4X)

Перемещение веществ через клеточные мембраны необходимо, поскольку оно позволяет клеткам приобретать кислород и питательные вещества, выводить продукты жизнедеятельности и контролировать концентрацию необходимых веществ в клетке (например,г кислорода, воды, гормонов, ионов и т. д.). Ключевые процессы, посредством которых происходит такое движение, включают диффузию, осмос, облегченную диффузию и активный транспорт.

Узнайте о различных способах перемещения молекул через клеточные мембраны.

Видео: 2CPD

1. Распространение

Диффузия — это перемещение веществ из области высокой концентрации в область низкой концентрации. Поэтому говорят, что происходит ниже градиента концентрации .На приведенной ниже диаграмме показано движение растворенных частиц в жидкости до тех пор, пока они не станут случайным образом распределены.

Диффузия — это движение молекул из области с более высокой концентрацией в область с более низкой концентрацией. Это пассивный процесс (т.е. не требует затрат энергии).

Диффузия — это пассивный процесс , что означает, что он не требует ввода энергии. Это может происходить через живую или неживую мембрану и может происходить в жидкой или газовой среде.Из-за того, что диффузия происходит через градиент концентрации, это может привести к перемещению веществ внутрь или из клетки. Примеры веществ, перемещаемых путем диффузии, включают диоксид углерода, кислород, воду и другие небольшие молекулы, которые способны растворяться в липидном бислое.

Наблюдайте за происходящим распространением, щелкнув следующую ссылку.

Видео: 2CPF

Наблюдение за диффузией

Цель

Наблюдать за диффузией.

Аппарат

  • 1 x \ (\ text {500} \) \ (\ text {ml} \) стакан
  • большая воронка
  • пластиковая соломинка
  • кристаллы перманганата калия

Метод

  1. Наполните химический стакан водой и дайте ему постоять несколько минут, чтобы движение воды прекратилось.
  2. Поместите большую воронку в воду так, чтобы она касалась дна стакана. Бросьте через соломинку несколько маленьких кристаллов перманганата калия. Осторожно и медленно снимите воронку.
  3. Обратите внимание на размер области, окрашенной перманганатом калия в начале эксперимента, через 5 минут, а затем через 20 минут.

Вопросы

  1. Что вы наблюдаете, происходящее в стакане?
  2. Что вы можете сделать на основании своих наблюдений?
  3. Объясните, как использование горячей воды повлияет на результаты этого эксперимента (помните, что при объяснении вам необходимо указать причину своего ответа).

Наблюдение за диффузией

Вопросы

  1. Что вы наблюдаете в стакане?
  2. Что вы можете сделать на основании своих наблюдений?
  3. Объясните, как использование горячей воды повлияет на результаты этого эксперимента (помните, что при объяснении вам необходимо указать причину своего ответа).

Ответы

  1. Пурпурный цвет медленно распространяется (распространяется) по всему стакану с водой, пока цвет не распределяется равномерно.
  2. Молекулы воды и перманганата калия должны постоянно двигаться, чтобы фиолетовый цвет распространился по воде и распространился равномерно.
  3. Использование горячей воды ускорит процесс распределения / распространения. Дополнительное тепло воды дает частицам кинетическую энергию, которая позволяет им двигаться быстрее. Чем быстрее движутся частицы, тем быстрее цвет распространяется по стакану.

2. Осмос

Когда концентрация растворенных веществ в растворе низкая, концентрация воды высокая, и мы говорим, что существует высокий потенциал воды .Осмос — это движение воды из области с более высоким водным потенциалом в область с более низким водным потенциалом через полупроницаемую мембрану, разделяющую эти две области. Движение воды всегда происходит вниз по градиенту концентрации, то есть от более высокого водного потенциала (разбавленный раствор) к более низкому (концентрированный раствор). Осмос — это пассивный процесс, не требующий затрат энергии. Клеточные мембраны пропускают молекулы воды, но не пропускают молекулы большинства растворенных веществ, например.грамм. соль и сахар, чтобы пройти. Когда вода попадает в клетку через осмос, она создает давление, известное как осмотическое давление .

Рисунок 2.14: Осмос — это движение воды из области с высоким водным потенциалом в область с низким водным потенциалом через полупроницаемую мембрану.

Наблюдайте за происходящим осмосом, перейдя по следующей ссылке.

Видео: 2CPG

В биологических системах осмос жизненно важен для выживания клеток растений и животных. На рис. 2.15 показано, как осмос влияет на эритроциты, когда они помещены в три разных раствора с разными концентрациями.

Рисунок 2.15: Влияние гипертонических, изотонических и гипотонических растворов на эритроциты.
Гипертонический (концентрированный) Изотонический Гипотонический (разбавленный)
Среда сконцентрирована с более низким водным потенциалом, чем внутри клетки, поэтому клетка будет терять воду из-за осмоса. Концентрация воды внутри и снаружи клетки одинакова, и нет никакого движения воды через клеточную мембрану.(Вода будет продолжать двигаться через мембрану, но вода будет поступать и покидать клетку с той же скоростью.) Среда имеет более высокий водный потенциал (более разбавленный), чем клетка, и вода будет перемещаться в клетку посредством осмоса, и в конечном итоге может привести к взрыву ячейки.

Клетки растений используют осмос для поглощения воды из почвы и транспортировки ее к листьям. Осмос в почках поддерживает необходимый уровень воды и соли в организме и крови.

Предсказание направления осмоса

Цель

Предсказать направление осмоса.

Аппарат

  • 1 x \ (\ text {500} \) \ (\ text {ml} \) стакан
  • 1 картофель крупный
  • картофелечистка / скальпель
  • 2 штифта
  • концентрированный раствор сахароза / сахар. Для этого добавьте 100 г сахара в 200 мл воды.

Метод

  1. Снимите кожуру с картофеля большого размера с помощью скальпеля / картофелечистки.
  2. Обрежьте его один конец, чтобы сделать основание плоским.
  3. Сделайте в картофеле полость почти до дна картофеля.
  4. Добавьте концентрированный раствор сахара в полость картофеля, наполнив ее примерно наполовину. Отметьте уровень, вставив булавку на уровень сахарного раствора (вставьте стержень под углом в углубление на уровне) (Рисунок 2.16 A).
  5. Осторожно поместите картофель в стакан с водой.
  6. Посмотрите, что происходит с уровнем сахарного раствора в картофеле.
  7. Через 15-20 минут отметьте уровень, вставив вторую булавку на уровне раствора сахара (вставьте как первую булавку) (Рисунок 2.16 В).
Рис. 2.16: Использование картофеля для исследования осмоса.

Вопросы

  1. Что вы наблюдаете, происходящее с уровнем раствора внутри картофеля?
  2. Какой вывод вы можете сделать на основании своего наблюдения?
  3. Какие условия были выполнены в этом эксперименте, что отличает этот тип переноса от диффузионного?

Прогнозирование направления осмоса

Вопросы

  1. Что вы наблюдаете, происходящее с уровнем раствора внутри картофеля?
  2. Какой вывод вы можете сделать на основании своего наблюдения?
  3. Какие условия были выполнены в этом эксперименте, что отличает этот тип переноса от диффузии?

Ответы

  1. Уровень раствора внутри картофеля увеличивается.
  2. Вода выходит из картофеля в углубление посередине. При этом в картофель из стакана втягивается вода. Это означает, что раствор в полости гипертонический, а вода — гипотоническая.
  3. Полупроницаемые мембраны клеток картофеля препятствуют движению молекул сахара. Только вода движется. При диффузии все молекулы могут двигаться. При осмосе движется только вода, и она движется через полупроницаемую мембрану.

Посмотрите иллюстрацию диффузии и осмоса.

Видео: 2CPH

3. Облегченная диффузия

Облегченная диффузия — это особая форма диффузии, которая позволяет быстро обмениваться определенными веществами. Частицы захватываются белками-носителями, которые в результате меняют свою форму. Изменение формы вызывает высвобождение частиц с другой стороны мембраны. Облегченная диффузия может происходить только через живые биологические мембраны, содержащие белки-носители. Вещество транспортируется через белок-носитель из области высокой концентрации в область низкой концентрации, пока не распределяется случайным образом.Следовательно, движение происходит на вниз по градиенту концентрации .

Рисунок 2.17: Облегченная диффузия в клеточной мембране, показаны ионные каналы и белки-носители.

Примеры веществ, перемещаемых посредством облегченной диффузии, включают все полярные молекулы, такие как глюкоза или аминокислоты.

4. Активный транспорт

Активный перенос — это перемещение веществ против градиента концентрации из области с низкой концентрацией к с высокой концентрацией с использованием подводимой энергии.В биологических системах эта энергия присутствует в форме аденозинтрифосфата (АТФ) . Процесс переносит вещества через мембранный белок. Перемещение веществ избирательно через белки-носители и может происходить в клетку или из клетки.

АТФ и АДФ — это молекулы, участвующие в перемещении энергии внутри клеток. Вам не обязательно знать эти имена полностью, вы узнаете о них позже.

Рисунок 2.18: Натрий-калиевый насос является примером первичного активного транспорта.

Примеры перемещаемых веществ включают ионы натрия и калия, как показано на рис. 2.18.

Структуры и функции растительных клеток.

Клетка была впервые обнаружена в 1665 году английским ученым Робертом Гук. Глядя в микроскоп, он наблюдал крошечные объекты в виде коробок в срезе пробки (кора дуба) и назвал эти коробки ячеек . Клетки — это основные единицы жизни, из которых состоит все живое. Эта идея составляет основу Cell Theory .

Теория клеток

Три основных части теории клетки:

  1. Все живое состоит из клеток.
  2. Клетка — это основная единица структуры и функций всего живого.
  3. Клетки происходят только из других ранее существовавших клеток при делении клеток .
Клетки на поперечном срезе стебля растения (Источник: RolfDieterMueller [CC BY 3.0] через Wikimedia Commons).

В то время как некоторые организмы одноклеточные, другие состоят из множества клеток.Эти организмы называются многоклеточными (имеющими много клеток). Ячейки различаются по размеру и сложности.

Эукариоты — это организмы, состоящие из больших и сложных клеток, тогда как прокариот — это организмы, состоящие из маленьких и простых клеток. Животные и растения являются примерами эукариот (имеют эукариотических клеток ), в то время как бактерии являются примерами прокариот (имеют прокариотических клеток ).

Структура и функции растительной клетки

Несмотря на различия в размере и сложности, все клетки в основном состоят из одних и тех же веществ и все они выполняют одинаковые жизненные функции.К ним относятся рост, метаболизм и размножение путем деления клеток.

Клетки состоят из субклеточных структур, которые отвечают за различные специфические функции. Эти структуры известны как органеллы . Некоторые из этих органелл являются общими как для животных, так и для растительных клеток. В этом разделе мы остановимся на тех частях, которые есть у растений.

Клеточные структуры (клеточные органеллы) Структуры клеток растений (ключ к нумерации см. Ниже) (Источник: Let’s Talk Science с использованием изображения jack0m с сайта iStockphoto).

  1. Стенка клетки: Это жесткий внешний слой растительной клетки. Это делает ячейку жесткой, обеспечивая ячейку механической опорой и обеспечивая ей защиту. Клетки животных не имеют клеточных стенок.
  2. Клеточная мембрана: Это защитный слой, который окружает каждую клетку и отделяет ее от внешней среды. Он находится внутри клеточной стенки и состоит из комплекса липидов (жиров) и белков .
  3. Цитоплазма: Цитоплазма представляет собой густой водный раствор (на водной основе), в котором находятся органеллы. Такие вещества, как соли, питательные вещества, минералы и ферменты (молекулы, участвующие в метаболизме) растворяются в цитоплазме.
  4. Ядро: Ядро является «центром управления» клетки. Он содержит дезоксирибонуклеиновой кислоты (ДНК) , генетический материал, который управляет всей деятельностью клетки. Только эукариотические клетки имеют ядер (множественное число для ядер ), прокариотические клетки нет.Ядро отделено от цитоплазмы специальной мембраной под названием
  5. .
  6. Ядерная мембрана .
  7. Рибосомы: Это маленькие круглые структуры, которые производят белки. Они находятся в цитоплазме или прикрепляются к эндоплазматической сети.
  8. Эндоплазматическая сеть (ER): ER — это мембранная система складчатых мешочков и туннелей. ER помогает перемещать белки внутри клетки, а также экспортировать их за пределы клетки. Существует два типа эндоплазматической сети.
  9. Шероховатая эндоплазматическая сеть . Шероховатая эндоплазматическая сеть покрыта рибосомами.
  10. Гладкая эндоплазматическая сеть (без рибосом)
  11. Тело Гольджи: Тело Гольджи представляет собой набор покрытых мембраной мешочков, которые подготавливают белки для экспорта из клетки.
  12. Митохондрия (множественное число: митохондрий ): это «электростанция» клетки. Он преобразует энергию, запасенную в пище (сахар и жир), в богатые энергией молекулы, которые клетка может использовать ( аденозинтрифосфат ATP для краткости).
  13. Лизосома: Лизосома — это пищеварительный центр клетки, который производит множество различных типов ферментов, которые способны расщеплять частицы пищи и перерабатывать изношенные компоненты клетки.
  14. Vacuoles: Это большие отсеки с мембраной, в которых хранятся токсичные отходы, а также полезные продукты, такие как вода. В основном они содержатся в растениях.
  15. Хлоропласт: Хлоропласты содержат зеленый пигмент, который улавливает солнечный свет и превращает его в сахара с помощью процесса, называемого фотосинтезом.Сахар является источником энергии для растений и животных, которые их едят.

Что делает клетки растений уникальными

  1. Растительные клетки имеют клеточную стенку.

Растительные клетки во многом отличаются от клеток животных. Пожалуй, наиболее очевидным отличием является наличие клеточной стенки. Клеточная стенка обеспечивает растению силу и поддержку, во многом как экзоскелет насекомого или паука (наш скелет находится внутри нашего тела, а не снаружи, как насекомые или пауки).

Стенка растительной клетки в основном состоит из углеводов, молекул, целлюлозы и лигнина . Целлюлоза широко используется людьми для изготовления бумаги. Целлюлоза также может быть преобразована в целлюлозный этанол , вид биотоплива . Некоторые животные, такие как коровы, овцы и козы, могут переваривать целлюлозу с помощью бактерий в желудке. Люди не могут переваривать целлюлозу, которая проходит через наш организм и более известна как пищевые волокна, то есть то, что мы должны есть, чтобы наши отходы двигались должным образом! Лигнин заполняет промежутки между целлюлозой и другими молекулами в клеточной стенке.Лигнин также помогает молекулам воды перемещаться от одной стороны клеточной стенки к другой — важная функция у растений.

  1. Растительные клетки содержат вакуоли.

Большинство клеток взрослых растений имеют одну большую вакуоль, которая занимает более 30% объема клетки. В определенное время и при определенных условиях вакуоль занимает до 80% объема клетки! Помимо хранения отходов и воды, вакуоль также помогает поддерживать ячейку, поскольку жидкость внутри вакуоли оказывает внешнее давление на ячейку, подобно воде внутри водяного баллона.Это называется тургорным давлением и препятствует разрушению клеток внутрь.

  1. Растительные клетки содержат хлоропласты.

В отличие от клеток животных, клетки растений могут использовать энергию Солнца, хранить ее в химических связях сахара, а затем использовать эту энергию. Органелла, отвечающая за это, — хлоропласт. Хлоропласты содержат хлорофилла , зеленый пигмент, который придает цвет листьям и поглощает световую энергию. Цианобактерии , разновидность прокариот, способных к фотосинтезу, считаются предками хлоропластов!

Хлоропласты (Источник: Кристиан Петерс-Фабельфро [CC BY-SA 3.0] через Wikimedia Commons).

Знаете ли вы?

Красные водоросли (многоклеточные морские водоросли) имеют хлоропласты, которые содержат пигмент фикобилин, а не хлорофилл, который придает им красноватый, а не зеленый цвет.

Растительные и животные клетки также имеют много общих органелл, включая ядро, клеточную мембрану (называемую плазматической мембраной у животных), эндоплазматический ретикулум, митохондрии и цитоплазму, а также некоторые другие.

1. Структура клетки — Национальная 5 Биология

Примечания

Все живое состоит из клеток. Клетка — основная единица жизни. Но из чего состоит клетка? Множество вещей. Каждая клетка состоит из сложной системы различных структур, которые работают вместе, чтобы позволить клетке функционировать. Вы уже знаете некоторые из этих структур и то, что они делают, но в этой теме мы собираемся пойти еще дальше.

Мы будем использовать 2D-диаграммы ячеек, к которым вы привыкли, чтобы объяснить, где находятся эти структуры, как они выглядят и что они делают.Однако не забывайте, что клетки существуют в 3D и не только это, их структуры движутся!

Клетки животных

Клетки животных имеют множество различных структур в зависимости от их функции. Однако сначала мы рассмотрим типичные структуры большинства клеток животных. Вы уже знаете, что клетки животных состоят из клеточной мембраны, ядра и жидкой цитоплазмы. В этом курсе вам нужно больше узнать о функциях клеточной мембраны и ядра. Вам также необходимо узнать о двух других органеллах, которые находятся в цитоплазме клеток животных.

Типичная животная клетка имеет общие структуры, показанные на диаграмме выше. К ним относятся …

Цитоплазма: Цитоплазма — это жидкая часть клетки. Он состоит в основном из воды и в ней растворено множество различных веществ. Многие химические реакции клетки происходят в цитоплазме.

Клеточная мембрана: Клеточная мембрана содержит содержимое клетки и обеспечивает барьер для контроля того, что входит и выходит из клетки.Клеточную мембрану часто описывают как «избирательно проницаемую», поскольку она пропускает некоторые, но не все вещества (проницаемость) и может выбирать, какие вещества могут проходить (избирательно). Подробнее об этом мы узнаем в транспортной теме. Ядро: Ядро контролирует все, что происходит в клетке. Это происходит потому, что это место расположения ДНК клетки. ДНК содержит генетический код, который транслируется в белки. Все химические реакции, происходящие в клетках, контролируются этими белками.Подробнее обо всем этом вы узнаете в разделах «ДНК» и «Ферменты». Митохондрии: Митохондрии — это электростанции клеток животных, растений и грибов. Они находятся в цитоплазме, и большинство химических реакций дыхания происходит в митохондриях, которые высвобождают химическую энергию из молекул пищи. Очевидно, мы обсудим это более подробно в теме «Дыхание». Рибосомы: Рибосомы — это крошечные структуры, которые также находятся в цитоплазме.Рибосомы — это места производства белка в клетках. Мы обсудим это более подробно в теме «ДНК и производство белков».

Хотя приведенная выше диаграмма показывает типичные структуры животной клетки, очень немногие животные клетки на самом деле выглядят так. Клетки животных специализируются на своих функциях. Посмотрите на следующие диаграммы различных клеток животных … почему у них разные структуры?

Эритроцит: Двояковогнутая форма обеспечивает большую площадь поверхности для поглощения кислорода.Также зрелые клетки не имеют ядра, которое увеличивало бы объем молекул белка гемоглобина, связывающего кислород.

Нервная клетка: Длинная тонкая форма для передачи нервных импульсов. Высокая концентрация митохондрий, обеспечивающих энергию для передачи нервных импульсов.

Эпителиальная клетка тонкой кишки: Большая площадь поверхности мембраны, выстилающей кишечник, для поглощения продуктов пищеварения. Высокая концентрация митохондрий для обеспечения энергии, необходимой для активного транспорта.

Растительные клетки

Как вы знаете, клетки растений имеют во многом те же структуры, что и клетки животных. Однако у них есть другие структуры, о которых вы можете узнать, как вы можете видеть на диаграмме ниже. Растительные клетки имеют цитоплазму, клеточную мембрану и ядро, которые выполняют те же функции, что и клетки животных. Многие думают, что клетки растений не содержат митохондрий, но, конечно же, они есть! Митохондрии необходимы для высвобождения энергии из сахара, растительным клеткам эта энергия нужна, чтобы функционировать так же, как клеткам животных.На следующей диаграмме показаны структуры типичной растительной клетки.

Вы уже знаете, каковы функции структур, которые также присутствуют в клетках животных, но каковы функции структур, обнаруженных только в клетках растений?

Клеточная стенка: Мембраны растительных клеток окружены стенкой, состоящей из целлюлозных волокон. Стенки растительных клеток обеспечивают структуру клетки и растения. Стенка ячейки позволяет ячейке заполняться водой, не разрываясь.Стенки растительных клеток полностью проницаемы.

Хлоропласты: Растительные клетки содержат не только митохондрии, но и хлоропласты. Хлоропласт — это место фотосинтеза в клетке. Итак, здесь энергия света используется для производства сахара из углекислого газа и воды. Подробнее об этом мы поговорим в теме «Фотосинтез».

Вакуоль: Растительные клетки имеют большую центральную вакуоль, которая заполняется жидкостью или соком, который помогает обеспечить структуру клетки и растения.

Как и в случае с клетками животных, приведенная выше диаграмма растительной клетки представляет собой обобщенную диаграмму, показывающую структуры. Растительные клетки также могут быть изменены в зависимости от их функции. На диаграмме ниже показано разнообразие ячеек в листе. Какие различия вы видите в ячейках? Как они связаны с их функцией?
Клетки верхнего и нижнего эпидермиса: Слои клеток эпидермиса находятся в верхней и нижней части листа. Они содержат и защищают лист и, следовательно, содержат относительно мало хлоропластов.

Клетки мезофилла палисад: Клетки мезофилла палисада находятся в верхней половине листа. Очевидно, что солнечный свет в первую очередь будет попадать на верхнюю поверхность листа. Таким образом, палисадные клетки заполнены хлоропластами и являются длинными, тонкими и плотно упакованными, чтобы поглощать как можно больше световой энергии для фотосинтеза.

Клетки губчатого мезофилла: Губчатый мезофилл находится в нижней половине листа. Здесь будет меньше света, поэтому клетки будут менее плотно упакованы.Двуокись углерода проникает через нижнюю поверхность листа при дневном свете и имеет решающее значение для фотосинтеза. Расположение клеток в губчатом мезофилле обеспечивает большую площадь поверхности для поглощения углекислого газа и позволяет избыточному кислороду диффундировать.

Защитные клетки: На нижней поверхности листа есть небольшие отверстия, называемые устьицами, для обмена газов. Каждая стома окружена двумя замыкающими клетками. Большинство растений закрывают устьица на ночь, когда им не нужен углекислый газ, так как нет света для фотосинтеза, чтобы предотвратить потерю воды.У замыкающих клеток есть приспособления для открытия и закрытия устьиц.

Если вам интересны клетки растений, вы можете узнать больше из ускоренного курса на YouTube.

Грибковые клетки

Клетки грибов похожи на клетки растений и животных в том, что они имеют ядро, клеточную мембрану, цитоплазму и митохондрии. Как и клетки растений, клетки грибов имеют клеточную стенку, но не из целлюлозы, а из хитина.

Бактериальные клетки

Клетки бактерий сильно отличаются от клеток животных, растений или грибов.У них нет таких органелл, как ядра, митохондрии или хлоропласты. Хотя у них есть рибосомы и клеточная стенка, они оба отличаются по структуре от рибосом и клеточных стенок в клетках выше. Однако клетки бактерий имеют цитоплазму и клеточную мембрану. Одна из ключевых структур бактериальной клетки, о которой вам нужно знать, — это плазмида.


Плазмиды: Плазмиды представляют собой небольшие кольцевые участки ДНК, которые бактериальные клетки имеют в своей цитоплазме в дополнение к их большой кольцевой хромосоме.Плазмиды могут быстро реплицироваться и легко переноситься между бактериальными клетками. Вы узнаете больше о том, как мы используем эти плазмиды в теме генной инженерии.

эукариотических клеток | Безграничная биология

Характеристики эукариотических клеток

Эукариотическая клетка имеет истинно связанное с мембраной ядро ​​и другие мембранные органеллы, которые обеспечивают компартментализацию функций.

Цели обучения

Опишите строение эукариотических клеток

Основные выводы

Ключевые моменты
  • Эукариотические клетки больше прокариотических клеток и имеют «истинное» ядро, мембраносвязанные органеллы и палочковидные хромосомы.
  • Ядро содержит ДНК клетки и управляет синтезом белков и рибосом.
  • Митохондрии отвечают за производство АТФ; эндоплазматический ретикулум модифицирует белки и синтезирует липиды; а в аппарате Гольджи происходит сортировка липидов и белков.
  • Пероксисомы осуществляют реакции окисления, расщепляющие жирные кислоты и аминокислоты и выводящие токсины; везикулы и вакуоли функционируют при хранении и транспортировке.
  • Клетки животных имеют центросомы и лизосомы, а клетки растений — нет.
  • Растительные клетки имеют клеточную стенку, большую центральную вакуоль, хлоропласты и другие специализированные пластиды, тогда как у животных клеток нет.
Ключевые термины
  • эукариот : Имеющие сложные клетки, в которых генетический материал организован в мембраносвязанные ядра.
  • органелла : Специализированная структура внутри клеток, которая выполняет определенный жизненный процесс (например, рибосомы, вакуоли).
  • фотосинтез : процесс, с помощью которого растения и другие фотоавтотрофы производят углеводы и кислород из углекислого газа, воды и световой энергии в хлоропластах

Структура эукариотической клетки

Подобно прокариотической клетке, эукариотическая клетка имеет плазматическую мембрану, цитоплазму и рибосомы.Однако, в отличие от прокариотических клеток, эукариотические клетки имеют:

  1. мембраносвязанное ядро ​​
  2. многочисленные мембраносвязанные органеллы (включая эндоплазматический ретикулум, аппарат Гольджи, хлоропласты и митохондрии)
  3. несколько палочковидных хромосом

Поскольку ядро ​​эукариотической клетки окружено мембраной, часто говорят, что у нее есть «истинное ядро». Органеллы (что означает «маленький орган») выполняют особые клеточные роли, так же как органы вашего тела выполняют особые роли.Они позволяют разделить разные функции на разные части клетки.

Ядро и его структуры

Обычно ядро ​​является наиболее заметной органеллой в клетке. У эукариотических клеток есть истинное ядро, что означает, что ДНК клетки окружена мембраной. Следовательно, ядро ​​содержит ДНК клетки и направляет синтез белков и рибосом, клеточных органелл, ответственных за синтез белка. Ядерная оболочка представляет собой структуру с двойной мембраной, которая составляет самую внешнюю часть ядра.И внутренняя, и внешняя мембраны ядерной оболочки представляют собой бислои фосфолипидов. Ядерная оболочка перемежается порами, которые контролируют прохождение ионов, молекул и РНК между нуклеоплазмой и цитоплазмой. Нуклеоплазма — это полутвердая жидкость внутри ядра, где мы находим хроматин и ядрышко. Более того, хромосомы — это структуры в ядре, состоящие из ДНК, генетического материала. У прокариот ДНК организована в единую кольцевую хромосому.У эукариот хромосомы представляют собой линейные структуры.

Эукариотическое ядро ​​: ядро ​​хранит хроматин (ДНК плюс белки) в гелеобразном веществе, называемом нуклеоплазмой. Ядрышко — это конденсированная область хроматина, в которой происходит синтез рибосом. Граница ядра называется ядерной оболочкой. состоит из двух фосфолипидных бислоев: внешней мембраны и внутренней мембраны. Ядерная мембрана является продолжением эндоплазматического ретикулума. Ядерные поры позволяют веществам входить и выходить из ядра.

Другие мембраносвязанные органеллы

Митохондрии — это овальные органеллы с двойной мембраной, которые имеют собственные рибосомы и ДНК. Эти органеллы часто называют «энергетическими фабриками» клетки, потому что они ответственны за выработку аденозинтрифосфата (АТФ), основной молекулы, несущей энергию клетки, посредством клеточного дыхания. Эндоплазматический ретикулум модифицирует белки и синтезирует липиды, в то время как аппарат Гольджи — это место, где происходит сортировка, маркировка, упаковка и распределение липидов и белков.Пероксисомы — это маленькие круглые органеллы, окруженные одиночными мембранами; они проводят реакции окисления, расщепляющие жирные кислоты и аминокислоты. Пероксисомы также выводят токсины из многих ядов, которые могут попасть в организм. Везикулы и вакуоли — это мембранные мешочки, которые функционируют при хранении и транспортировке. Помимо того факта, что вакуоли несколько больше, чем везикулы, между ними существует очень тонкое различие: мембраны везикул могут сливаться либо с плазматической мембраной, либо с другими мембранными системами внутри клетки.Все эти органеллы находятся в каждой эукариотической клетке.

Клетки животных и клетки растений

Хотя все эукариотические клетки содержат вышеупомянутые органеллы и структуры, между животными и растительными клетками есть некоторые поразительные различия. Клетки животных имеют центросомы и лизосомы, а клетки растений — нет. Центросома — это центр организации микротрубочек, расположенный рядом с ядрами клеток животных, в то время как лизосомы заботятся о пищеварительном процессе клетки.

Клетки животных : Несмотря на их фундаментальное сходство, между клетками животных и растений существуют поразительные различия.Клетки животных имеют центриоли, центросомы и лизосомы, а клетки растений — нет.

Кроме того, у растительных клеток есть клеточная стенка, большая центральная вакуоль, хлоропласты и другие специализированные пластиды, тогда как у животных клеток их нет. Клеточная стенка защищает клетку, обеспечивает структурную поддержку и придает форму клетке, в то время как центральная вакуоль играет ключевую роль в регулировании концентрации воды в клетке при изменении условий окружающей среды. Хлоропласты — это органеллы, осуществляющие фотосинтез.

Клетки растений : Клетки растений имеют клеточную стенку, хлоропласты, плазмодесматы и пластиды, используемые для хранения, и большую центральную вакуоль, тогда как клетки животных не имеют.

Плазменная мембрана и цитоплазма

Плазматическая мембрана состоит из фосфолипидного бислоя, который регулирует концентрацию веществ, которые могут проникать в клетку.

Цели обучения

Объясните структуру и назначение плазматической мембраны клетки

Основные выводы

Ключевые моменты
  • Все эукариотические клетки имеют окружающую плазматическую мембрану, также известную как клеточная мембрана.
  • Плазматическая мембрана состоит из фосфолипидного бислоя со встроенными белками, который отделяет внутреннее содержимое клетки от окружающей среды.
  • Только относительно небольшие неполярные материалы могут легко перемещаться через липидный бислой плазматической мембраны.
  • Пассивный транспорт — это движение веществ через мембрану, которое не требует использования энергии, в то время как активный транспорт — это перемещение веществ через мембрану с использованием энергии.
  • Осмос — это диффузия воды через полупроницаемую мембрану вниз по градиенту ее концентрации; это происходит, когда существует дисбаланс растворенных веществ вне клетки по сравнению с внутри клетки.
Ключевые термины
  • фосфолипид : любой липид, состоящий из диглицерида в сочетании с фосфатной группой и простой органической молекулой, такой как холин или этаноламин; они являются важными составляющими биологических мембран
  • гипертонический : имеющий большее осмотическое давление, чем другой
  • гипотонический : имеющий более низкое осмотическое давление, чем другое; клетка в этой среде заставляет воду попадать в клетку, вызывая ее набухание.

Плазменная мембрана

Несмотря на различия в структуре и функциях, все живые клетки в многоклеточных организмах имеют окружающую плазматическую мембрану (также известную как клеточная мембрана). Поскольку внешний слой вашей кожи отделяет ваше тело от окружающей среды, плазматическая мембрана отделяет внутреннее содержимое клетки от внешней среды. Плазматическая мембрана может быть описана как бислой фосфолипидов со встроенными белками, которые контролируют прохождение органических молекул, ионов, воды и кислорода в клетку и из нее.Отходы (такие как углекислый газ и аммиак) также покидают клетку, проходя через мембрану.

Эукариотическая плазменная мембрана : Эукариотическая плазматическая мембрана представляет собой фосфолипидный бислой, в который встроены белки и холестерин.

Клеточная мембрана представляет собой чрезвычайно гибкую структуру, состоящую в основном из двух соседних листов фосфолипидов. Холестерин, который также присутствует, способствует текучести мембраны. Одиночная молекула фосфолипида состоит из полярной фосфатной «головы», которая является гидрофильной, и неполярного липидного «хвоста», которая является гидрофобной.Ненасыщенные жирные кислоты приводят к изгибам гидрофобных хвостов. Фосфолипидный бислой состоит из двух фосфолипидов, расположенных хвост к хвосту. Гидрофобные хвосты соединяются друг с другом, образуя внутреннюю часть мембраны. Полярные головки контактируют с жидкостью внутри и снаружи ячейки.

Фосфолипидный бислой : фосфолипидный бислой состоит из двух смежных слоев фосфолипидов, расположенных хвостом к хвосту. Гидрофобные хвосты соединяются друг с другом, образуя внутреннюю часть мембраны.Полярные головки контактируют с жидкостью внутри и снаружи ячейки.

Основная функция плазматической мембраны — регулировать концентрацию веществ внутри клетки. Эти вещества включают ионы, такие как Ca ++ , Na + , K + и Cl ; питательные вещества, включая сахара, жирные кислоты и аминокислоты; и продукты жизнедеятельности, особенно диоксид углерода (CO 2 ), которые должны покидать ячейку.

Двухслойная липидная структура мембраны обеспечивает клетке контроль доступа за счет проницаемости.Фосфолипиды плотно упакованы вместе, в то время как мембрана имеет гидрофобную внутреннюю часть. Эта структура делает мембрану избирательно проницаемой. Мембрана, обладающая избирательной проницаемостью, позволяет без посторонней помощи проходить через нее только веществам, отвечающим определенным критериям. В случае плазматической мембраны только относительно небольшие неполярные материалы могут перемещаться через липидный бислой (помните, липидные хвосты мембраны неполярны). Некоторыми примерами этих материалов являются другие липиды, кислород и углекислый газ, а также спирт.Однако водорастворимые материалы, такие как глюкоза, аминокислоты и электролиты, нуждаются в некоторой помощи для прохождения через мембрану, потому что они отталкиваются гидрофобными хвостами фосфолипидного бислоя.

Транспортировка через мембрану

Все вещества, которые проходят через мембрану, делают это одним из двух общих методов, которые классифицируются в зависимости от того, требуется ли энергия. Пассивный (не требующий энергии) транспорт — это перемещение веществ через мембрану без затрат клеточной энергии.Во время этого типа транспорта материалы перемещаются путем простой диффузии или облегченной диффузии через мембрану вниз по градиенту их концентрации. Вода проходит через мембрану в процессе диффузии, называемом осмосом. Осмос — это диффузия воды через полупроницаемую мембрану вниз по градиенту ее концентрации. Это происходит, когда существует дисбаланс растворенных веществ вне клетки по сравнению с внутри клетки. Раствор с более высокой концентрацией растворенных веществ называется гипертоническим, а раствор с более низкой концентрацией растворенных веществ — гипотоническим.Молекулы воды будут диффундировать из гипотонического раствора в гипертонический раствор (если на них не действуют гидростатические силы).

Осмос : Осмос — это диффузия воды через полупроницаемую мембрану вниз по градиенту ее концентрации. Если мембрана проницаема для воды, но не для растворенного вещества, вода выровняет свою концентрацию, диффундируя в сторону более низкой концентрации воды (и, следовательно, в сторону более высокой концентрации растворенного вещества). В стакане слева раствор с правой стороны мембраны гипертонический.

В отличие от пассивного транспорта, активный (требующий энергии) транспорт — это перемещение веществ через мембрану с использованием энергии аденозинтрифосфата (АТФ). Энергия расходуется, чтобы способствовать движению материала через мембрану в направлении против градиента их концентрации. Активный транспорт может происходить с помощью протеиновых насосов или везикул. Другой формой этого типа транспорта является эндоцитоз, при котором клетка окружает внеклеточные материалы, используя свою клеточную мембрану.Противоположный процесс известен как экзоцитоз. Здесь клетка экспортирует материал с помощью везикулярного транспорта.

Цитоплазма

Плазматическая мембрана клетки также помогает удерживать цитоплазму клетки, которая обеспечивает гелеобразную среду для органелл клетки. В цитоплазме происходит большинство клеточных процессов, включая метаболизм, сворачивание белков и внутреннюю транспортировку.

Ядро и рибосомы

Обнаруженное в эукариотических клетках ядро ​​содержит генетический материал, который определяет всю структуру и функцию этой клетки.

Цели обучения

Объясните назначение ядра в эукариотических клетках

Основные выводы

Ключевые моменты
  • Ядро содержит ДНК клетки и направляет синтез рибосом и белков.
  • Ядрышко находится в нуклеоплазме и представляет собой конденсированную область хроматина, в которой происходит синтез рибосом.
  • Хроматин состоит из ДНК, обернутой вокруг гистоновых белков, и хранится в нуклеоплазме.
  • Рибосомы — это большие комплексы белка и рибонуклеиновой кислоты (РНК), ответственные за синтез белка при транскрибировании ДНК из ядра.
Ключевые термины
  • гистон : любой из различных простых водорастворимых белков, которые богаты основными аминокислотами лизином и аргинином и образуют комплекс с ДНК в нуклеосомах эукариотического хроматина
  • ядрышко : заметное округлое, не связанное с мембраной тело в ядре клетки
  • хроматин : комплекс ДНК, РНК и белков в ядре клетки, из которого хромосомы конденсируются во время деления клетки

Ядро

Одним из основных различий между прокариотическими и эукариотическими клетками является ядро.Как обсуждалось ранее, у прокариотических клеток отсутствует организованное ядро, в то время как эукариотические клетки содержат связанные с мембраной ядра (и органеллы), которые содержат ДНК клетки и направляют синтез рибосом и белков.

Ядро хранит хроматин (ДНК плюс белки) в гелеобразном веществе, называемом нуклеоплазмой. Чтобы понять хроматин, полезно сначала рассмотреть хромосомы. Хроматин описывает материал, из которого состоят хромосомы, структуры ядра, состоящие из ДНК, наследственного материала.Возможно, вы помните, что у прокариот ДНК организована в одну кольцевую хромосому. У эукариот хромосомы представляют собой линейные структуры. Каждый вид эукариот имеет определенное количество хромосом в ядрах клеток своего тела. Например, у человека число хромосом 46, а у дрозофилы — восемь. Хромосомы видны и отличимы друг от друга только тогда, когда клетка готовится к делению. Чтобы организовать большое количество ДНК в ядре, к хромосомам прикрепляются белки, называемые гистонами; ДНК оборачивается вокруг этих гистонов, образуя структуру, напоминающую бусинки на нитке.Эти комплексы белок-хромосома называются хроматином.

ДНК высокоорганизована : Это изображение показывает различные уровни организации хроматина (ДНК и белок). Вдоль нитей хроматина, размотанных комплексов белок-хромосома, мы находим ДНК, обернутую вокруг набора гистоновых белков.

Ядро хранит наследственный материал клетки. : Ядро является центром управления клеткой. Ядро живых клеток содержит генетический материал, который определяет всю структуру и функции этой клетки.

Нуклеоплазма — это также то место, где мы находим ядрышко. Ядрышко — это конденсированная область хроматина, в которой происходит синтез рибосом. Рибосомы, большие комплексы белка и рибонуклеиновой кислоты (РНК), являются клеточными органеллами, ответственными за синтез белка. Они получают свои «приказы» на синтез белка из ядра, где ДНК транскрибируется в информационную РНК (мРНК). Эта мРНК перемещается к рибосомам, которые переводят код, обеспечиваемый последовательностью азотистых оснований в мРНК, в определенный порядок аминокислот в белке.

Рибосомы отвечают за синтез белка : Рибосомы состоят из большой субъединицы (вверху) и маленькой субъединицы (внизу). Во время синтеза белка рибосомы собирают аминокислоты в белки.

Наконец, граница ядра называется ядерной оболочкой. Он состоит из двух фосфолипидных бислоев: внешней мембраны и внутренней мембраны. Ядерная мембрана является продолжением эндоплазматической сети, в то время как ядерные поры позволяют веществам входить и выходить из ядра.

Митохондрии

Митохондрии — это органеллы, которые отвечают за выработку аденозинтрифосфата (АТФ), основной молекулы, переносящей энергию в клетке.

Цели обучения

Объясните роль митохондрий.

Основные выводы

Ключевые моменты
  • Митохондрии содержат собственные рибосомы и ДНК; В сочетании с их двойной мембраной эти особенности предполагают, что когда-то они могли быть свободноживущими прокариотами, которые были поглощены более крупной клеткой.
  • Митохондрии играют важную роль в клеточном дыхании за счет производства АТФ с использованием химической энергии, содержащейся в глюкозе и других питательных веществах.
  • Митохондрии также ответственны за образование кластеров железа и серы, которые являются важными кофакторами многих ферментов.
Ключевые термины
  • альфа-протеобактерии : таксономический класс внутри филума Proteobacteria — фототропные протеобактерии.
  • аденозинтрифосфат : многофункциональный нуклеозидтрифосфат, используемый в клетках в качестве кофермента, часто называемый «молекулярной единицей энергетической валюты» при внутриклеточном переносе энергии
  • Кофактор : неорганическая молекула, необходимая для функционирования фермента

Одним из основных отличий прокариот от эукариот является наличие митохондрий.Митохондрии — это двухмембранные органеллы, содержащие собственные рибосомы и ДНК. Каждая мембрана представляет собой бислой фосфолипидов, залитый белками. Эукариотические клетки могут содержать от одной до нескольких тысяч митохондрий, в зависимости от уровня потребления энергии клеткой. Каждая митохондрия имеет длину от 1 до 10 микрометров (или больше) и существует в клетке в виде органеллы, которая может быть яйцевидной, червеобразной или сложно разветвленной.

Структура митохондрий

Большинство митохондрий окружены двумя мембранами, что могло бы произойти, когда один мембраносвязанный организм был поглощен вакуолью другим мембраносвязанным организмом.Внутренняя мембрана митохондрий обширна и включает значительные складки, называемые кристами, которые напоминают текстурированную внешнюю поверхность альфа-протеобактерий. Матрикс и внутренняя мембрана богаты ферментами, необходимыми для аэробного дыхания.

Структура митохондрий : На этой электронной микрофотографии показана митохондрия в просвечивающем электронном микроскопе. Эта органелла имеет внешнюю и внутреннюю мембраны. Внутренняя мембрана содержит складки, называемые кристами, которые увеличивают площадь ее поверхности.Пространство между двумя мембранами называется межмембранным пространством, а пространство внутри внутренней мембраны называется митохондриальным матриксом. Синтез АТФ происходит на внутренней мембране.

Митохондрии имеют свою собственную (обычно) кольцевую хромосому ДНК, которая стабилизируется прикреплением к внутренней мембране и несет гены, аналогичные генам, экспрессируемым альфа-протеобактериями. Митохондрии также имеют особые рибосомы и передающие РНК, которые напоминают эти компоненты у прокариот.Все эти особенности подтверждают гипотезу о том, что митохондрии когда-то были свободноживущими прокариотами.

Функция митохондрий

Митохондрии часто называют «электростанциями» или «энергетическими фабриками» клетки, потому что они отвечают за выработку аденозинтрифосфата (АТФ), основной молекулы, несущей энергию в клетке. АТФ представляет собой кратковременную запасенную энергию клетки. Клеточное дыхание — это процесс производства АТФ с использованием химической энергии, содержащейся в глюкозе и других питательных веществах.В митохондриях этот процесс использует кислород и производит углекислый газ в качестве побочного продукта. Фактически, углекислый газ, который вы выдыхаете при каждом вдохе, возникает в результате клеточных реакций, которые производят углекислый газ в качестве побочного продукта.

Важно отметить, что в мышечных клетках очень высокая концентрация митохондрий, производящих АТФ. Вашим мышечным клеткам нужно много энергии, чтобы ваше тело двигалось. Когда ваши клетки не получают достаточно кислорода, они не производят много АТФ. Вместо этого небольшое количество АТФ, которое они производят в отсутствие кислорода, сопровождается образованием молочной кислоты.

Помимо аэробной генерации АТФ, митохондрии выполняют несколько других метаболических функций. Одна из этих функций — генерировать кластеры железа и серы, которые являются важными кофакторами многих ферментов. Такие функции часто связаны с уменьшением происходящих из митохондрий органелл анаэробных эукариот.

Происхождение митохондрий

Существует две гипотезы происхождения митохондрий: эндосимбиотическая и аутогенная, но в настоящее время наиболее признанной теорией является эндосимбиоз.Эндосимбиотическая гипотеза предполагает, что митохондрии изначально были прокариотическими клетками, способными реализовывать окислительные механизмы. Эти прокариотические клетки могли быть поглощены эукариотом и стали эндосимбионтами, живущими внутри эукариота.

Сравнение растительных и животных клеток

Хотя обе они являются эукариотическими клетками, существуют уникальные структурные различия между клетками животных и растений.

Цели обучения

Различать структуры, обнаруженные в клетках животных и растений

Основные выводы

Ключевые моменты
  • Центросомы и лизосомы находятся в клетках животных, но не существуют в клетках растений.
  • Лизосомы — это «мусоропровод» животной клетки, в то время как в растительных клетках та же функция выполняется в вакуолях.
  • Растительные клетки имеют клеточную стенку, хлоропласты и другие специализированные пластиды, а также большую центральную вакуоль, которых нет в клетках животных.
  • Стенка клетки — это жесткое покрытие, которое защищает клетку, обеспечивает структурную поддержку и придает форму клетке.
  • Хлоропласты, обнаруженные в клетках растений, содержат зеленый пигмент, называемый хлорофиллом, который улавливает световую энергию, которая управляет реакциями фотосинтеза растений.
  • Центральная вакуоль играет ключевую роль в регулировании концентрации воды в растительной клетке при изменении условий окружающей среды.
Ключевые термины
  • протист : любой из эукариотических одноклеточных организмов, включая простейшие, слизистые плесени и некоторые водоросли; исторически сгруппированы в королевство Протоктисты.
  • автотроф : Любой организм, который может синтезировать пищу из неорганических веществ, используя тепло или свет в качестве источника энергии
  • гетеротроф : организм, которому требуется внешний источник энергии в виде пищи, так как он не может синтезировать свою собственную

Клетки животных в сравнении с клетками растений

Каждая эукариотическая клетка имеет плазматическую мембрану, цитоплазму, ядро, рибосомы, митохондрии, пероксисомы и в некоторых случаях вакуоли; однако между клетками животных и растений существуют поразительные различия.В то время как и животные, и растительные клетки имеют центры организации микротрубочек (MTOC), животные клетки также имеют центриоли, связанные с MTOC: комплекс, называемый центросомой. Каждая клетка животных имеет центросому и лизосомы, а клетки растений — нет. У растительных клеток есть клеточная стенка, хлоропласты и другие специализированные пластиды, а также большая центральная вакуоль, тогда как у животных клеток нет.

Центросома

Центросома — это центр организации микротрубочек, расположенный рядом с ядрами клеток животных.Он содержит пару центриолей, две структуры, которые лежат перпендикулярно друг другу. Каждая центриоль представляет собой цилиндр из девяти троек микротрубочек. Центросома (органелла, из которой берут начало все микротрубочки) реплицируется перед делением клетки, и центриоли, по-видимому, играют определенную роль в притяжении дублированных хромосом к противоположным концам делящейся клетки. Однако точная функция центриолей в делении клеток не ясна, потому что клетки, у которых была удалена центросома, все еще могут делиться; и клетки растений, в которых отсутствуют центросомы, способны к клеточному делению.

Структура центросомы : Центросома состоит из двух центриолей, расположенных под прямым углом друг к другу. Каждая центриоль представляет собой цилиндр, состоящий из девяти троек микротрубочек. Белки нонтубулина (обозначенные зелеными линиями) удерживают триплеты микротрубочек вместе.

Лизосомы

Клетки животных имеют еще один набор органелл, которых нет в клетках растений: лизосомы. Лизосомы — это «мусоропровод» клетки. В клетках растений пищеварительные процессы происходят в вакуолях.Ферменты в лизосомах способствуют расщеплению белков, полисахаридов, липидов, нуклеиновых кислот и даже изношенных органелл. Эти ферменты активны при гораздо более низком pH, чем у цитоплазмы. Следовательно, pH в лизосомах более кислый, чем pH цитоплазмы. Многие реакции, происходящие в цитоплазме, не могут происходить при низком pH, поэтому преимущество разделения эукариотической клетки на органеллы очевидно.

Стена клетки

Стенка ячейки представляет собой жесткое покрытие, которое защищает ячейку, обеспечивает структурную поддержку и придает форму ячейке.Грибковые и протистанские клетки также имеют клеточные стенки. В то время как основным компонентом стенок прокариотических клеток является пептидогликан, основной органической молекулой в стенке растительной клетки является целлюлоза, полисахарид, состоящий из единиц глюкозы. Когда вы надкусываете сырые овощи, например сельдерей, они хрустят. Это потому, что вы зубами разрываете жесткие клеточные стенки клеток сельдерея.

Целлюлоза : Целлюлоза представляет собой длинную цепь молекул β-глюкозы, соединенных 1-4 связями. Пунктирные линии на каждом конце рисунка обозначают серию из гораздо большего количества единиц глюкозы.Размер страницы не позволяет изобразить целую молекулу целлюлозы.

Хлоропласты

Подобно митохондриям, хлоропласты имеют собственную ДНК и рибосомы, но хлоропласты выполняют совершенно другую функцию. Хлоропласты — это органеллы растительной клетки, которые осуществляют фотосинтез. Фотосинтез — это серия реакций, в которых для производства глюкозы и кислорода используются углекислый газ, вода и световая энергия. Это главное различие между растениями и животными; растения (автотрофы) способны производить себе пищу, как сахар, в то время как животные (гетеротрофы) должны принимать их пищу.

Подобно митохондриям, хлоропласты имеют внешнюю и внутреннюю мембраны, но внутри пространства, ограниченного внутренней мембраной хлоропласта, находится набор взаимосвязанных и уложенных друг на друга заполненных жидкостью мембранных мешочков, называемых тилакоидами. Каждый стек тилакоидов называется гранумом (множественное число = грана). Жидкость, заключенная во внутренней мембране, окружающей грану, называется стромой.

Структура хлоропласта : Хлоропласт имеет внешнюю мембрану, внутреннюю мембрану и мембранные структуры, называемые тилакоидами, которые сложены в грану.Пространство внутри тилакоидных мембран называется тилакоидным пространством. Реакции сбора света происходят в тилакоидных мембранах, а синтез сахара происходит в жидкости внутри внутренней мембраны, которая называется стромой.

Хлоропласты содержат зеленый пигмент, называемый хлорофиллом, который улавливает световую энергию, которая запускает реакции фотосинтеза. Как и в клетках растений, у фотосинтезирующих протистов также есть хлоропласты. Некоторые бактерии осуществляют фотосинтез, но их хлорофилл не относится к органеллам.

Центральная вакуоль

Центральная вакуоль играет ключевую роль в регулировании концентрации воды в клетках при изменении условий окружающей среды. Когда вы забываете полить растение на несколько дней, оно увядает. Это потому, что когда концентрация воды в почве становится ниже, чем концентрация воды в растении, вода выходит из центральных вакуолей и цитоплазмы. По мере того как центральная вакуоль сжимается, клеточная стенка остается без поддержки. Эта потеря поддержки клеточных стенок растительных клеток приводит к увяданию растения.Центральная вакуоль также поддерживает расширение клетки. Когда центральная вакуоль содержит больше воды, клетка становится больше, не тратя много энергии на синтез новой цитоплазмы.

1.1 Темы и концепции биологии — концепции биологии — 1-е канадское издание

К концу этого раздела вы сможете:

  • Определить и описать свойства жизни
  • Опишите уровни организации среди живых существ
  • Перечислите примеры различных дисциплин по биологии

Посмотрите видео об эволюции путем естественного отбора.

Биология — это наука, изучающая жизнь. Что такое жизнь? Это может показаться глупым вопросом с очевидным ответом, но дать определение жизни непросто. Например, раздел биологии под названием вирусология изучает вирусы, которые обладают некоторыми характеристиками живых существ, но не имеют других. Оказывается, хотя вирусы могут атаковать живые организмы, вызывать заболевания и даже воспроизводиться, они не соответствуют критериям, которые биологи используют для определения жизни.

С самого начала биология боролась с четырьмя вопросами: какие общие свойства делают что-то «живым»? Как функционируют эти различные живые существа? Столкнувшись с удивительным разнообразием жизни, как нам организовать различные виды организмов, чтобы лучше понять их? И, наконец, что в конечном итоге пытаются понять биологи, как возникло это разнообразие и как оно продолжается? Поскольку новые организмы открываются каждый день, биологи продолжают искать ответы на эти и другие вопросы.

Все группы живых организмов обладают множеством ключевых характеристик или функций: порядок, чувствительность или реакция на стимулы, размножение, адаптация, рост и развитие, регуляция, гомеостаз и обработка энергии. Вместе эти восемь характеристик определяют жизнь.

Заказать

Организмы — это высокоорганизованные структуры, состоящие из одной или нескольких клеток. Даже очень простые одноклеточные организмы чрезвычайно сложны. Внутри каждой ячейки атомы составляют молекулы.Они, в свою очередь, составляют клеточные компоненты или органеллы. Многоклеточные организмы, которые могут состоять из миллионов отдельных клеток, имеют преимущество перед одноклеточными в том, что их клетки могут быть специализированы для выполнения определенных функций и даже принесены в жертву в определенных ситуациях на благо всего организма в целом. Как эти специализированные клетки объединяются, чтобы сформировать такие органы, как сердце, легкие или кожа у таких организмов, как жаба, показанная на рисунке 1.2, будет обсуждаться позже.

Фигура 1.2 Жаба представляет собой высокоорганизованную структуру, состоящую из клеток, тканей, органов и систем органов.

Чувствительность или реакция на стимулы

Организмы реагируют на разнообразные раздражители. Например, растения могут наклоняться к источнику света или реагировать на прикосновения. Даже крошечные бактерии могут двигаться к химическим веществам или от них (процесс, называемый хемотаксисом) или свету (фототаксис). Движение к стимулу считается положительной реакцией, а движение от стимула — отрицательной.

Рис. 1.3. Листья этого чувствительного растения (Mimosa pudica) мгновенно опадают и складываются при прикосновении. Через несколько минут растение возвращается в нормальное состояние.

Концепция в действии


Посмотрите это видео, чтобы увидеть, как чувствительное растение реагирует на прикосновение.

Репродукция

Одноклеточные организмы воспроизводятся, сначала дублируя свою ДНК, которая является генетическим материалом, а затем деля его поровну, когда клетка готовится к делению с образованием двух новых клеток.Многие многоклеточные организмы (состоящие из более чем одной клетки) производят специализированные репродуктивные клетки, из которых формируются новые особи. Когда происходит размножение, ДНК, содержащая гены, передается потомству организма. Эти гены являются причиной того, что потомство будет принадлежать к одному виду и иметь характеристики, аналогичные родительским, такие как цвет меха и группа крови.

Адаптация

Все живые организмы «приспособлены» к окружающей среде. Биологи называют это приспособление адаптацией, и это следствие эволюции путем естественного отбора, который действует во всех линиях воспроизводящих организмов.Примеры приспособлений разнообразны и уникальны: от термостойких архей, обитающих в кипящих горячих источниках, до длины языка нектарной моли, которая соответствует размеру цветка, которым она питается. Все адаптации усиливают репродуктивный потенциал человека, который их демонстрирует, включая их способность выживать и воспроизводить потомство. Адаптации непостоянны. По мере изменения окружающей среды естественный отбор заставляет характеристики особей в популяции отслеживать эти изменения.

Рост и развитие

Организмы растут и развиваются в соответствии с конкретными инструкциями, закодированными их генами. Эти гены предоставляют инструкции, которые будут управлять клеточным ростом и развитием, гарантируя, что детеныши вида вырастут и будут демонстрировать многие из тех же характеристик, что и его родители.

Рис. 1.4 Хотя нет двух одинаковых котят, эти котята унаследовали гены от обоих родителей и обладают многими схожими характеристиками.

Постановление

Даже самые маленькие организмы сложны и требуют множества регуляторных механизмов для координации внутренних функций, таких как транспорт питательных веществ, реакция на раздражители и преодоление стрессов окружающей среды.Например, системы органов, такие как пищеварительная или кровеносная системы, выполняют определенные функции, такие как перенос кислорода по всему телу, удаление отходов, доставка питательных веществ в каждую клетку и охлаждение тела.

Гомеостаз

Для правильного функционирования клеткам необходимы соответствующие условия, такие как правильная температура, pH и концентрация различных химических веществ. Однако эти условия могут меняться от одного момента к другому. Организмы способны поддерживать внутренние условия в узком диапазоне почти постоянно, несмотря на изменения окружающей среды, посредством процесса, называемого гомеостазом или «устойчивым состоянием» — способности организма поддерживать постоянные внутренние условия.Например, многие организмы регулируют температуру своего тела с помощью процесса, известного как терморегуляция. Организмы, обитающие в холодном климате, такие как белый медведь, имеют структуру тела, которая помогает им выдерживать низкие температуры и сохранять тепло тела. В жарком климате у организмов есть методы (например, потоотделение у людей или одышка у собак), которые помогают им отводить избыточное тепло тела.

Рис. 1.5 Белые медведи и другие млекопитающие, обитающие в покрытых льдом регионах, поддерживают температуру своего тела, выделяя тепло и уменьшая потери тепла через густой мех и плотный слой жира под кожей.

Обработка энергии

Все организмы (например, калифорнийский кондор, показанный на рис. 1.6) используют источник энергии для своей метаболической активности. Некоторые организмы улавливают энергию солнца и превращают ее в химическую энергию в пище; другие используют химическую энергию от молекул, которые они принимают.

Рис. 1.6 Калифорнийскому кондору требуется много энергии для полета. Химическая энергия, получаемая из пищи, используется для полета. Калифорнийские кондоры — вымирающий вид; Ученые постарались прикрепить к каждой птице бирку с крыльями, чтобы помочь им идентифицировать и определить местонахождение каждой отдельной птицы.

Живые существа высокоорганизованы и структурированы, следуя иерархии от малого до большого. Атом — самая маленькая и самая фундаментальная единица материи. Он состоит из ядра, окруженного электронами. Атомы образуют молекулы. Молекула представляет собой химическую структуру, состоящую как минимум из двух атомов, удерживаемых вместе химической связью. Многие молекулы, которые имеют биологическое значение, — это макромолекул , большие молекулы, которые обычно образуются путем объединения более мелких единиц, называемых мономерами.Примером макромолекулы является дезоксирибонуклеиновая кислота (ДНК), которая содержит инструкции для функционирования организма, который ее содержит.

Рис. 1.7. Молекула, как и эта большая молекула ДНК, состоит из атомов.

Концепция в действии


Чтобы увидеть анимацию этой молекулы ДНК, щелкните здесь.

Некоторые клетки содержат агрегаты макромолекул, окруженные мембранами; их называют органеллами. Органеллы — это небольшие структуры, которые существуют внутри клеток и выполняют специальные функции.Все живые существа состоят из клеток; Сама клетка — это наименьшая фундаментальная единица структуры и функции в живых организмах. (Это требование является причиной того, почему вирусы не считаются живыми: они не состоят из клеток. Чтобы создать новые вирусы, они должны вторгнуться и захватить живую клетку; только тогда они могут получить материалы, необходимые для воспроизводства.) Некоторые организмы состоят из одна клетка, а другие — многоклеточные. Клетки подразделяются на прокариотические и эукариотические. Прокариоты — это одноклеточные организмы, в которых отсутствуют органеллы, окруженные мембраной, и ядра, окруженные ядерными мембранами; напротив, клетки эукариот действительно имеют мембраносвязанные органеллы и ядра.

В большинстве многоклеточных организмов клетки объединяются в ткани, которые представляют собой группы похожих клеток, выполняющих одну и ту же функцию. Органы — это совокупность тканей, сгруппированных по общей функции. Органы есть не только у животных, но и у растений. Система органов — это более высокий уровень организации, состоящий из функционально связанных органов. Например, у позвоночных животных есть много систем органов, таких как система кровообращения, которая транспортирует кровь по всему телу, в легкие и из них; он включает такие органы, как сердце и кровеносные сосуды.Организмы — это индивидуальные живые существа. Например, каждое дерево в лесу — это организм. Одноклеточные прокариоты и одноклеточные эукариоты также считаются организмами и обычно называются микроорганизмами.

Рис. 1.8 Биология исследует все аспекты жизни, от атома до всей Земли.

Какое из следующих утверждений неверно?

  1. Ткани существуют внутри органов, которые существуют внутри систем органов.
  2. Сообщества существуют в популяциях, существующих в экосистемах.
  3. Органеллы существуют внутри клеток, которые существуют в тканях.
  4. Сообщества существуют в экосистемах, существующих в биосфере.

Все особи вида, живущие на определенной территории, вместе называются популяцией. Например, в лесу может быть много белых сосен. Все эти сосны представляют собой популяцию белых сосен в этом лесу. На одной и той же территории могут проживать разные группы населения. Например, сосновый лес включает популяции цветковых растений, а также популяции насекомых и микробов.Сообщество — это совокупность популяций, населяющих определенную территорию. Например, все деревья, цветы, насекомые и другие популяции в лесу образуют лесное сообщество. Сам лес — это экосистема. Экосистема состоит из всех живых существ в определенной области вместе с абиотическими или неживыми частями этой среды, такими как азот в почве или дождевая вода. На самом высоком уровне организации биосфера представляет собой совокупность всех экосистем и представляет собой зоны жизни на Земле.Он включает землю, воду и части атмосферы.

Биология имеет очень широкие масштабы, потому что на Земле существует огромное разнообразие форм жизни. Источником этого разнообразия является эволюция, процесс постепенного изменения, в ходе которого новые виды возникают из более старых видов. Эволюционные биологи изучают эволюцию живых существ во всем, от микроскопического мира до экосистем.

В 18 веке ученый Карл Линней впервые предложил организовать известные виды организмов в иерархическую таксономию.В этой системе виды, которые наиболее похожи друг на друга, объединяются в группу, известную как род. Более того, похожие роды (множественное число родов) объединяются в одну семью. Такое группирование продолжается до тех пор, пока все организмы не будут собраны в группы на самом высоком уровне. Текущая таксономическая система теперь имеет восемь уровней в своей иерархии, от низшего к высшему, а именно: вид, род, семейство, порядок, класс, тип, царство и домен. Таким образом, виды группируются внутри родов, роды — внутри семейств, семейства — внутри отрядов и т. Д.

Рис. 1.9. На этой диаграмме показаны уровни таксономической иерархии собаки, от самой широкой категории — домена до наиболее специфичных — видов.

Самый высокий уровень, домен, является относительно новым дополнением к системе с 1990-х годов. Теперь ученые признают три области жизни: эукарию, архей и бактерии. Домен Eukarya содержит организмы, у которых есть клетки с ядрами. Он включает в себя царства грибов, растений, животных и несколько царств протистов. Археи — это одноклеточные организмы без ядер, среди которых много экстремофилов, обитающих в суровых условиях, например, в горячих источниках.Бактерии — еще одна совершенно другая группа одноклеточных организмов без ядер. И археи, и бактерии — прокариоты, неофициальное название клеток без ядер. Осознание в 1990-х годах того, что некоторые «бактерии», ныне известные как археи, генетически и биохимически отличаются от других бактериальных клеток, как и от эукариот, послужило основанием для рекомендации разделить жизнь на три области. Это резкое изменение в наших знаниях о дереве жизни демонстрирует, что классификации не являются постоянными и изменятся, когда станет доступна новая информация.

В дополнение к иерархической таксономической системе Линней был первым, кто назвал организмы двумя уникальными именами, которые теперь называются биномиальной системой именования. До Линнея использование общих имен для обозначения организмов вызывало путаницу, поскольку в этих общих именах существовали региональные различия. Биномиальные названия состоят из названия рода (которое пишется с большой буквы) и названия вида (все в нижнем регистре). При печати оба имени выделяются курсивом. Каждому виду дается уникальный бином, признанный во всем мире, так что ученый в любом месте может знать, о каком организме идет речь.Например, североамериканская голубая сойка уникальна как Cyanocitta cristata . Наш собственный вид — это Homo sapiens .

Рисунок 1.10 Эти изображения представляют разные домены. Микрофотография, полученная с помощью сканирующего электронного микроскопа, показывает: (а) бактериальные клетки принадлежат к домену «Бактерии», а (б) экстремофилы, все вместе видимые в виде цветных матов в этом горячем источнике, принадлежат домену архей. И (c) подсолнечник, и (d) лев являются частью домена Eukarya.

Эволюция в действии

Карл Вёзе и филогенетическое древо

Эволюционные отношения различных форм жизни на Земле можно обобщить на филогенетическом дереве.Филогенетическое дерево — это диаграмма, показывающая эволюционные отношения между биологическими видами, основанные на сходстве и различии генетических или физических признаков или того и другого. Филогенетическое дерево состоит из точек ветвления или узлов и ветвей. Внутренние узлы представляют предков и являются точками эволюции, когда на основании научных данных считается, что предок разделился, образовав два новых вида. Длину каждой ветви можно рассматривать как оценку относительного времени.

В прошлом биологи сгруппировали живые организмы в пять царств: животные, растения, грибы, простейшие и бактерии.Новаторская работа американского микробиолога Карла Вёза в начале 1970-х годов показала, однако, что жизнь на Земле развивалась по трем линиям, которые теперь называются областями — бактерии, археи и эукарии. Вёзе предложил домен как новый таксономический уровень, а архей как новый домен, чтобы отразить новое филогенетическое дерево. Многие организмы, принадлежащие к домену архей, живут в экстремальных условиях и называются экстремофилами. Чтобы построить свое дерево, Вёзе использовал генетические отношения, а не сходства, основанные на морфологии (форме).В филогенетических исследованиях использовались различные гены. Дерево Вёзе было построено на основе сравнительного секвенирования универсально распределенных генов, обнаруженных в некоторых слегка измененных формах в каждом организме, сохраненных (это означает, что эти гены оставались лишь незначительно измененными на протяжении всей эволюции) и соответствующей длины.

Рис. 1.11 Это филогенетическое дерево было построено микробиологом Карлом Вёзе с использованием генетических родств. Дерево показывает разделение живых организмов на три области: бактерии, археи и эукарии.Бактерии и археи — это организмы без ядра или других органелл, окруженных мембраной, и поэтому они являются прокариотами.

Посмотреть видео о науке и медицине

Область биологии обширна и поэтому включает множество разделов и дисциплин. Биологи могут изучать одну из этих субдисциплин и работать в более узкой области. Например, молекулярная биология изучает биологические процессы на молекулярном уровне, включая взаимодействия между молекулами, такими как ДНК, РНК и белки, а также то, как они регулируются.Микробиология — это изучение структуры и функций микроорганизмов. Сама по себе это довольно обширная ветвь, и в зависимости от предмета исследования, в нее входят, в частности, физиологи-микробиологи, экологи и генетики.

Другая область биологических исследований, нейробиология, изучает биологию нервной системы, и хотя она считается разделом биологии, она также признана междисциплинарной областью исследований, известной как нейробиология. Из-за своей междисциплинарной природы эта дисциплина изучает различные функции нервной системы с использованием молекулярных, клеточных, связанных с развитием, медицинских и вычислительных подходов.

Рис. 1.12. Исследователи работают над раскопками окаменелостей динозавров в Кастельоне, Испания.

Палеонтология, еще один раздел биологии, использует окаменелости для изучения истории жизни. Зоология и ботаника изучают животных и растения соответственно. Биологи могут также специализироваться как биотехнологи, экологи или физиологи, и это лишь некоторые области. Биотехнологи применяют знания биологии для создания полезных продуктов. Экологи изучают взаимодействие организмов в окружающей их среде.Физиологи изучают работу клеток, тканей и органов. Это лишь небольшая часть множества областей, которыми могут заниматься биологи. От нашего собственного тела до мира, в котором мы живем, открытия в биологии могут влиять на нас самым прямым и важным образом. Мы зависим от этих открытий для нашего здоровья, наших источников пищи и преимуществ, предоставляемых нашей экосистемой. Из-за этого знание биологии может помочь нам в принятии решений в нашей повседневной жизни.

Развитие технологий в двадцатом веке, которое продолжается и сегодня, особенно технология описания и манипулирования генетическим материалом, ДНК, изменила биологию.Это преобразование позволит биологам продолжить более детальное понимание истории жизни, того, как устроено человеческое тело, нашего человеческого происхождения и того, как люди могут выжить как вид на этой планете, несмотря на стрессы, вызванные нашей растущей численностью. Биологи продолжают разгадывать огромные загадки жизни, предполагая, что мы только начали понимать жизнь на планете, ее историю и наши отношения с ней. По этой и другим причинам знание биологии, полученное с помощью этого учебника и других печатных и электронных средств массовой информации, должно быть полезным в любой области, в которой вы работаете.

Судмедэксперт

Судебная медицина — это применение науки для ответа на вопросы, связанные с законом. Судебными экспертами могут быть биологи, химики и биохимики. Судебно-медицинские эксперты предоставляют научные доказательства для использования в судах, и их работа включает изучение следов, связанных с преступлениями. За последние несколько лет интерес к судебной медицине возрос, возможно, из-за популярных телешоу, в которых судмедэксперты участвуют в работе.Кроме того, развитие молекулярных методов и создание баз данных ДНК обновили виды работы, которую могут выполнять судебно-медицинские эксперты. Их служебная деятельность в первую очередь связана с преступлениями против людей, такими как убийства, изнасилования и нападения. Их работа включает анализ таких образцов, как волосы, кровь и другие биологические жидкости, а также обработку ДНК, обнаруженной во многих различных средах и материалах. Судмедэксперты также анализируют другие биологические доказательства, оставленные на местах преступления, такие как части насекомых или пыльцевые зерна.Студенты, которые хотят продолжить карьеру в области судебной медицины, скорее всего, должны будут пройти курсы химии и биологии, а также некоторые интенсивные курсы математики.

Рис. 1.13. Этот судебно-медицинский эксперт работает в комнате для извлечения ДНК в Лаборатории уголовных расследований армии США.

Биология — наука о жизни. Все живые организмы обладают несколькими ключевыми свойствами, такими как порядок, чувствительность или реакция на раздражители, размножение, адаптация, рост и развитие, регуляция, гомеостаз и обработка энергии.Живые существа высокоорганизованы по иерархии, которая включает в себя атомы, молекулы, органеллы, клетки, ткани, органы и системы органов. Организмы, в свою очередь, подразделяются на популяции, сообщества, экосистемы и биосферу. Эволюция является источником огромного биологического разнообразия на Земле сегодня. Диаграмма, называемая филогенетическим деревом, может использоваться для демонстрации эволюционных взаимоотношений между организмами. Биология очень широка и включает множество разделов и дисциплин. Примеры включают, среди прочего, молекулярную биологию, микробиологию, нейробиологию, зоологию и ботанику.

атом: основная единица вещества, которая не может быть разрушена с помощью обычных химических реакций

биология: изучение живых организмов и их взаимодействия друг с другом и окружающей их средой

биосфера: совокупность всех экосистем на Земле

клетка: наименьшая фундаментальная единица структуры и функции живых существ

сообщество: совокупность популяций, населяющих определенную территорию

экосистема: все живые существа в определенной области вместе с абиотическими, неживыми частями этой среды

эукариот: организм, клетки которого имеют ядра и мембраносвязанные органеллы

эволюция: процесс постепенного изменения популяции, который также может привести к появлению новых видов, происходящих от более старых видов

гомеостаз: способность организма поддерживать постоянные внутренние условия

макромолекула: большая молекула, обычно образованная путем соединения более мелких молекул

молекула: химическая структура, состоящая как минимум из двух атомов, удерживаемых вместе химической связью

орган: структура, состоящая из тканей, работающих вместе для выполнения общей функции

Система органов: верхний уровень организации, состоящий из функционально связанных органов

Органелла : мембраносвязанный отсек или мешок внутри клетки

организм: индивидуальное живое существо

филогенетическое дерево: диаграмма, показывающая эволюционные отношения между биологическими видами на основе сходства и различий в генетических или физических признаках или обоих

Население: все особи одного вида, живущие на определенной территории

прокариот: одноклеточный организм, не имеющий ядра или любой другой мембраносвязанной органеллы

ткань: группа аналогичных клеток, выполняющих одну и ту же функцию

Атрибуция в СМИ

2.3 биологические молекулы — концепции биологии — 1-е канадское издание

К концу этого раздела вы сможете:

  • Опишите, почему углерод имеет решающее значение для жизни
  • Объясните влияние небольших изменений аминокислот на организмы
  • Опишите четыре основных типа биологических молекул
  • Понимать функции четырех основных типов молекул

Посмотрите видео о белках и белковых ферментах.

Большие молекулы, необходимые для жизни, которые состоят из более мелких органических молекул, называются биологическими макромолекулами . Существует четыре основных класса биологических макромолекул (углеводы, липиды, белки и нуклеиновые кислоты), каждый из которых является важным компонентом клетки и выполняет широкий спектр функций. Вместе эти молекулы составляют большую часть массы клетки. Биологические макромолекулы являются органическими, что означает, что они содержат углерод. Кроме того, они могут содержать водород, кислород, азот, фосфор, серу и дополнительные второстепенные элементы.

Часто говорят, что жизнь «основана на углероде». Это означает, что атомы углерода, связанные с другими атомами углерода или другими элементами, образуют фундаментальные компоненты многих, если не большинства, молекул, уникальных для живых существ. Другие элементы играют важную роль в биологических молекулах, но углерод определенно квалифицируется как элемент «фундамент» для молекул в живых существах. Это связывающие свойства атомов углерода, которые ответственны за его важную роль.

Углерод содержит четыре электрона во внешней оболочке.Следовательно, он может образовывать четыре ковалентные связи с другими атомами или молекулами. Простейшая молекула органического углерода — метан (CH 4 ), в котором четыре атома водорода связаны с атомом углерода.

Рис. 2.12. Углерод может образовывать четыре ковалентные связи, образуя органическую молекулу. Самая простая молекула углерода — это метан (Ch5), изображенный здесь.

Однако более сложные конструкции изготавливаются с использованием углерода. Любой из атомов водорода может быть заменен другим атомом углерода, ковалентно связанным с первым атомом углерода.Таким образом могут быть образованы длинные и разветвленные цепочки углеродных соединений (рис. 2.13 a ). Атомы углерода могут связываться с атомами других элементов, таких как азот, кислород и фосфор (рис. 2.13 b ). Молекулы также могут образовывать кольца, которые сами могут связываться с другими кольцами (рис. 2.13 c ). Это разнообразие молекулярных форм объясняет разнообразие функций биологических макромолекул и в значительной степени основано на способности углерода образовывать множественные связи с самим собой и другими атомами.

Рис. 2.13. Эти примеры показывают три молекулы (обнаруженные в живых организмах), которые содержат атомы углерода, различным образом связанные с другими атомами углерода и атомами других элементов. (а) Эта молекула стеариновой кислоты имеет длинную цепочку атомов углерода. (б) Глицин, компонент белков, содержит атомы углерода, азота, кислорода и водорода. (c) Глюкоза, сахар, имеет кольцо из атомов углерода и один атом кислорода.

Углеводы — это макромолекулы, с которыми большинство потребителей в некоторой степени знакомо.Чтобы похудеть, некоторые люди придерживаются «низкоуглеводной» диеты. Спортсмены, напротив, часто «нагружают углеводы» перед важными соревнованиями, чтобы убедиться, что у них достаточно энергии для соревнований на высоком уровне. Фактически, углеводы являются неотъемлемой частью нашего рациона; злаки, фрукты и овощи — все это естественные источники углеводов. Углеводы обеспечивают организм энергией, особенно через глюкозу, простой сахар. Углеводы также выполняют другие важные функции у людей, животных и растений.

Углеводы можно представить формулой (CH 2 O) n , где n — количество атомов углерода в молекуле. Другими словами, соотношение углерода, водорода и кислорода в молекулах углеводов составляет 1: 2: 1. Углеводы подразделяются на три подтипа: моносахариды, дисахариды и полисахариды.

Моносахариды (моно- = «один»; sacchar- = «сладкий») представляют собой простые сахара, наиболее распространенным из которых является глюкоза.В моносахаридах количество атомов углерода обычно составляет от трех до шести. Большинство названий моносахаридов оканчиваются суффиксом -ose. В зависимости от количества атомов углерода в сахаре они могут быть известны как триозы (три атома углерода), пентозы (пять атомов углерода) и гексозы (шесть атомов углерода).

Моносахариды могут существовать в виде линейной цепи или кольцевых молекул; в водных растворах они обычно находятся в кольцевой форме.

Химическая формула глюкозы: C 6 H 12 O 6 .У большинства живых существ глюкоза является важным источником энергии. Во время клеточного дыхания из глюкозы выделяется энергия, которая используется для выработки аденозинтрифосфата (АТФ). Растения синтезируют глюкозу, используя углекислый газ и воду в процессе фотосинтеза, а глюкоза, в свою очередь, используется для удовлетворения потребностей растений в энергии. Избыток синтезированной глюкозы часто хранится в виде крахмала, который расщепляется другими организмами, питающимися растениями.

Галактоза (входит в состав лактозы или молочного сахара) и фруктоза (содержится во фруктах) — другие распространенные моносахариды.Хотя глюкоза, галактоза и фруктоза имеют одинаковую химическую формулу (C 6 H 12 O 6 ), они различаются структурно и химически (и известны как изомеры) из-за разного расположения атомов в углеродной цепи. .

Рис. 2.14. Глюкоза, галактоза и фруктоза — изомерные моносахариды, что означает, что они имеют одинаковую химическую формулу, но немного разные структуры.

Дисахариды (ди- = «два») образуются, когда два моносахарида подвергаются реакции дегидратации (реакции, при которой происходит удаление молекулы воды).Во время этого процесса гидроксильная группа (–OH) одного моносахарида соединяется с атомом водорода другого моносахарида, высвобождая молекулу воды (H 2 O) и образуя ковалентную связь между атомами в двух молекулах сахара.

Обычные дисахариды включают лактозу, мальтозу и сахарозу. Лактоза — это дисахарид, состоящий из мономеров глюкозы и галактозы. Он содержится в молоке. Мальтоза, или солодовый сахар, представляет собой дисахарид, образующийся в результате реакции дегидратации между двумя молекулами глюкозы.Наиболее распространенным дисахаридом является сахароза или столовый сахар, который состоит из мономеров глюкозы и фруктозы.

Длинная цепь моносахаридов, связанных ковалентными связями, известна как полисахарид (поли- = «много»). Цепь может быть разветвленной или неразветвленной, и она может содержать разные типы моносахаридов. Полисахариды могут быть очень большими молекулами. Крахмал, гликоген, целлюлоза и хитин являются примерами полисахаридов.

Крахмал — это хранимая в растениях форма сахаров, состоящая из амилозы и амилопектина (оба полимера глюкозы).Растения способны синтезировать глюкозу, а избыток глюкозы откладывается в виде крахмала в различных частях растений, включая корни и семена. Крахмал, который потребляется животными, расщепляется на более мелкие молекулы, такие как глюкоза. Затем клетки могут поглощать глюкозу.

Гликоген — это форма хранения глюкозы в организме человека и других позвоночных, состоящая из мономеров глюкозы. Гликоген является животным эквивалентом крахмала и представляет собой сильно разветвленную молекулу, обычно хранящуюся в клетках печени и мышц.Когда уровень глюкозы снижается, гликоген расщепляется с высвобождением глюкозы.

Целлюлоза — один из самых распространенных природных биополимеров. Клеточные стенки растений в основном состоят из целлюлозы, которая обеспечивает структурную поддержку клетки. Дерево и бумага в основном целлюлозные по своей природе. Целлюлоза состоит из мономеров глюкозы, которые связаны связями между определенными атомами углерода в молекуле глюкозы.

Каждый второй мономер глюкозы в целлюлозе переворачивается и плотно упаковывается в виде удлиненных длинных цепей.Это придает целлюлозе жесткость и высокую прочность на разрыв, что так важно для растительных клеток. Целлюлоза, проходящая через нашу пищеварительную систему, называется пищевыми волокнами. Хотя связи глюкозы и глюкозы в целлюлозе не могут быть разрушены пищеварительными ферментами человека, травоядные животные, такие как коровы, буйволы и лошади, способны переваривать траву, богатую целлюлозой, и использовать ее в качестве источника пищи. У этих животных определенные виды бактерий обитают в рубце (часть пищеварительной системы травоядных) и секретируют фермент целлюлазу.В аппендиксе также содержатся бактерии, которые расщепляют целлюлозу, что придает ей важную роль в пищеварительной системе жвачных животных. Целлюлазы могут расщеплять целлюлозу на мономеры глюкозы, которые могут использоваться животным в качестве источника энергии.

Углеводы выполняют другие функции у разных животных. У членистоногих, таких как насекомые, пауки и крабы, есть внешний скелет, называемый экзоскелетом, который защищает их внутренние части тела. Этот экзоскелет состоит из биологической макромолекулы , хитина , азотистого углевода.Он состоит из повторяющихся единиц модифицированного сахара, содержащего азот.

Таким образом, из-за различий в молекулярной структуре углеводы могут выполнять самые разные функции хранения энергии (крахмал и гликоген), а также структурной поддержки и защиты (целлюлоза и хитин).

Рис. 2.15. Хотя их структура и функции различаются, все полисахаридные углеводы состоят из моносахаридов и имеют химическую формулу (Ch3O) n.

Зарегистрированный диетолог: ожирение является проблемой для здоровья во всем мире, и многие болезни, такие как диабет и болезни сердца, становятся все более распространенными из-за ожирения.Это одна из причин, почему к зарегистрированным диетологам все чаще обращаются за советом. Зарегистрированные диетологи помогают планировать пищевые продукты и программы питания для людей в различных условиях. Они часто работают с пациентами в медицинских учреждениях, разрабатывая планы питания для профилактики и лечения заболеваний. Например, диетологи могут научить пациента с диабетом контролировать уровень сахара в крови, употребляя в пищу правильные типы и количества углеводов. Диетологи также могут работать в домах престарелых, школах и частных клиниках.

Чтобы стать дипломированным диетологом, нужно получить как минимум степень бакалавра в области диетологии, питания, пищевых технологий или в смежных областях. Кроме того, дипломированные диетологи должны пройти программу стажировки под руководством и сдать национальный экзамен. Те, кто занимается диетологией, проходят курсы по питанию, химии, биохимии, биологии, микробиологии и физиологии человека. Диетологи должны стать экспертами в химии и функциях пищи (белков, углеводов и жиров).

Через призму коренных народов (Сюзанна Вилкерсон и Чарльз Мольнар)

Я работаю в колледже Камосун, расположенном в красивой Виктории, Британская Колумбия, с кампусами на традиционных территориях народов леквунгенов и васаней. Подземная луковица для хранения цветка камас, показанная ниже, была важным источником пищи для многих коренных народов острова Ванкувер и всей западной части Северной Америки. Луковицы камас по-прежнему употребляются в пищу как традиционный источник пищи, и приготовление луковиц камас относится к этому текстовому разделу об углеводах.

Рис. 2.16 Изображение синего цветка камас и насекомого-опылителя. Подземная лампочка камаса запекается в костре. Тепло действует как фермент панкреатическая амилаза и расщепляет длинные цепи неперевариваемого инулина на усвояемые моно- и дисахариды.

Чаще всего растения вырабатывают крахмал как запасенную форму углеводов. Некоторые растения, например камас, создают инулин. Инулин используется в качестве пищевых волокон, однако он не переваривается людьми. Если бы вы откусили сырую луковицу камаса, она была бы горькой и имела липкую консистенцию.Коренные народы используют метод, чтобы сделать камас одновременно удобоваримым и вкусным, — это медленно запекать луковицы в течение длительного периода в подземной чаше для костра, покрытой особыми листьями и почвой. Тепло действует как фермент амилаза поджелудочной железы и расщепляет длинные цепи инулина на легкоусвояемые моно- и дисахариды.

Правильно запеченные луковицы камас по вкусу напоминают сочетание печеной груши и вареного инжира. Важно отметить, что, хотя синие камы являются источником пищи, их не следует путать с белыми камасами смерти, которые особенно токсичны и смертельны.Цветки выглядят по-разному, но луковицы очень похожи.

Липиды включают разнообразную группу соединений, объединенных общим признаком. Липиды гидрофобны («водобоязненные») или нерастворимы в воде, потому что они неполярные молекулы. Это потому, что они являются углеводородами, которые включают только неполярные углерод-углеродные или углерод-водородные связи. Липиды выполняют в клетке множество различных функций. Клетки хранят энергию для длительного использования в виде липидов, называемых , жиров .Липиды также обеспечивают изоляцию растений и животных от окружающей среды. Например, они помогают водным птицам и млекопитающим оставаться сухими из-за их водоотталкивающих свойств. Липиды также являются строительными блоками многих гормонов и важной составляющей плазматической мембраны. Липиды включают жиры, масла, воски, фосфолипиды и стероиды.

Рис. 2.17. Гидрофобные липиды в мехе водных млекопитающих, таких как речная выдра, защищают их от непогоды.

Молекула жира, такая как триглицерид, состоит из двух основных компонентов — глицерина и жирных кислот.Глицерин — это органическое соединение с тремя атомами углерода, пятью атомами водорода и тремя гидроксильными (–OH) группами. Жирные кислоты имеют длинную цепь углеводородов, к которой присоединена кислая карбоксильная группа, отсюда и название «жирная кислота». Количество атомов углерода в жирной кислоте может составлять от 4 до 36; наиболее распространены те, которые содержат 12–18 атомов углерода. В молекуле жира жирная кислота присоединена к каждому из трех атомов кислорода в -ОН-группах молекулы глицерина ковалентной связью.

Фигура 2.18 Липиды включают жиры, такие как триглицериды, которые состоят из жирных кислот и глицерина, фосфолипидов и стероидов.

Во время образования этой ковалентной связи высвобождаются три молекулы воды. Три жирные кислоты в жире могут быть похожими или разными. Эти жиры также называют триглицеридами , потому что они содержат три жирные кислоты. Некоторые жирные кислоты имеют общие названия, указывающие на их происхождение. Например, пальмитиновая кислота, насыщенная жирная кислота, получают из пальмы.Арахидовая кислота получена из Arachis hypogaea , научного названия арахиса.

Жирные кислоты могут быть насыщенными и ненасыщенными. В цепи жирной кислоты, если есть только одинарные связи между соседними атомами углерода в углеводородной цепи, жирная кислота является насыщенной. Насыщенные жирные кислоты насыщены водородом; другими словами, максимальное количество атомов водорода, прикрепленных к углеродному скелету.

Когда углеводородная цепь содержит двойную связь, жирная кислота представляет собой ненасыщенную жирную кислоту .

Большинство ненасыщенных жиров являются жидкими при комнатной температуре и называются маслами . Если в молекуле есть одна двойная связь, то он известен как мононенасыщенный жир (например, оливковое масло), а если имеется более одной двойной связи, то он известен как полиненасыщенный жир (например, масло канолы).

Насыщенные жиры плотно упаковываются и остаются твердыми при комнатной температуре. Животные жиры со стеариновой кислотой и пальмитиновой кислотой, содержащиеся в мясе, и жир с масляной кислотой, содержащиеся в масле, являются примерами насыщенных жиров.Млекопитающие хранят жиры в специализированных клетках, называемых адипоцитами, где жировые шарики занимают большую часть клетки. У растений жир или масло хранятся в семенах и используются в качестве источника энергии во время эмбрионального развития.

Ненасыщенные жиры или масла обычно растительного происхождения и содержат ненасыщенные жирные кислоты. Двойная связь вызывает изгиб или «перегиб», который препятствует плотной упаковке жирных кислот, сохраняя их жидкими при комнатной температуре. Оливковое масло, кукурузное масло, масло канолы и жир печени трески являются примерами ненасыщенных жиров.Ненасыщенные жиры помогают повысить уровень холестерина в крови, тогда как насыщенные жиры способствуют образованию бляшек в артериях, что увеличивает риск сердечного приступа.

В пищевой промышленности масла искусственно гидрогенизируются для придания им полутвердого состояния, что приводит к меньшей порче и увеличению срока хранения. Проще говоря, газообразный водород пропускают через масла, чтобы отвердить их. Во время этого процесса гидрирования двойные связи цис -конформации в углеводородной цепи могут быть преобразованы в двойные связи в транс -конформации.Это образует транс -жир из цис- -жира. Ориентация двойных связей влияет на химические свойства жира.

Рис. 2.19. В процессе гидрогенизации ориентация двойных связей изменяется, в результате чего из цис-жира образуется трансжир. Это изменяет химические свойства молекулы.

Маргарин, некоторые виды арахисового масла и шортенинг являются примерами искусственно гидрогенизированных транс -жиров. Недавние исследования показали, что увеличение транс -жиров в рационе человека может привести к увеличению уровня липопротеинов низкой плотности (ЛПНП) или «плохого» холестерина, что, в свою очередь, может привести к отложению бляшек в организме человека. артерии, что приводит к болезни сердца.Многие рестораны быстрого питания недавно отказались от использования жиров транс , а на этикетках пищевых продуктов в США теперь требуется указывать содержание жира транс .

Незаменимые жирные кислоты — это жирные кислоты, которые необходимы, но не синтезируются человеческим организмом. Следовательно, их необходимо дополнять с помощью диеты. Жирные кислоты омега-3 попадают в эту категорию и являются одной из двух известных незаменимых жирных кислот для человека (вторая — омега-6 жирные кислоты).Они представляют собой тип полиненасыщенных жиров и называются омега-3 жирными кислотами, потому что третий углерод на конце жирной кислоты участвует в двойной связи.

Лосось, форель и тунец являются хорошими источниками жирных кислот омега-3. Жирные кислоты омега-3 важны для работы мозга, нормального роста и развития. Они также могут предотвратить сердечные заболевания и снизить риск рака.

Как и углеводы, жиры получили широкую огласку. Это правда, что чрезмерное употребление жареной и другой «жирной» пищи приводит к увеличению веса.Однако жиры выполняют важные функции. Жиры служат долгосрочным накопителем энергии. Они также обеспечивают изоляцию тела. Поэтому «здоровые» ненасыщенные жиры в умеренных количествах следует употреблять регулярно.

Фосфолипиды являются основным компонентом плазматической мембраны. Как и жиры, они состоят из цепей жирных кислот, прикрепленных к глицерину или подобной основной цепи. Однако вместо трех жирных кислот есть две жирные кислоты, а третий углерод глицериновой цепи связан с фосфатной группой.Фосфатная группа модифицируется добавлением спирта.

Фосфолипид имеет как гидрофобные, так и гидрофильные участки. Цепи жирных кислот гидрофобны и исключаются из воды, тогда как фосфат гидрофильный и взаимодействует с водой.

Клетки окружены мембраной, которая имеет бислой фосфолипидов. Жирные кислоты фосфолипидов обращены внутрь, от воды, тогда как фосфатная группа может быть обращена либо к внешней среде, либо к внутренней части клетки, которые оба являются водными.

Через призму коренных народов

Для первых народов Тихоокеанского Северо-Запада богатый жиром рыбный оолиган с содержанием жира 20% от веса тела был важной частью рациона нескольких коренных народов. Почему? Потому что жир является наиболее калорийной пищей, и наличие компактного высококалорийного источника энергии, способного хранить, было бы важным для выживания. Характер жира также сделал его важным товаром. Как и лосось, оолиган возвращается в свое русло после долгих лет в море. Его прибытие ранней весной сделало его первым свежим продуктом в году.В цимшианских языках прибытие оолигана… традиционно объявлялось криком «Хлаа ат’иксши халимутхв!»… Что означало: «Наш Спаситель только что прибыл!»

Рис. 2.20 Изображение приготовленного оолигана. Эта жирная рыба с содержанием жира 20% от веса тела является важной частью диеты коренных народов.

Как вы уже узнали, все жиры гидрофобны (ненавидят воду). Чтобы отделить жир, рыбу отваривают, а плавающий жир снимают. Жировой состав улигана состоит из 30% насыщенных жиров (например, сливочного масла) и 55% мононенасыщенных жиров (например, растительных масел).Важно отметить, что это твердая смазка при комнатной температуре. Поскольку в нем мало полиненасыщенных жиров (которые быстро окисляются и портятся), его можно хранить для дальнейшего использования и использовать в качестве предмета торговли. Считается, что его состав делает его таким же полезным, как оливковое масло, или лучше, поскольку он содержит жирные кислоты омега-3, которые снижают риск диабета и инсульта. Он также богат тремя жирорастворимыми витаминами A, E и K.

Стероиды и воски

В отличие от фосфолипидов и жиров, рассмотренных ранее, стероидов имеют кольцевую структуру.Хотя они не похожи на другие липиды, они сгруппированы с ними, потому что они также гидрофобны. Все стероиды имеют четыре связанных углеродных кольца, а некоторые из них, как и холестерин, имеют короткий хвост.

Холестерин — стероид. Холестерин в основном синтезируется в печени и является предшественником многих стероидных гормонов, таких как тестостерон и эстрадиол. Он также является предшественником витаминов Е и К. Холестерин является предшественником солей желчных кислот, которые помогают в расщеплении жиров и их последующем усвоении клетками.Хотя о холестерине часто говорят отрицательно, он необходим для правильного функционирования организма. Это ключевой компонент плазматических мембран клеток животных.

Воски состоят из углеводородной цепи со спиртовой (–OH) группой и жирной кислотой. Примеры восков животного происхождения включают пчелиный воск и ланолин. У растений также есть воск, например покрытие на листьях, которое помогает предотвратить их высыхание.

Концепция в действии


Чтобы получить дополнительную информацию о липидах, исследуйте «Биомолекулы: Липиды» с помощью этой интерактивной анимации.

Белки являются одной из наиболее распространенных органических молекул в живых системах и обладают самым разнообразным набором функций среди всех макромолекул. Белки могут быть структурными, регуляторными, сократительными или защитными; они могут служить для транспортировки, хранения или перепонки; или они могут быть токсинами или ферментами. Каждая клетка живой системы может содержать тысячи различных белков, каждый из которых выполняет уникальную функцию. Их структуры, как и их функции, сильно различаются. Однако все они представляют собой полимеры аминокислот, расположенных в линейной последовательности.

Функции белков очень разнообразны, потому что существует 20 различных химически различных аминокислот, которые образуют длинные цепи, и аминокислоты могут располагаться в любом порядке. Например, белки могут функционировать как ферменты или гормоны. Ферменты , которые вырабатываются живыми клетками, являются катализаторами биохимических реакций (например, пищеварения) и обычно являются белками. Каждый фермент специфичен для субстрата (реагента, который связывается с ферментом), на который он действует. Ферменты могут разрушать молекулярные связи, переупорядочивать связи или образовывать новые связи.Примером фермента является амилаза слюны, которая расщепляет амилозу, компонент крахмала.

Гормоны представляют собой химические сигнальные молекулы, обычно белки или стероиды, секретируемые эндокринной железой или группой эндокринных клеток, которые контролируют или регулируют определенные физиологические процессы, включая рост, развитие, метаболизм и размножение. Например, инсулин — это белковый гормон, который поддерживает уровень глюкозы в крови.

Белки имеют разную форму и молекулярную массу; некоторые белки имеют глобулярную форму, тогда как другие имеют волокнистую природу.Например, гемоглобин — это глобулярный белок, а коллаген, обнаруженный в нашей коже, — это волокнистый белок. Форма белка имеет решающее значение для его функции. Изменения температуры, pH и воздействие химикатов могут привести к необратимым изменениям формы белка, что приведет к потере функции или денатурации (более подробно это будет обсуждаться позже). Все белки состоят из 20 одних и тех же аминокислот по-разному.

Аминокислоты — это мономеры, из которых состоят белки.Каждая аминокислота имеет одинаковую фундаментальную структуру, которая состоит из центрального атома углерода, связанного с аминогруппой (–NH 2 ), карбоксильной группы (–COOH) и атома водорода. Каждая аминокислота также имеет другой вариабельный атом или группу атомов, связанных с центральным атомом углерода, известную как группа R. Группа R — единственное различие в структуре между 20 аминокислотами; в остальном аминокислоты идентичны.

Рис. 2.21. Аминокислоты состоят из центрального углерода, связанного с аминогруппой (–Nh3), карбоксильной группой (–COOH) и атомом водорода.Четвертая связь центрального углерода варьируется среди различных аминокислот, как видно из этих примеров аланина, валина, лизина и аспарагиновой кислоты.

Химическая природа группы R определяет химическую природу аминокислоты в ее белке (то есть, является ли она кислотной, основной, полярной или неполярной).

Последовательность и количество аминокислот в конечном итоге определяют форму, размер и функцию белка. Каждая аминокислота присоединена к другой аминокислоте ковалентной связью, известной как пептидная связь, которая образуется в результате реакции дегидратации.Карбоксильная группа одной аминокислоты и аминогруппа второй аминокислоты объединяются, высвобождая молекулу воды. Полученная связь представляет собой пептидную связь.

Продукты, образованные такой связью, называются полипептидами . Хотя термины полипептид и белок иногда используются взаимозаменяемо, полипептид технически представляет собой полимер аминокислот, тогда как термин белок используется для полипептида или полипептидов, которые объединились вместе, имеют различную форму и имеют уникальную функцию.

Эволюция в действии

Эволюционное значение цитохрома c Цитохром c является важным компонентом молекулярного механизма, который собирает энергию из глюкозы. Поскольку роль этого белка в производстве клеточной энергии имеет решающее значение, за миллионы лет он очень мало изменился. Секвенирование белков показало, что существует значительное сходство последовательностей между молекулами цитохрома с разных видов; эволюционные отношения можно оценить путем измерения сходства или различий между белковыми последовательностями различных видов.

Например, ученые определили, что цитохром с человека содержит 104 аминокислоты. Для каждой молекулы цитохрома с, которая к настоящему времени была секвенирована у разных организмов, 37 из этих аминокислот находятся в одном и том же положении в каждом цитохроме с. Это указывает на то, что все эти организмы произошли от общего предка. При сравнении последовательностей белков человека и шимпанзе различий в последовательностях не обнаружено. При сравнении последовательностей человека и макаки-резуса было обнаружено единственное различие в одной аминокислоте.Напротив, сравнение человека и дрожжей показывает разницу в 44 аминокислотах, предполагая, что люди и шимпанзе имеют более недавнего общего предка, чем люди и макака-резус или люди и дрожжи.

Структура белка

Как обсуждалось ранее, форма белка имеет решающее значение для его функции. Чтобы понять, как белок приобретает свою окончательную форму или конформацию, нам необходимо понять четыре уровня структуры белка: первичный, вторичный, третичный и четвертичный .

Уникальная последовательность и количество аминокислот в полипептидной цепи — это ее первичная структура. Уникальная последовательность каждого белка в конечном итоге определяется геном, кодирующим этот белок. Любое изменение в последовательности гена может привести к добавлению другой аминокислоты к полипептидной цепи, вызывая изменение структуры и функции белка. При серповидно-клеточной анемии β-цепь гемоглобина имеет единственную аминокислотную замену, вызывающую изменение как структуры, так и функции белка.Примечательно, что молекула гемоглобина состоит из двух альфа-цепей и двух бета-цепей, каждая из которых состоит примерно из 150 аминокислот. Таким образом, молекула содержит около 600 аминокислот. Структурное различие между нормальной молекулой гемоглобина и молекулой серповидноклеточных клеток, которое резко снижает продолжительность жизни у пораженных людей, заключается в одной аминокислоте из 600.

Из-за этого изменения одной аминокислоты в цепи обычно двояковогнутые или дискообразные эритроциты принимают форму полумесяца или «серпа», что закупоривает артерии.Это может привести к множеству серьезных проблем со здоровьем, таких как одышка, головокружение, головные боли и боли в животе у людей, страдающих этим заболеванием.

Паттерны сворачивания, возникающие в результате взаимодействий между частями аминокислот, не относящихся к R-группам, приводят к вторичной структуре белка. Наиболее распространены альфа (α) -спиральные и бета (β) -пластинчатые листовые структуры. Обе структуры удерживаются в форме водородными связями. В альфа-спирали связи образуются между каждой четвертой аминокислотой и вызывают поворот аминокислотной цепи.

В β-складчатом листе «складки» образованы водородными связями между атомами в основной цепи полипептидной цепи. Группы R прикреплены к атомам углерода и проходят выше и ниже складок складки. Гофрированные сегменты выровнены параллельно друг другу, а водородные связи образуются между одинаковыми парами атомов на каждой из выровненных аминокислот. Структуры α-спирали и β-складчатых листов обнаруживаются во многих глобулярных и волокнистых белках.

Уникальная трехмерная структура полипептида известна как его третичная структура.Эта структура вызвана химическим взаимодействием между различными аминокислотами и участками полипептида. Прежде всего, взаимодействия между группами R создают сложную трехмерную третичную структуру белка. Могут быть ионные связи, образованные между группами R на разных аминокислотах, или водородные связи, помимо тех, которые участвуют во вторичной структуре. Когда происходит сворачивание белка, гидрофобные группы R неполярных аминокислот лежат внутри белка, тогда как гидрофильные группы R лежат снаружи.Первые типы взаимодействий также известны как гидрофобные взаимодействия.

В природе некоторые белки образованы из нескольких полипептидов, также известных как субъединицы, и взаимодействие этих субъединиц образует четвертичную структуру. Слабые взаимодействия между субъединицами помогают стабилизировать общую структуру. Например, гемоглобин представляет собой комбинацию четырех полипептидных субъединиц.

Рис. 2.22 На этих иллюстрациях можно увидеть четыре уровня белковой структуры.

Каждый белок имеет свою уникальную последовательность и форму, удерживаемую химическими взаимодействиями.Если белок подвержен изменениям температуры, pH или воздействию химикатов, структура белка может измениться, потеряв свою форму в результате так называемой денатурации , как обсуждалось ранее. Денатурация часто обратима, поскольку первичная структура сохраняется, если денатурирующий агент удаляется, позволяя белку возобновить свою функцию. Иногда денатурация необратима, что приводит к потере функции. Один из примеров денатурации белка можно увидеть, когда яйцо жарят или варят.Белок альбумина в жидком яичном белке денатурируется при помещении на горячую сковороду, превращаясь из прозрачного вещества в непрозрачное белое вещество. Не все белки денатурируются при высоких температурах; например, бактерии, которые выживают в горячих источниках, имеют белки, которые адаптированы для работы при этих температурах.

Концепция в действии

Чтобы получить дополнительную информацию о белках, исследуйте «Биомолекулы: Белки» с помощью этой интерактивной анимации.

Нуклеиновые кислоты являются ключевыми макромолекулами в непрерывности жизни.Они несут генетический план клетки и несут инструкции для функционирования клетки.

Двумя основными типами нуклеиновых кислот являются дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК) . ДНК — это генетический материал, содержащийся во всех живых организмах, от одноклеточных бактерий до многоклеточных млекопитающих.

Другой тип нуклеиновой кислоты, РНК, в основном участвует в синтезе белка. Молекулы ДНК никогда не покидают ядро, а вместо этого используют посредника РНК для связи с остальной частью клетки.Другие типы РНК также участвуют в синтезе белка и его регуляции.

ДНК и РНК состоят из мономеров, известных как нуклеотидов . Нуклеотиды объединяются друг с другом с образованием полинуклеотида, ДНК или РНК. Каждый нуклеотид состоит из трех компонентов: азотистого основания, пентозного (пятиуглеродного) сахара и фосфатной группы. Каждое азотистое основание в нуклеотиде присоединено к молекуле сахара, которая присоединена к фосфатной группе.

Рис. 2.23. Нуклеотид состоит из трех компонентов: азотистого основания, пентозного сахара и фосфатной группы. ДНК

имеет двойную спиральную структуру. Он состоит из двух цепей или полимеров нуклеотидов. Нити образованы связями между фосфатными и сахарными группами соседних нуклеотидов. Нити связаны друг с другом в своих основаниях водородными связями, и нити наматываются друг на друга по своей длине, отсюда и описание «двойной спирали», что означает двойную спираль.

Рис. 2.24. Химическая структура ДНК с цветной меткой, обозначающей четыре основания, а также фосфатный и дезоксирибозный компоненты основной цепи.

Чередующиеся сахарные и фосфатные группы лежат на внешней стороне каждой цепи, образуя основу ДНК. Азотистые основания сложены внутри, как ступени лестницы, и эти основания соединяются в пару; пары связаны друг с другом водородными связями. Основания спариваются таким образом, чтобы расстояние между скелетами двух цепей было одинаковым по всей длине молекулы. Правило состоит в том, что нуклеотид A соединяется с нуклеотидом T, а G — с C, см. Раздел 9.1 для более подробной информации.

Живые существа основаны на углероде, потому что углерод играет такую ​​важную роль в химии живых существ. Четыре позиции ковалентной связи атома углерода могут дать начало широкому разнообразию соединений с множеством функций, что объясняет важность углерода для живых существ. Углеводы — это группа макромолекул, которые являются жизненно важным источником энергии для клетки, обеспечивают структурную поддержку многих организмов и могут быть обнаружены на поверхности клетки в качестве рецепторов или для распознавания клеток.Углеводы классифицируются как моносахариды, дисахариды и полисахариды, в зависимости от количества мономеров в молекуле.

Липиды — это класс макромолекул, которые по своей природе неполярны и гидрофобны. Основные типы включают жиры и масла, воски, фосфолипиды и стероиды. Жиры и масла представляют собой запасенную форму энергии и могут включать триглицериды. Жиры и масла обычно состоят из жирных кислот и глицерина.

Белки — это класс макромолекул, которые могут выполнять широкий спектр функций для клетки.Они помогают метаболизму, обеспечивая структурную поддержку и действуя как ферменты, переносчики или гормоны. Строительными блоками белков являются аминокислоты. Белки организованы на четырех уровнях: первичный, вторичный, третичный и четвертичный. Форма и функция белка неразрывно связаны; любое изменение формы, вызванное изменениями температуры, pH или химического воздействия, может привести к денатурации белка и потере функции.

Нуклеиновые кислоты — это молекулы, состоящие из повторяющихся единиц нуклеотидов, которые направляют клеточную деятельность, такую ​​как деление клеток и синтез белка.Каждый нуклеотид состоит из пентозного сахара, азотистого основания и фосфатной группы. Есть два типа нуклеиновых кислот: ДНК и РНК.

аминокислота: мономер протеина

углевод: биологическая макромолекула, в которой соотношение углерода, водорода и кислорода составляет 1: 2: 1; углеводы служат источниками энергии и структурной поддержкой в ​​клетках

целлюлоза: полисахарид, который составляет клеточные стенки растений и обеспечивает структурную поддержку клетки

хитин: вид углевода, который образует внешний скелет членистоногих, таких как насекомые и ракообразные, и клеточные стенки грибов

денатурация: потеря формы белка в результате изменений температуры, pH или воздействия химических веществ

дезоксирибонуклеиновая кислота (ДНК): двухцепочечный полимер нуклеотидов, несущий наследственную информацию клетки

дисахарид: два мономера сахара, которые связаны между собой пептидной связью

фермент : катализатор биохимической реакции, который обычно представляет собой сложный или конъюгированный белок

жир: липидная молекула, состоящая из трех жирных кислот и глицерина (триглицерида), которая обычно существует в твердой форме при комнатной температуре

гликоген: запасной углевод у животных

гормон: химическая сигнальная молекула, обычно белок или стероид, секретируемая эндокринной железой или группой эндокринных клеток; действия по контролю или регулированию определенных физиологических процессов

липиды: класс макромолекул, неполярных и нерастворимых в воде

макромолекула: большая молекула, часто образованная полимеризацией более мелких мономеров

моносахарид: отдельная единица или мономер углеводов

нуклеиновая кислота: биологическая макромолекула, которая несет генетическую информацию клетки и инструкции для функционирования клетки

нуклеотид: мономер нуклеиновой кислоты; содержит пентозный сахар, фосфатную группу и азотистое основание

масло: ненасыщенный жир, являющийся жидкостью при комнатной температуре

фосфолипид: основной компонент мембран клеток; состоит из двух жирных кислот и фосфатной группы, присоединенной к основной цепи глицерина

полипептид: длинная цепь аминокислот, связанных пептидными связями

полисахарид: длинная цепь моносахаридов; могут быть разветвленными и неразветвленными

белок: биологическая макромолекула, состоящая из одной или нескольких цепочек аминокислот

рибонуклеиновая кислота (РНК): одноцепочечный полимер нуклеотидов, участвующий в синтезе белка

насыщенная жирная кислота: длинноцепочечный углеводород с одинарными ковалентными связями в углеродной цепи; количество атомов водорода, прикрепленных к углеродному скелету, максимально

крахмал: запасной углевод в растениях

стероид: тип липида, состоящего из четырех конденсированных углеводородных колец

транс-жиры: форма ненасыщенного жира с атомами водорода, соседствующими с двойной связью напротив друг друга, а не на одной стороне двойной связи

триглицерид: молекула жира; состоит из трех жирных кислот, связанных с молекулой глицерина

ненасыщенная жирная кислота: длинноцепочечный углеводород, имеющий одну или несколько двойных связей в углеводородной цепи

Атрибуция в СМИ

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *