Число Авогадро — Википедия

Материал из Википедии — свободной энциклопедии

Число́ Авога́дро, конста́нта Авогадро, постоянная Авогадро — физическая величина, численно равная количеству специфицированных структурных единиц (атомов, молекул[1], ионов, электронов или любых других частиц) в 1 моле вещества[2]. Ранее определялось как количество атомов в 12 граммах (точно) чистого изотопа углерода-12. Обозначается обычно как NA[3], а иногда и L[4].

Значение числа Авогадро в Международной системе единиц СИ согласно изменениям определений основных единиц СИ точно равно

NA = 6,022 140 76⋅1023 моль−1.

Иногда в литературе проводят различие между постоянной Авогадро NA, имеющей размерность моль−1, и численно равным ей безразмерным числом Авогадро А[5][K 1].

Моль — количество вещества, которое содержит

NA структурных элементов (то есть столько же, сколько атомов содержится в 12 г 12С, согласно старому определению), причём структурными элементами обычно являются атомы, молекулы, ионы и др. Масса 1 моля вещества (молярная масса), выраженная в граммах, численно равна его молекулярной массе, выраженной в атомных единицах массы. Например:

  • 1 моль натрия имеет массу 22,9898 г и содержит примерно 6,02⋅1023 атомов;
  • 1 моль фторида кальция CaF2 имеет массу (40,08 + 2 · 18,998) = 78,076 г и содержит 6,02⋅1023 ионов кальция и 12,04⋅1023 ионов фтора;
  • 1 моль тетрахлорида углерода CCl4 имеет массу (12,011 + 4 · 35,453) = 153,823 г и содержит 6,02⋅1023 молекул тетрахлорида углерода;
  • и т. п.

В конце 2011 года на XXIV Генеральной конференции по мерам и весам единогласно принято предложение[7] определить моль в будущей версии Международной системы единиц (СИ) таким образом, чтобы избежать его привязки к определению килограмма. Предполагалось, что моль в 2018 году будет определён на основе числа Авогадро, которому будет приписано

точное значение без погрешности, базирующееся на результатах измерений, рекомендованных CODATA. До 20 мая 2019 года число Авогадро являлось измеряемой величиной, не принимаемой по определению. В 2015 году из наиболее прецизионных измерений получено рекомендованное значение числа Авогадро NA = 6,022 140 82(11)⋅1023 моль−1, полученное в результате усреднения результатов различных измерений[8][9][10].

ru.wikipedia.org

биография и научная деятельность :: SYL.ru

В наши дни изучение закона Авогадро входит в обязательную программу среднего школьного образования. Между тем о жизни ученого, чьим именем он назван, известно не так уж и много. В основном это сведения, которые собрал и записал его первый биограф: итальянский химик Ичилио Гуарески.

На страницах его труда Авогадро Амедео предстает скромным ученым, лишенным амбиций. Его не интересовали богатство, слава и почести. Напротив, он был человеком искренним, умеренным и смиренным.

Таким запомнился современникам Амедео Авогадро. Биография, кратко изложенная Гуарески, включает также сведения о научной деятельности. Она-то как раз и была подлинной страстью Авогадро.

Сын потомственного адвоката

В прошлом профессия часто передавалась по наследству от отца к сыну, подобно дворянскому титулу. Семья Авогадро не была исключением. Ее представители, начиная с XII в. и на протяжении нескольких столетий, служили юристами в церковном ведомстве.

В августе 1776 г. в семье дворянина Филиппо Авогадро и Анны Марии Верчеллоне родился третий ребенок. Мальчик при крещении, как было принято, получил сразу несколько имен: Лоренцо Романо Амедео Карло. В историю науки он войдет под третьим из них.

В детстве Амедео Авогадро получил домашнее образование, позволившее ему поступить на юридический факультет университета в Турине. По его окончании в 1792 г. он получает степень бакалавра, а спустя четыре года – доктора церковного правоведения.

Смена профессиональных интересов

Еще в юношеские годы Амедео увлекся естественными науками. Начиная с 1801 г., он приступает к серьезному изучению физики. В результате в 1804 г. Туринская Академия наук избрала его своим членом-корреспондентом, после того как Авогадро представил на ее рассмотрение свои первые научные работы по электричеству.

С 1806 и до 1819 г. он занимается педагогической деятельностью в лицеях Турина и Верчелли. Впрочем, преподавание, а позднее и обязанности директора верчелльского лицея не мешали Амедео Авогадро продолжать научные изыскания.

В сфере его интересов, кроме электричества, в эти годы была также метеорология, изучение удельной теплоемкости веществ, находящихся в газообразном состоянии, а также анализ расширения жидкостей под влиянием нагревания. Кроме того, именно в Верчелли он написал две статьи, положившие начало его молекулярной теории.

Профессор Туринского университета

В 1820 г. начался новый этап в жизни Амедео Авогадро. Биография его снова сделала поворот. На этот раз он получил назначение в университет родного города. Правда, на кафедре высшей физики Авогадро проработал недолго. Из-за политических беспорядков, устроенных студентами после военного переворота в 1821 г., Туринский университет был закрыт на год.

В это время только научная деятельность помогала Авогадро справляться с переживаниями по поводу отстранения от преподавания. Он исследовал удельные теплоемкости, а также занимался определением молекулярных масс жидких и твердых веществ.

Заслуги ученого получили признание в 1823 г., когда ему присвоили звание заслуженного профессора высшей физики, а также, учитывая юридическое образование, назначили инспектором в Палату, контролировавшую финансы Сардинского королевства.

Наконец в 1834 г. Авогадро вновь получил кафедру высшей физики Туринского университета, которую бессменно возглавлял в последующие 16 лет. Из всех опубликованных научных трудов ученого приблизительно 2/5 приходится на эти годы. Только в 1850 г., когда ему исполнилось 74 года, Авогадро передал кафедру Феличе Кью – итальянскому физику и своему ученику.

Частный портрет профессора

О его научной деятельности нам известно гораздо больше, чем о личной жизни. Как уже отмечалось, Авогадро не стремился к известности, возможно, по этой причине до нас не дошли его прижизненные портреты, если таковые вообще имелись.

О внешнем облике ученого можно судить только по сохранившимся описаниям современников, а также по рисунку и бюсту, сделанным уже после его смерти. Первое, что обращает на себя внимание – это проницательный взгляд полных жизни глаз Авогадро Амедео.

Интересные факты о личности ученого можно найти в воспоминаниях знавших его современников. Они отмечали его простое и доброжелательное отношение к другим, что было нетипично для привилегированного сословия, к которому принадлежал ученый.

Авогадро был невысок, хрупок, религиозен, впечатлителен и скрупулезно соблюдал правильный образ жизни. Во время преподавания в лицее города Верчелли он познакомился с Анной Марией Феличитой Маццье ди Джузеппе, на которой впоследствии женился.

Сыновья ученого наукой не заинтересовались, поэтому один избрал карьеру юриста, а другой стал офицером. Всего же в семье Авогадро было 8 детей. В домашнем кругу он иногда читал отрывки из произведений итальянских, греческих и латинских авторов, которых очень любил.

Авогадро Амедео: научная деятельность

В г. Верчелли ученый встретил не только будущую супругу, здесь он написал две статьи (1811, 1814 гг.), которые положили начало молекулярной теории. Долгие годы его занимало исследование электрических явлений, а также их связь с химией, чему он посвятил несколько работ. Тем не менее главным трудом профессора Авогадро стала четырехтомная «Физика весомых тел», публиковавшаяся в период с 1837 по 1841 гг.

На протяжении десятилетий ученый систематизировал сведения, почерпнутые из научных журналов, которые выпускались в Европе. Выписки и переводы из них составили в конечном счете более 70 рукописных томов. Эти записи наряду с собственными теоретическими статьями легли в основу его «Физики весомых тел».

Выйдя на пенсию, Авогадро не прекратил заниматься научными изысканиями. Последняя статья, посвященная опытам Реньо и закону сжимаемости газов, была опубликована за три года до смерти ученого.

Судьба молекулярной теории

В первой же статье, написанной в 1811 г., Авогадро Амедео изложил основные положения молекулярной теории и показал, что она находится в согласии с выводами Гей-Люссака. Более того, по мнению ученого, она дает возможность определить атомную массу, состав молекул и характер, происходящих в них химических реакций.

В статье от 1814 г. Авогадро сформулировал закон, который впоследствии получил его имя, а также объяснил его практическое применение. В 1821 г. вышла последняя работа ученого, посвященная молекулярной теории. Работавший над той же темой французский физик Ампер, чуть позже пришел к тем же выводам, что и Авогадро.

Поэтому в течение нескольких десятилетий новый закон носил его имя. Первый шаг к восстановлению справедливости сделал Станислао Канниццаро – итальянский ученый, выступивший на Международном конгрессе химиков (1860 г.) с докладом, в котором изложил незаслуженно забытую гипотезу Авогадро. Правда, прошло еще какое-то время, прежде чем идеи туринского профессора были подтверждены и получили статус закона, названного его именем.

Заключение

Летом 1856 г.. на восьмидесятом году жизни, в Турине скончался Амедео Авогадро. Кратко рассмотрев его жизнь и научную деятельность, можно сделать вывод, что этот скромный итальянский ученый внес огромный вклад в развитие естествознания и стал одним из основоположников атомно-молекулярной теории.

www.syl.ru

Авогадро, Амедео — это… Что такое Авогадро, Амедео?

В Википедии есть статьи о других людях с такой фамилией, см. Авогадро.

Амеде́о Авога́дро (итал. Lorenzo Romano Amedeo Carlo Avogadro di Quaregna e Cerreto; 9 августа 1776(17760809), Турин — 9 июля 1856, Турин) — итальянский учёный, физик и химик.

Биография

Граф Лоренцо Романо Амедео Карло Авогадро родился 9 августа 1776 года в Турине (Италия) в семье служащего судебного ведомства Филиппо Авогадро. Амедео был третьим из восьми детей. В юношеские годы посещал школу геометрии и экспериментальной физики. По традиции того времени профессии и должности передавались по наследству, поэтому Амедео занялся юриспруденцией. В 20 лет получил степень доктора церковного законоведения. В 25 лет начал самостоятельно изучать физико-математические науки.

В 1803 и 1804 годах он, совместно со своим братом Феличе, представил в Туринскую академию наук две работы, посвященные теории электрических и электромагнитных явлений, за что и был избран в 1804 году членом-корреспондентом этой академии. В первой работе под названием «Аналитическая заметка об электричестве» он объяснил поведение проводников и диэлектриков в электрическом поле, в частности явление поляризации диэлектриков. Высказанные им идеи получили затем более полное развитие в работах других ученых. В 1806 году Авогадро получает место репетитора в Туринском лицее. В 1809 переводится преподавателем физики и математики в лицей города Варчелли.

В сентябре 1819 года Авогадро избирается членом Туринской академии наук. В 1820 году королевским указом Авогадро назначается первым профессором новой кафедры высшей физики в Туринский университет. В 1822 году Туринский университет был закрыт властями после студенческих волнений. В 1823 году Авогадро получает почетный титул заслуженного профессора высшей физики и назначается старшим инспектором в палату по контролю за государственными расходами. Несмотря на новые обязанности, Авогадро продолжал заниматься научными исследованиями.

В 1832 году Туринский университет вновь получил кафедру высшей физики, но ее предложили не Авогадро, а известному французскому математику Огюстену Луи Коши, покинувшему родину в 1830 году. Только спустя два года, после отъезда Коши, Авогадро смог занять эту кафедру, где и проработал до 1850 года. В этом году он ушел из университета, передав кафедру своему ученику Феличе Кью. После ухода из университета Авогадро некоторое время занимал должность старшего инспектора Контрольной палаты, а также состоял членом Высшей статистической комиссии, Высшего совета народного образования и председателем Комиссии мер и весов. Несмотря на почтенный возраст, он продолжал публиковать свои исследования в трудах Туринской академии наук. Последняя его работа вышла из печати за три года до смерти, когда Авогадро исполнилось 77 лет. Он умер в Турине 9 июля 1856 года и похоронен в семейном склепе в Верчелли.

Научная деятельность

Свою научную деятельность Авогадро начал с изучения электрических явлений. Работы Авогадро, посвященные этой теме, появлялись вплоть до 1846 года. Большое внимание уделял он также исследованиям в области электрохимии, пытаясь найти связь между электрическими и химическими явлениями, что привело его к созданию своеобразной электрохимической теории. В этом отношении его исследования соприкасались с работами знаменитых химиков Дэви и Бериелиуса. Но в историю физики Авогадро вошел как открыватель одного из важнейших законов молекулярной физики.

В 1811 году появилась статья Авогадро «Очерк метода определения относительных масс элементарных молекул тел и пропорций, согласно которым они входят в соединения». Излагая основные представления молекулярной теории, Авогадро показал, что она не только не противоречит данным, полученным Гей-Люссаком, но напротив, прекрасно согласуется с ними и открывает возможность точного определения атомных масс, состава молекул и характера происходящих химических реакций.

Во времена Авогадро его гипотезу невозможно было доказать теоретически. Но эта гипотеза давала простую возможность экспериментально устанавливать состав молекул газообразных соединений и определять их относительную массу. Эксперимент показывает, что объемы водорода, кислорода и образующихся из этих газов паров воды относятся как 2:1:2. Выводы из этого факта можно сделать разные. Первый: молекулы водорода и кислорода состоят из двух атомов (Н2 и О2), а молекула воды — из трех, и тогда верно уравнение 2Н2 + О2 = 2Н2О. Но возможен и такой вывод: молекулы водорода одноатомны, а молекулы кислорода и воды двухатомны, и тогда верно уравнение 2Н + О2 = 2НО с тем же соотношением объемов 2:1:2. В первом случае из соотношения масс водорода и кислорода в воде (1:8) следовало, что относительная атомная масса кислорода равна 16, а во втором — что она равна 8. Кстати, даже через 50 лет после работ Гей-Люссака некоторые ученые продолжали настаивать на том, что формула воды именно НО, а не Н2О. Другие же считали, что правильна формула Н2О2. Соответственно в ряде таблиц атомную массу кислорода принимали равной 8.

Однако был простой способ выбрать из двух предположений одно верное. Для этого надо было лишь проанализировать результаты и других аналогичных экспериментов. Так, из них следовало, что равные объемы водорода и хлора дают удвоенный объем хлороводорода. Этот факт сразу отвергал возможность одноатомности водорода: реакции типа H + Cl = HCl, H + Cl2 = HCl2 и им подобные не дают удвоенного объема HCl. Следовательно, молекулы водорода (а также хлора) состоят из двух атомов. Но если молекулы водорода двухатомны, то двухатомны и молекулы кислорода, а в молекулах воды три атома, и ее формула — Н2О. Удивительно, что такие простые доводы в течение десятилетий не могли убедить некоторых химиков в справедливости теории Авогадро, которая в течение нескольких десятилетий оставалась практически незамеченной. Отчасти это объясняется отсутствием в те времена простой и ясной записи формул и уравнений химических реакций. Но главное — противником теории Авогадро был знаменитый шведский химик Йенс Якоб Берцелиус, имевший непререкаемый авторитет среди химиков всего мира. Согласно его теории, все атомы имеют электрические заряды, а молекулы образованы атомами с противоположными зарядами, которые притягиваются друг к другу. Считалось, что атомы кислорода имеют сильный отрицательный заряд, а атомы водорода — положительный. С точки зрения этой теории невозможно было представить молекулу кислорода, состоящую из двух одинаково заряженных атомов! Но если молекулы кислорода одноатомны, то в реакции кислорода с азотом: N + O = NO соотношение объемов должно быть 1:1:1. А это противоречило эксперименту: 1 л азота и 1 л кислорода давали 2 л NO. На этом основании Берцелиус и большинство других химиков отвергли гипотезу Авогадро как не соответствующую экспериментальным данным!

В 1821 году в статье «Новые соображения о теории определенных пропорций в соединениях и об определении масс молекул тел» Авогадро подвел итог своей почти десятилетней работы в области молекулярной теории и распространил свой метод определения состава молекул на целый ряд органических веществ. В этой же статье он показал, что другие химики, прежде всего Дальтон, Дэви и Берцелиус, не знакомые с его работами, продолжают придерживаться неверных взглядов на природу многих химических соединений и характер происходящих между ними реакций.

Эта работа интересна еще в одном отношении: в ней впервые встречается имя Ампера, по выражению Авогадро, «одного из самых искусных физиков наших дней», в связи с его исследованиями в области молекулярной теории. Эту сторону деятельности Ампера обычно не упоминают, поскольку его заслуги в области электродинамики затмевают все остальные работы. Тем не менее, Ампер работал и в области молекулярной физики и независимо от Авогадро (но несколько позже) пришел к некоторым из идей, высказанных Авогадро. В 1814 году Ампер опубликовал письмо к химику Бертолле, в котором сформулировал положение, по существу совпадающее с законом Авогадро. Здесь же он указывал, что соответствующая работа Авогадро стала ему известна уже после написания письма к Бертолле.

Закон Авогадро

Авогадро пришел к следующему важному заключению: «число молекул всегда одно и то же в одинаковых объемах любых газов». Далее он писал, что теперь «имеется средство очень легкого определения относительных масс молекул тел, которые можно получить в газообразном состоянии, и относительного числа молекул в соединениях».

В 1814 году появляется вторая статья Авогадро «Очерк об относительных массах молекул простых тел, или предполагаемых плотностях их газа, и о конституции некоторых из их соединений». Здесь четко формулируется закон Авогадро: «…равные объемы газообразных веществ при одинаковых давлениях и температурах отвечают равному числу молекул, так что плотности различных газов представляют собою меру масс молекул соответствующих газов». Далее в статье рассматриваются приложения этого закона для определения состава молекул многочисленных неорганических веществ.

Так как молярная масса пропорциональна массе отдельной молекулы, то закон Авогадро можно сформулировать как утверждение, что моль любого вещества в газообразном состоянии при одинаковых температурах и давлениях занимает один и тот же объем. Как показали эксперименты, при нормальных условиях (р=1 атм(760 мм.рт.ст.), T=273K(Т=О С)) он равен 22,414 л. Число молекул в грамм-молекуле любого вещества одинаково. Оно получило название числа Авогадро.

Интересные факты

  • Импульсом к активным экспериментам в области химии для Авогадро послужило открытие Гей-Люссаком газовых законов.[1]
  • Авогадро в своих трудах пользовался понятием молекула газа, которое, в современной терминологии, включало в себя одновременно понятия атом и молекула.[2]

Память

В честь Авогадро назван кратер на Луне.

См. также

Примечания

Литература

dic.academic.ru

Амедео Авогадро

Граф Лоренцо Романо Амедео Карло Авогадро родился 9 августа 1776 года в Турине (Италия) в семье служащего судебного ведомства Филиппо Авогадро. Амедео был третьим из восьми детей. В юношеские годы посещал школу геометрии и экспериментальной физики. По традиции того времени профессии и должности передавались по наследству, поэтому Амедео занялся юриспруденцией. В 20 лет получил степень доктора церковного законоведения. В 25 лет начал самостоятельно изучать физико-математические науки.

Получил юридическое образование в Туринском университете (1792). В 1800 начал самостоятельно изучать физику и математику. С 1806 Амедео Авогадро работал демонстратором в колледже при Туринской академии. С 1809 — профессор в колледже Верчелли, в 1820-1822 и 1834-1850 заведовал кафедрой математической физики в Туринском университете.

Основные работы Амедео Авогадро посвящены молекулярной физике. В 1811 году он выдвинул молекулярную гипотезу строения вещества, установил один из газовых законов, названный его именем. Согласно этому закону в одинаковых объемах газов при одинаковых значениях температуры и давления содержится одинаковое количество молекул. Исходя из этого, ученый разработал метод определения молекулярного и атомного весов.

Именем Авогадро названа универсальная постоянная — число молекул в одном моле идеального газа (число Авогадро). Амедео установил количественный атомный состав молекул некоторых веществ, для которых он ранее был определен неправильно (вода, водород, кислород, азот, оксиды азота, хлора и др.). Первым обратил внимание на аналогию в свойствах азота, фосфора. мышьяка и сурьмы. Эти химические элементы впоследствии составили главную подгруппу пятой группы периодической системы.

В 20-40-х г.г. 19 века А. Авогадро занимался электрохимией, изучал тепловое расширение тел, теплоемкости. Автор четырехтомного труда «Физика весовых тел, или трактат об общей конституции тел» (1837-41), который стал первым руководством по молекулярной физике.

В историю физики Амедео Авогадро вошел как автор одного из важнейших законов молекулярной физики.

Лоренцо Романо Амедео Карло Авогадро ди Кваренья э ди Черрето родился 9 августа 1776 года в Турине — столице итальянской провинции Пьемонт в семье служащего судебного ведомства Филиппе Авогадро. Амедео был третьим из восьми детей. Предки его с XII века состояли на службе католической церкви адвокатами и по традиции того времени их профессии и должности передавались по наследству. Когда пришла пора выбирать профессию, Амедео также занялся юриспруденцией. В этой науке он быстро преуспел и уже в двадцать лет получил ученую степень доктора церковного права.

Юридическая практика не увлекала Амедео, его интересы были далеки от юриспруденции. В юношеские годы он недолго посещал так называемую школу геометрии и экспериментальной физики. Она-то и пробудила в нем любовь к этим наукам. Но, не получив достаточно систематических знаний, он вынужден был заняться самообразованием. Когда ему уже исполнилось 25 лет, он стал все свободное время посвящать изучению физико-математических наук.

Амедео Авогадро начал свою научную деятельность с изучения электрических явлений. Этот интерес особенно усилился после того, как Вольта в 1800 году изобрел первый источник электрического тока, а также в связи с дискуссией между Гальвани и Вольта о природе электричества. Эти вопросы находились на переднем крае науки того времени, и естественно, что молодой Авогадро решил попробовать свои силы именно здесь.

Работы Авогадро, посвященные разным проблемам электричества, появлялись вплоть до 1846 года. Большое внимание уделял он также исследованиям в области электрохимии, пытаясь найти связь между электрическими и химическими явлениями, что привело его к созданию своеобразной электрохимической теории. В этом отношении его исследования соприкасались с работами известных химиков Дэви и Берцелиуса.

В 1803 и 1804 годах Амедео, совместно со своим братом Феличе, представил в Туринскую Академию наук две работы, посвященные теории электрических и электрохимических явлений, за что и был избран в 1804 году членом-корреспондентом этой академии. В первой работе под названием «Аналитическая заметка об электричестве» он объяснял поведение проводников и диэлектриков в электрическом поле, в частности явление поляризации диэлектриков. Высказанные им идеи получили затем более полное развитие в работах других ученых, в частности Ампера.

В 1806 году Авогадро получает место репетитора в Туринском лицее, а затем, в 1809 году, переводится преподавателем физики и математики в лицей города Верчелли, в котором он проработал около десяти лет В этот период он знакомится с огромным количеством научной литературы, делая многочисленные выписки из прочитанных книг и журнальных статей. Эти выписки, которые он не прекращал вести до конца своих дней, составили 75 томов примерно по 700 страниц в каждом! Содержание этих томов свидетельствует о разносторонности интересов Авогадро, о колоссальной работе, которую он проделал, «переквалифицировавшись» из юриста в физика.

Свою семейную жизнь Амедео Авогадро устроил довольно поздно, когда ему было уже за тридцать. Работая в Верчелли, он познакомился со своей будущей женой Анной Марией Маццье ди Джузеппе, дочерью нотариуса, которая была моложе его на 18 лет. От этого брака он имел восемь детей — двоих сыновей и шесть дочерей. Никто из них не унаследовал его профессии и интересов.

В 1808 году французский ученый Гей-Люсак, изучая реакции между газами, установил, что объемы вступающих в реакцию газов и газообразных продуктов реакции относятся как небольшие целые числ. А в 1811 году появляется статья Авогадро «Очерк метода определения относительных масс элементарных молекул тел и пропорций, согласно которым они входят в соединения». Излагая основные представления молекулярной теории, Авогадро показал, что она не только не противоречит данным, полученным Гей-Люссаком, но, напротив, прекрасно согласуется с ними и открывает возможность точного определения атомных масс, состава молекул и характера происходящих химических реакций Для этого прежде всего, необходимо представить, что молекулы водорода, кислорода, хлора и некоторых других простых веществ состоят не из одного, а из двух атомов.

В этой же работе Амедео Авогадро пришел к следующему важному заключению: «… число… молекул всегда одно и то же в одинаковых объемах любых газов». Разумеется, если объемы измерены при одинаковых давлениях и температурах.

Далее он писал, что теперь «имеется средство очень легкого определения относительных масс молекул тел, которые можно получить в газообразном состоянии, и относительного числа молекул в соединениях». Благодаря новому закону Авогадро впервые получил, в частности, правильную формулу реакции образования воды.

В 1814 году появляется вторая статья Амедео Авогадро «Очерк об относительных массах молекул простых тел, или предполагаемых плотностях их газа, и о конституции некоторых из их соединений». Здесь четко формулируется закон Авогадро: «…равные объемы газообразных веществ при одинаковых давлениях и температурах отвечают равному числу молекул, так что плотности различных газов представляют собою меру масс молекул соответствующих газов». Далее в статье рассматриваются приложения этого закона для определения состава молекул многочисленных неорганических веществ.

Так как масса одного моля вещества пропорциональна массе отдельной молекулы, то закон Авогадро можно сформулировать как утверждение, что моль любого вещества в газообразном состоянии при одинаковых температурах и давлениях занимает один и тот же объем. Как показали эксперименты, при нормальных условиях число молекул в моле любого вещества одинаково. Оно получило название числа Авогадро.

Это число — одна из важнейших универсальных постоянных современной физики и химии. Она используется при определении ряда других универсальных постоянных, например, постоянной Больцмана, постоянной Фарадея и т. п.

Число Авогадро можно определить многими независимыми друг от друга методами. Прекрасное совпадение полученных при этом значений явилось убедительным доказательством реальности молекул и справедливости молекулярно-кинетической теории.

В 1821 году в статье «Новые соображения о теории определенных пропорций в соединениях и об определении масс молекул тел» Амедео Авогадро подвел итог своей почти десятилетней работе в области молекулярной теории и распространил свой метод определения состава молекул на целый ряд органических веществ. В той же статье он показал, что другие химики, прежде всего Джон Дальтон, Гемфри Дэви и Берцелиус, незнакомые с его работами, продолжают придерживаться неверных взглядов на природу многих химических соединений и характер происходящих между ними реакций.

В сентябре 1819 года Авогадро избирается членом Туринской академии наук. К этому времени он уже приобрел известность в кругу своих коллег работами в области молекулярной теории, электричества и химии.

В 1820 году королевским указом Амедео Авогадро назначается первым профессором новой кафедры высшей физики в Туринский университет.

Интересны взгляды Авогадро на преподавание физики, высказанные им при занятии этой должности. Итальянская наука в то время была еще очень слабо развита. Стремясь к тому, чтобы помочь своей родине сравняться по уровню развития естественных наук с другими европейскими странами, Авогадро наметил обширный план действий. Основная его идея заключалась в необходимости сочетания преподавания с научной деятельностью.

Этим прогрессивным идеям не суждено было осуществиться из-за военных и политических событий в Италии начала двадцатых годов. В 1822 году после студенческих волнений Туринский университет был на целый год закрыт властями, а ряд его новых кафедр, в том числе и кафедра высшей физики, ликвидирован. Тем не менее в 1823 году Амедео Авогадро получает почетный титул заслуженного профессора высшей физики и назначается старшим инспектором Палаты по контролю за государственными расходами — должность финансово-юридическая, весьма далекая от науки. Несмотря на новые обязанности, Авогадро продолжал заниматься научными исследованиями.

В 1823 году Туринский университет вновь получил кафедру высшей физики, но ее предложили не Авогадро, а известному французскому математику Огюстену Луи Коши, покинувшему родину в 1830 году. Только спустя два года, после отъезда Коши, Амедео Авогадро смог занять эту кафедру, где и проработал до 1850 года. В том же году он ушел из университета, передав кафедру своему ученику Феличе Кью.

В 1837—1841 годах Авогадро издал четырехтомное сочинение «Физика весомых тел, или трактат об общей конституции тел». Каждый том имел более 900 страниц. К этому времени Авогадро уже исполнилось 65 лет, но ум его по-прежнему был ясным, а любовь к науке и трудолюбие неиссякаемыми. Этот труд оказался первым в истории учебником молекулярной физики.

Современники в своих воспоминаниях рисуют Амедео Авогадро как человека очень скромного, впечатлительного и обаятельного. Они отмечают его доброжелательность, искренность в обращении с другими людьми. «Высокообразованный без педантизма, мудрый без чванливости, презирающий роскошь, не заботящийся о богатстве, не стремящийся к почестям, безразличный к собственным заслугам и собственной известности, скромный, умеренный, доброжелательный» — так характеризует Авогадро один из его современников.

По своему безразличию к почестям Амедео Авогадро представлял редкое исключение среди ученых того времени.

После ухода из университета Авогадро некоторое время занимал должность старшего инспектора Контрольной палаты, а также состоял членом Высшей статистической комиссии. Высшего совета народного образования и председателем Комиссии мер и весов. Несмотря на почтенный возраст, он продолжал публиковать свои исследования в трудах Туринской академии наук. Последняя его работа вышла из печати за три года до смерти, когда Авогадро исполнилось 77 лет.

Амедео Авогадро умер в Турине 9 июля 1856 года и похоронен в семейном склепе в Верчелли. На следующий год после смерти Авогадро в знак признания его заслуг перед наукой в Туринском университете был установлен его бронзовый бюст.

Огромный вклад Авогадро в развитие молекулярной теории долгое время оставался практически незамеченным современниками. И даже много позже этот закон в литературе часто именовали законом Авогадро—Ампера, хотя Авогадро сформулировал его на три года раньше Ампера.

Вплоть до начала шестидесятых годов XIX века в химии царил произвол, как в оценке молекулярных масс, так и в описании химических реакций; оставалось немало неверных представлений об атомном составе многих сложных веществ. Дело доходило даже до попыток вообще отказаться от молекулярных представлений. Лишь в 1858 году итальянский химик Канниццаро, ознакомившись с письмом Ампера к Бертолле, в котором есть ссылка на работы Авогадро, заново «открыл» эти работы и с удивлением убедился, что они вносят полную ясность в запутанную картину состояния химии того времени.

В 1860 году Канниццаро подробно рассказал о работах Авогадро на Первом Международном химическом конгрессе в Карлсруэ, и его доклад произвел огромное впечатление на присутствовавших там ученых. Как сказал один из них, он почувствовал, как завеса упала с глаз, сомнения исчезли, и вместо них появилось спокойное чувство уверенности. Великий русский химик Дмитрий Менделеев, также участвовавший в работе этого конгресса, писал позднее: «В 50-х годах одни принимали атомный вес кислорода равным 8, другие — 16. Смута, сбивчивость господствовали. В 1860 году химики всего света собрались в Карлсруэ для того, чтобы достичь соглашения, единообразия. Присутствовав на этом конгрессе, я живо помню, как велико было разногласие и как тогда последователи Шарля Жерара горячо проводили следствия закона Авогадро. Истина, в виде закона Авогадро—Жерара, при посредстве конгресса, получила более широкое распространение и скоро затем покорила все умы. Тогда сами собою укрепились новые атомные веса, и уже с 70-х годов они вошли во всеобщее употребление».

Заслуги Амедео Авогадро как одного из основоположников молекулярной теории получили с тех пор всеобщее признание.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

calcsbox.com

Авогадро, Амедео — WiKi

Граф Лоренцо Романо Амедео Карло Авогадро родился 9 августа 1776 года в Турине, столице Сардинского королевства. Амедео был третьим из восьми детей. В юношеские годы посещал школу геометрии и экспериментальной физики. По традиции того времени профессии и должности передавались по наследству, поэтому Амедео занялся юриспруденцией. В 20 лет получил степень доктора церковного законоведения. В 25 лет начал самостоятельно изучать физико-математические науки.

В 1803 и 1804 годах он, совместно со своим братом Феличе, представил в Туринскую академию наук две работы, посвящённые теории электрических и электромагнитных явлений, за что и был избран в 1804 году членом-корреспондентом этой академии. В первой работе под названием «Аналитическая заметка об электричестве» он объяснил поведение проводников и диэлектриков в электрическом поле, в частности явление поляризации диэлектриков. Высказанные им идеи получили затем более полное развитие в работах других ученых. В 1806 году Авогадро получает место репетитора в Туринском лицее. В 1809 году переведён преподавателем физики и математики в лицей города Верчелли.

В сентябре 1819 года Авогадро избирается членом Туринской академии наук. В 1820 году королевским указом Авогадро назначается первым профессором новой кафедры высшей физики в Туринский университет. В 1822 году Туринский университет был закрыт властями после студенческих волнений. В 1823 году Авогадро получает почётный титул заслуженного профессора высшей физики и назначается старшим инспектором в палату по контролю за государственными расходами. Несмотря на новые обязанности, Авогадро продолжал заниматься научными исследованиями. В 1832 году Туринский университет вновь получил кафедру высшей физики, но её предложили не Авогадро, а известному французскому математику Огюстену Луи Коши, покинувшему родину в 1830 году. Только спустя два года, после отъезда Коши, Авогадро смог занять эту кафедру, где и проработал до 1850 года. В том году он ушёл из университета, передав кафедру своему ученику Феличе Кью.

После ухода из университета Авогадро некоторое время занимал должность старшего инспектора Контрольной палаты, а также состоял членом Высшей статистической комиссии, Высшего совета народного образования и председателем Комиссии мер и весов. Несмотря на почтенный возраст, он продолжал публиковать свои исследования в трудах Туринской академии наук. Последняя его работа вышла из печати за три года до смерти, когда Авогадро исполнилось 77 лет. Он умер в Турине 9 июля 1856 года и похоронен в семейном склепе в Верчелли.

Свою научную деятельность Авогадро начал с изучения электрических явлений. Работы Авогадро, посвященные этой теме, появлялись вплоть до 1846 года. Большое внимание уделял он также исследованиям в области электрохимии, пытаясь найти связь между электрическими и химическими явлениями, что привело его к созданию своеобразной электрохимической теории. В этом отношении его исследования соприкасались с работами знаменитых химиков Дэви и Берцелиуса. Но в историю физики Авогадро вошел как открыватель одного из важнейших законов молекулярной физики.

В 1811 году появилась статья Авогадро «Очерк метода определения относительных масс элементарных молекул тел и пропорций, согласно которым они входят в соединения». Излагая основные представления молекулярной теории, Авогадро показал, что она не только не противоречит данным, полученным Гей-Люссаком, но напротив, прекрасно согласуется с ними и открывает возможность точного определения атомных масс, состава молекул и характера происходящих химических реакций.

Во времена Авогадро его гипотезу невозможно было доказать теоретически. Но эта гипотеза давала простую возможность экспериментально устанавливать состав молекул газообразных соединений и определять их относительную массу. Эксперимент показывает, что объемы водорода, кислорода и образующихся из этих газов паров воды относятся как 2:1:2. Выводы из этого факта можно сделать разные. Первый: молекулы водорода и кислорода состоят из двух атомов (Н2 и О2), а молекула воды — из трех, и тогда верно уравнение 2Н2 + О2 = 2Н2О. Но возможен и такой вывод: молекулы водорода одноатомны, а молекулы кислорода и воды двухатомны, и тогда верно уравнение 2Н + О2 = 2НО с тем же соотношением объемов 2:1:2. В первом случае из соотношения масс водорода и кислорода в воде (1:8) следовало, что относительная атомная масса кислорода равна 16, а во втором — что она равна 8. Кстати, даже через 50 лет после работ Гей-Люссака некоторые ученые продолжали настаивать на том, что формула воды именно НО, а не Н2О. Другие же считали, что правильна формула Н2О2. Соответственно в ряде таблиц атомную массу кислорода принимали равной 8.

Однако был простой способ выбрать из двух предположений одно верное. Для этого надо было лишь проанализировать результаты и других аналогичных экспериментов. Так, из них следовало, что равные объемы водорода и хлора дают удвоенный объем хлороводорода. Этот факт сразу отвергал возможность одноатомности водорода: реакции типа H + Cl = HCl, H + Cl2 = HCl2 и им подобные не дают удвоенного объема HCl. Следовательно, молекулы водорода (а также хлора) состоят из двух атомов. Но если молекулы водорода двухатомны, то двухатомны и молекулы кислорода, а в молекулах воды три атома, и её формула — Н2О. Удивительно, что такие простые доводы в течение десятилетий не могли убедить некоторых химиков в справедливости теории Авогадро, которая в течение нескольких десятилетий оставалась практически незамеченной. Отчасти это объясняется отсутствием в те времена простой и ясной записи формул и уравнений химических реакций. Но главное — противником теории Авогадро был знаменитый шведский химик Йенс Якоб Берцелиус, имевший непререкаемый авторитет среди химиков всего мира. Согласно его теории, все атомы имеют электрические заряды, а молекулы образованы атомами с противоположными зарядами, которые притягиваются друг к другу. Считалось, что атомы кислорода имеют сильный отрицательный заряд, а атомы водорода — положительный. С точки зрения этой теории невозможно было представить молекулу кислорода, состоящую из двух одинаково заряженных атомов! Но если молекулы кислорода одноатомны, то в реакции кислорода с азотом: N + O = NO соотношение объемов должно быть 1:1:1. А это противоречило эксперименту: 1 л азота и 1 л кислорода давали 2 л NO. На этом основании Берцелиус и большинство других химиков отвергли гипотезу Авогадро как не соответствующую экспериментальным данным.

В 1821 году в статье «Новые соображения о теории определенных пропорций в соединениях и об определении масс молекул тел» Авогадро подвел итог своей почти десятилетней работы в области молекулярной теории и распространил свой метод определения состава молекул на целый ряд органических веществ. В этой же статье он показал, что другие химики, прежде всего Дальтон, Дэви и Берцелиус, не знакомые с его работами, продолжают придерживаться неверных взглядов на природу многих химических соединений и характер происходящих между ними реакций.

Эта работа интересна еще в одном отношении: в ней впервые встречается имя Ампера, по выражению Авогадро, «одного из самых искусных физиков наших дней», в связи с его исследованиями в области молекулярной теории. Эту сторону деятельности Ампера обычно не упоминают, поскольку его заслуги в области электродинамики затмевают все остальные работы. Тем не менее, Ампер работал и в области молекулярной физики и независимо от Авогадро (но несколько позже) пришел к некоторым из идей, высказанных Авогадро. В 1814 году Ампер опубликовал письмо к химику Бертолле, в котором сформулировал положение, по существу совпадающее с законом Авогадро. Здесь же он указывал, что соответствующая работа Авогадро стала ему известна уже после написания письма к Бертолле.

Авогадро пришел к следующему важному заключению: «число молекул всегда одно и то же в одинаковых объемах любых газов». Далее он писал, что теперь «имеется средство очень легкого определения относительных масс молекул тел, которые можно получить в газообразном состоянии, и относительного числа молекул в соединениях».

В 1814 году появляется вторая статья Авогадро «Очерк об относительных массах молекул простых тел, или предполагаемых плотностях их газа, и о конституции некоторых из их соединений». Здесь четко формулируется закон Авогадро: «…равные объемы газообразных веществ при одинаковых давлениях и температурах отвечают равному числу молекул, так что плотности различных газов представляют собою меру масс молекул соответствующих газов». Далее в статье рассматриваются приложения этого закона для определения состава молекул многочисленных неорганических веществ.

Так как молярная масса (масса вещества, содержащего один моль молекул) пропорциональна массе отдельной молекулы, то закон Авогадро можно сформулировать как утверждение, что моль любого вещества в газообразном состоянии при одинаковых температурах и давлениях занимает один и тот же объем. Как показали эксперименты, при нормальных условиях (р = 1 атм (760 мм рт. ст.), T = 273 K (0 °C)) он равен 22,414 л. Число молекул в грамм-молекуле любого вещества одинаково. Оно получило название числа Авогадро. Оно равно 6,02 ⋅ 1023.

ru-wiki.org

Слово АВОГАДРО — Что такое АВОГАДРО?

Слово авогадро английскими буквами(транслитом) — avogadro

Слово авогадро состоит из 8 букв: а а в г д о о р


Значения слова авогадро. Что такое авогадро?

Авогадро

АВОГАДРО (Avogadro) Амедео, граф ди Кваренья (1776-1856), итальянский физик и химик. В 1811 г. выдвинул гипотезу (ныне известную как закон Авогадро) о том…

Научно-технический энциклопедический словарь

Авогадро (граф Amedeo A. du Quaregna e Сеrеttо) — физик, родился 9 августа 1776 г. в Турине, умер там же 9 июля 1856 г. Изучив право в Турине, он в 1796 г.

Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — 1890-1907

Кратер Авогадро (лат. Avogadro) — древний ударный кратер в северном полушарии обратной стороны Луны. Название присвоено в честь итальянского учёного, физика и химика Амедео Авогадро (1776 −1856)…

ru.wikipedia.org

Авогадро Амедео

Амеде́о Авога́дро (итал. Lorenzo Romano Amedeo Carlo Avogadro di Quaregna e Cerreto; 9 августа 1776, Турин — 9 июля 1856, Турин) — итальянский учёный, физик и химик.

ru.wikipedia.org

АВОГАДРО Амедео (Avogadro, Amedeo) АМЕДЕО АВОГАДРО (1776-1856), итальянский физик и химик. Родился 9 августа 1776 в Турине в семье чиновника судебного ведомства. Получил юридическое образование и в 1796 стал доктором права.

Энциклопедия Кольера

АВОГАДРО, АМЕДЕО (Avogadro, Amedeo) (1776–1856), итальянский физик и химик. Родился 9 августа 1776 в Турине в семье чиновника судебного ведомства. Получил юридическое образование и в 1796 стал доктором права.

Энциклопедия Кругосвет

Авогадро, Альберт

Альберт Авога́дро (итал. Alberto Avogadro , 1149 г., Парма, Италия — 14 сентября 1214 г., Акко, Палестина) — святой Римско-Католической Церкви, епископ, латинский патриарх Иерусалима с 1204 по 1214 годы.

ru.wikipedia.org

Авогадро постоянная

АВОГАДРО ЧИСЛО, NA = (6,022045±0,000031)Ч10²³, число молекул в моле любого вещества или число атомов в моле простого вещества. Одна из фундаментальных постоянных, с помощью которой можно определить такие величины, как, например…

Энциклопедия Кругосвет

АВОГАДРО ЧИСЛО Na = (6,022045±0,000031)*10 23 число молекул в моле любого вещества или число атомов в моле простого вещества. Одна из фундаментальных постоянных, с помощью которой можно определить такие величины, как, например…

Энциклопедия Кольера

Авогадро число, число молекул в одном моле любого вещества или число атомов в грамм-атоме любого химически простого вещества; названо по имени итальянского физика А.

БСЭ. — 1969—1978

Закон Авогадро

АВОГАДРО ЗАКОН. О жизни выдающегося итальянского ученого Лоренцо Романо Амедео Карло Авогадро ди Кваренья э ди Черрето (1776–1856) мы знаем очень мало.

Энциклопедия Кругосвет

АВОГАДРО ЗАКОН: в равных объемах идеальных газов при одинаковых давлении и т-ре содержится одинаковое число молекул. Согласно Авогадро закону, 1 моль любого идеального газа при нормальных условиях (1,01 * 105 Па, 0°С) занимает одинаковый объем…

Химическая энциклопедия

Авогадро закон, один из основных законов идеальных газов, согласно которому в равных объёмах различных газов при одинаковых температурах и давлениях содержится одинаковое число молекул.

БСЭ. — 1969—1978

Русский язык

Авога́дро, нескл., м.: зако́н Авога́дро, постоя́нная (число́) Авога́дро.

Орфографический словарь. — 2004

  1. авифауна
  2. авлакоген
  3. авлос
  4. авогадро
  5. авокадо
  6. авометр
  7. авоська

wordhelp.ru

Авогадро и число его имени

Евгений Мейлихов,
доктор физико-математических наук
«Наука и жизнь» №4, 2017

Итальянский учёный Амедео Авогадро — современник А. С. Пушкина — был первым, кто понял, что количество атомов (молекул) в одном грамм-атоме (моле) вещества одинаково для всех веществ. Знание же этого числа открывает путь к оценке размеров атомов (молекул). При жизни Авогадро его гипотеза не получила должного признания. Истории числа Авогадро посвящена новая книга Евгения Залмановича Мейлихова, профессора МФТИ, главного научного сотрудника НИЦ «Курчатовский институт».

Если бы в результате какой-либо мировой катастрофы все накопленные знания оказались бы уничтоженными и к грядущим поколениям живых существ пришла бы только одна фраза, то какое утверждение, составленное из наименьшего количества слов, принесло бы наибольшую информацию? Я считаю, что это — атомная гипотеза: все тела состоят из атомов — маленьких телец, находящихся в беспрерывном движении.

Р. Фейнман, «Фейнмановские лекции по физике»

Число Авогадро (константа Авогадро, постоянная Авогадро) определяется как количество атомов в 12 граммах чистого изотопа углерода-12 (12C). Обозначается оно обычно как NA, реже L. Значение числа Авогадро, рекомендованное CODATA (рабочая группа по фундаментальным постоянным) в 2015 году: NA = 6,02214082(11) · 1023 моль−1. Моль — это количество вещества, которое содержит NA структурных элементов (то есть столько же элементов, сколько атомов содержится в 12 г 12C), причем структурными элементами обычно являются атомы, молекулы, ионы и др. По определению атомная единицы массы (а. е. м.) равна 1/12 массы атома 12C. Один моль (грамм-моль) вещества имеет массу (молярную массу), которая, будучи выраженной в граммах, численно равна молекулярной массе этого вещества (выраженной в атомных единицах массы). Например: 1 моль натрия имеет массу 22,9898 г и содержит (примерно) 6,02 · 1023 атомов, 1 моль фторида кальция CaF2 имеет массу (40,08 + 2 · 18,998) = 78,076 г и содержит (примерно) 6,02 · 1023 молекул.

В конце 2011 года на XXIV Генеральной конференции по мерам и весам единогласно принято предложение определить моль в будущей версии Международной системы единиц (СИ) таким образом, чтобы избежать его привязки к определению грамма. Предполагается, что в 2018 году моль будет определён непосредственно числом Авогадро, которому будет приписано точное (без погрешности) значение, базирующееся на результатах измерений, рекомендованных CODATA. Пока же число Авогадро является не принимаемой по определению, а измеряемой величиной.

Эта константа названа в честь известного итальянского химика Амедео Авогадро (1776–1856), который хотя сам этого числа и не знал, но понимал, что это очень большая величина. На заре развития атомной теории Авогадро выдвинул гипотезу (1811 год), согласно которой при одинаковых температуре и давлении в равных объёмах идеальных газов содержится одинаковое число молекул. Позже было показано, что эта гипотеза есть следствие кинетической теории газов, и сейчас она известна как закон Авогадро. Его можно сформулировать так: один моль любого газа при одинаковых температуре и давлении занимает один и тот же объём, при нормальных условиях равный 22,41383 л (нормальным условиям соответствуют давление P0 = 1 атм и температура T0 = 273,15 К). Эта величина известна как молярный объём газа.

Первую попытку найти число молекул, занимающих данный объём, предпринял в 1865 году Й. Лошмидт. Из его вычислений следовало, что количество молекул в единице объёма воздуха равно 1,8 · 1018 см−3, что, как оказалось, примерно в 15 раз меньше правильного значения. Через восемь лет Дж. Максвелл привёл гораздо более близкую к истине оценку — 1,9 · 1019 см−3. Наконец в 1908 году Перрен даёт уже приемлемую оценку: NA = 6,8 · 1023 моль−1 числа Авогадро, найденную из экспериментов по броуновскому движению.

С тех пор было разработано большое число независимых методов определения числа Авогадро, и более точные измерения показали, что в действительности в 1 см3 идеального газа при нормальных условиях содержится (примерно) 2,69 · 1019 молекул. Эта величина называется числом (или постоянной) Лошмидта. Ей соответствует число Авогадро NA ≈ 6,02 · 1023.

Число Авогадро — одна из важных физических постоянных, сыгравших большую роль в развитии естественных наук. Но является ли она «универсальной (фундаментальной) физической постоянной»? Сам этот термин не определён и обычно ассоциируется с более или менее подробной таблицей числовых значений физических констант, которые следует использовать при решении задач. В связи с этим фундаментальными физическими постоянными зачастую считаются те величины, которые не являются константами природы и обязаны своим существованием всего лишь выбранной системе единиц (таковы, например, магнитная и электрическая постоянные вакуума) или условным международным соглашениям (такова, например, атомная единица массы). В число фундаментальных констант часто включают многие производные величины (например, газовую постоянную R, классический радиус электрона re = e2 / mec2 и т. п.) или, как в случае с молярным объёмом, значение некоторого физического параметра, относящегося к специфическим экспериментальным условиям, которые выбраны лишь из соображений удобства (давление 1 атм и температура 273,15 К). С этой точки зрения число Авогадро есть истинно фундаментальная константа.

Истории и развитию методов определения этого числа и посвящена настоящая книга. Эпопея длилась около 200 лет и на разных этапах была связана с многообразными физическими моделями и теориями, многие из которых не потеряли актуальности и по сей день. К этой истории приложили руку самые светлые научные умы — достаточно назвать А. Авогадро, Й. Лошмидта, Дж. Максвелла, Ж. Перрена, А. Эйнштейна, М. Смолуховского. Список можно было бы и продолжить…

Автор должен признаться, что идея книги принадлежит не ему, а Льву Фёдоровичу Соловейчику — его однокашнику по Московскому физико-техническому институту, человеку, который занимался прикладными исследованиями и разработками, но в душе остался физиком-романтиком. Это человек, который (один из немногих) продолжает «и в наш жестокий век» бороться за настоящее «высшее» физическое образование в России, ценит и в меру сил пропагандирует красоту и изящество физических идей. Известно, что из сюжета, который А. С. Пушкин подарил Н. В. Гоголю, возникла гениальная комедия. Конечно, здесь не тот случай, но, может быть, и эта книга покажется кому-то полезной.

Эта книга — не «научно-популярный» труд, хотя и может показаться таковым с первого взгляда. В ней на некотором историческом фоне обсуждается серьёзная физика, используется серьёзная математика и обсуждаются довольно сложные научные модели. Фактически книга состоит из двух (не всегда резко разграниченных) частей, рассчитанных на разных читателей — одним она может показаться интересной с историко-химической точки зрения, а другие, возможно, сосредоточатся на физико-математической стороне проблемы. Автор же имел в виду любознательного читателя — студента физического или химического факультета, не чуждого математики и увлечённого историей науки. Есть ли такие студенты? Точного ответа на этот вопрос автор не знает, но, исходя из собственного опыта, надеется, что есть.

Введение (в сокращении) к книге: Мейлихов Е. З. Число Авогадро. Как увидеть атом. — Долгопрудный: ИД «Интеллект», 2017.

elementy.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *