Содержание

Алюминий степени окисления — Справочник химика 21

    В подавляющем большинстве соединений-алюминий проявляет степень окисления +3. Большое практическое значение имеют его [c.335]

    Галлий, индий и таллий относятся к главной подгруппе III группы периодической системы элементов (разд. 35.10). В соответствии с номером группы в своих соединениях они проявляют степень окисления -ЬЗ. Возрастание устойчивости низших степеней окисления с ростом атомного номера элемента иллюстрируется на примерах соединений индия(III) (легко восстанавливающихся до металла), а также большей прочности соединений таллия(I) по сравнению с производными таллия(III). Ввиду того что между алюминием и галлием находится скандий — элемент первого переходного периода — вполне можно ожидать, что изменение физических и даже химических свойств этих элементов будет происходить не вполне закономерно. Действительно, обращает на себя внимание очень низкая температура плавления галлия (29,78 °С).

Это обусловливает, в частности, его применение в качестве запорной жидкости при измерениях объема газа, а также в качестве теплообменника в ядерных реакторах. Высокая температура кипения (2344°С) позволяет использовать галлий для наполнения высокотемпературных термометров. Свойства галлия и индия часто рассматривают совместно с алюминием. Так, их гидрооксиды растворяются с образованием гидроксокомплексов (опыт I) при более высоких значениях pH, чем остальные М(ОН)з. Гидратированные ионы Мз+ этой [c.590]


    Окисляются или восстанавливаются металлы при образовании ими ионов Какова степень окисления иона алюминия  [c.32]

    Составьте формулы следующих соединении а) нитрида лития (соединения лития с азотом) б) сульфида алюминия (соединения алюминия с серой) в) фторида фосфора, в которых электроположительный элемент проявляет максимальную степень окисления. 

[c.47]

    Органические соединения остальных переходных элементов. Переходные элементы остальных (кроме ПБ) побочных подгрупп периодической системы в проявляемых их атомами степенях окисления имеют незавершенные электронные -подоболочки предвнешнего уровня. Поэтому, наряду с образованием ординарной полярной ковалентной связи с углеродом за счет вклада внешних з- и р-орбиталей, они способны образовывать совершенно иные по строению и свойствам соединения за счет участия ( -орбиталей. В таких соединениях металл можно так же, как и соединения магния, бора, алюминия (см. выше), считать координационно ненасыщенным. Данная ненасыщенность металла теперь определяется наличием вакантных орбиталей не только на внешнем, но и на втором снаружи энергетических уровнях его атома. Природа вакантных орбиталей атома переходного элемента также отличается от орбиталей в- и р-элементов. Симметрия и пространственная протяженность -орбиталей переходного элемента позволяет им эффективно перекрываться с орбиталями большего числа атомов и удаленных на большее расстояние от металла, чем это возможно для з-или р-элемента.

Поэтому часто органические соединения переходных металлов являются комплексными. С примерами таких комплексных элементоорганических соединений мы уже встречались ферроцен, дибензолхром, хелаты и др. (разд. 13.4). [c.599]

    У бериллия (ls 2s ) по сравнению с бором ( s 2s 2p ) в соответствии с увеличением радиуса атома и уменьшением числа валентных электронов неметаллические признаки проявляются слабее, а металлические усиливаются. Бериллий обладает более высокими энергиями ионизации атома (II = 9,32 эВ, /а == 18,21 эВ), чем остальные s-элементы II группы. В то же время он во многом сходен с алюминием (диагональное сходство в периодической системе) и является типичным амфотерным эле.ментом в обычных условиях он простых ионов не образует для него характерны комплексные ионы как катионного, так и анионного типа. Во всех устойчивых соединениях степень окисления бериллия -f2. Для Ве (II) наиболее характерно координационное число 4 (зр -гибри-Д1(зация валентных орбиталей).

[c.470]

    Здесь степень окисленности изменяется у азота и алюминня. Металлический алюминий (степень окисленности равна 0) превращается в иои АЮа, в котором степень окисленности алюминия равна Ч-З. Для составления уравнения окисления будем исходит , из схемы  [c.268]

    При этом образуется вулканообразный конус объемистого аморфного оксида хрома (III) зеленого цвета. Изменение степени окисления хрома в растворе сопровождается изменением окраски, что позволяет аналитически определить концентрацию хрома путем добавления раствора восстановителя известной концентрации. Соединения хрома (III) похожи на аналогичные соединения железа (особенно растворимые соли). Сульфат хрома (III) образует квасцы (как алюминий и железо). Хромокалиевые квасцы окраше-.чы в темно-фиолетовый цвет. Соединения хрома (II) — сильные восстановители и неустойчивы в присутствии влаги и воздуха (ср. со свойствами железа (II), с. 157). 

[c.155]

    Составьте формулу а) карбида бериллия б) карбида алюминия в) соединения углерода с фтором. Укажите степень окисления углерода в этих соединениях. [c.102]

    В соответствии с номером группы основная степень окисления этих элементов +5, однако при нормальных условиях для ванадия стабильной является +4. В то время как у ванадия легко достигаются низшие степени окисления ( + 4, +3, -Ь2 конфигурации d (Р и Ф), ниобий обычным путем можно восстановить только до степени окисления +3 (опыт 2). Восстановление тантала в водном растворе вообще невозможно. Известны соединения с формальной степенью окисления -1 ([М(СО)б]-, где M=V, Nb, Та) и +1 ([У01руз]+, n- sHsM( 0)4, где M=Nb, Та) (табл. В.39). Низшие и дробные степени окисления этих элементов встречаются в соединениях, содержащих группы М (разд. 36.11.1). Химические свойства соединений ванадия (И) весьма напоминают свойства соединений цинка, а ванадия(1П)—титана(1П), железа(Ш) и алюминия. Донорные основные свойства оксидов ванадия ослабляются с увеличением формальной степени окисления. 

[c.612]

    К этой группе восстановителей относятся металлы и некоторые другие элементарные вещества, как, например, водород, углерод и др. , атомы которых способны терять электроны и переходить в окисленное состояние. Металлы образуют при этом соответствующие соли в зависимости от кислоты, участвующей в реакции. Такие металлы, как цинк, алюминий и некоторые другие, могут восстанавливать и в щелочной среде, поскольку эти металлы растворимы в щелочах с образованием гидроксоцинкатов, гидроксоалюминатов и т. д. Являясь сильными восстановителями, при реакции, например, с некоторыми растворами азотной или серной кислоты, они способны восстановить центральные ионы этих кислот до низщих степеней окисления, т. е. до или по схемам  

[c.151]

    Ни один из этих элементов в своих соединениях не достигает степени окисления, соответствующей номеру группы. Наиболее устойчивы степени окисления +2 и Ч-З, причем для никеля, за некоторыми исключениями (например, в K [NiFe], см. также опыт 1), наиболее типична степень окисления +2 (конфигурация d ) (опыт 1). Во многих соединениях кобальта он также имеет степень окисления 4-2 (d ) степень окисления 4-3 (d ) характерна главным образом для комплексных соединений кобальта, которые имеют сходство с комплексами хрома (1П).

Соединения железа в степени окисления -j-2 (d ) сходны с соединениями цинка реакции иона железа(III) (d ) во многом похожи с реакциями ионов алюминия и хрома(III). Обладающие сильным окислительным действием ферраты (VI) (d ) РеОч напоминают хроматы (VI) и мaнгaнaты(VI) ферраты имеют тот же состав, что и сульфаты, и часто им изоморфны. Реакции соединений железа, кобальта и никеля в своем больщинстве определяются склонностью этих металлов к изменению степени окисления и их способностью к комплексообразованию. [c.635]

    При образовании ионов металлов последние окисляются, поскольку при этом происходит удаление электронов от атомов металла. Ион алюминия, АР», имеет степень окисления -I- 3. [c.32]

    Металлы проявля.ют в своих соединениях только положительную окисленность, и низшая их степень окислещгости равна нулю. Иначе говоря, низшей степенью окисленности они обладают только в свободном состоянии. Действительно, все свободные металлы способны, хотя и в различной степени, проявлять только восстановительные свойства, Иа практике в качестве восстановителей применяют алюминий, магний, натрнй.

калий, цинк и некоторые другие металлы. Если металлу присущи несколько степеней окисленности, то те его соединения, в которых он проявляет низшую нз них, также обычно являются восстановителями, например, соеди[ ения железа (И), олова (П), хрома (И), меди(1). [c.270]

    По своему химическому поведению молибден и вольфрам гораздо сильнее отличаются от хрома, чем между собой. Например, в отличие от хрома степень окисления -f 3 для молибдена и вольфрама реализуется лишь в небольшом числе катионных комплексов. Реакции хрома(П1) во многом сходны с реакциями железа (П1) и алюминия. В степени окисления -f6 хром несколько напоминает ванадий (4-5). [c.618]

    Алюминий — основной представитель металлов главной подгруппы III группы периодической системы хим11ческих элементов Д. И. Менделеева. Атомный номер 13, относительная атомная масса 26,98154. У алюминия единственный устойчивый изотоп А1. Свойства аналогов алюминия — галлия, индия и таллия — Ео многом напоминают свойства алюминия. Этому причина — одинаковое строение внешнего электронного слоя элементов — s p вследствие которого все они проявляют степень окисления + 3. Другие степени окисления нехарактерны, за исключением соединений одновалентного таллия, по свойствам близким к соединениям элементов I группы. В связи с этим будут рассмотрены свойства только одного элемента — алюминия и его соединеннй. [c.150]

    Атом углерода имеет 6 электронов, 2 из которых образуют внутренний (1з ) слой, а 4 (2а 2р-) — внешний. Связи углерода с другими элементами преимущественно ковалентны. Обычная валентность углерода — IV. С наиболее активными металлами углерод проявляет степень окисления — 4 (например, в карбиде алюминия АГ-.Сз). Замечательная особенность атома углерода — способность соединяться между собой с образованием прочных длинных цепей, в том числе замкнутых. Число таких соединений огромно, все они составляют предмет органической химии. 

[c.131]

    Оксид алюминия, А12О3, обладает амфотерными свойствами, а оксиды Са, 1п и Т1-основными свойствами. За исключением бора, остальные элементы группы П1А являются металлами. Галлий имеет единственное состояние окисления -Ь 3, и его химия очень напоминает химию А1 1п проявляет состояния окисления -Ь 3 и -Ь 1 Т1 также встречается в обоих этих состояниях окисления, но чаще имеет степень окисления -1- 1. [c.454]

    Конфигурация внешних электронных оболочек атома алюминия 3s 3p. Характерной степени окисления — -3 соответствует строение 2,зЗрхЗ[Уу  [c.338]

    Одинаковое число валентных электронов у атомов алюминия п бора определяет сходство этих элементов. Различие в структуре предвнешнего слоя и в размерах атомов, а в особенности наличие у атомов алюминия вакантных З -орбиталей предопределяют существенное различие их свойств. Как и для бора, для алюминия наиболее характерна степень окисления +3, а отрицательная поляризация атолюв проявляется еще реже. [c.524]

    Здесь наблюдается постепенный переход ог типично основных оксидов натрия и магния к амфотерным, или промежуточным (алюминия), и к кислотным оксидам фосфора, серы и хлора. Этот пе-ре.ход сопровождается понышепием окислительного числа эле.мен-тов, образующих оксиды. То же наблюдается у оксидов одного и того же элемента в разных степенях окисления. Так, например, в ряду [c.126]

    Электростатическая сила связи А1—О равна 0,75 е. Эта величина получается делением степени окисления алюминия (3) иа его координационное число (равно числу атомов кислорода, связанных с атомом алюминия). Электростатическая сила связи 51—О 1 е, следовательно, атом кислорода несет избыточный заряд. Этот заряд лишь частично нейтрализует заряд протона, поэтому протон должен обладать повышенной подвижностью. [c.131]

    Одинаковое строение внешней электронной оболочки атома бора и алюминия обусловливает сходство в свойствах этих элементов. Так, для алюминия, как и для бора, характерна только степень окисления +3. Однако при переходе от бора к алюминию сильно возрастает радиус атома (от 91 до 143 пм) и, кроме того, появляется еще один промежуточный восьмиэлектронный слой, экранирующий ядро. Все это приводит к ослаблению связи внешних электронов с ядром и к уменьшению энергии ионизации атома (см. табл. 15.2). Поэтому у алюминия металлические свойства выражены гораздо сильнее, чем у бора. Тем не менее химические связи, образуемые алюминием с другими элементами, имеют в основном ковалентный характер. [c.400]

    Гидратированный катион алюминия (координационное число 6), как и катионы более тяжелых элементов-аналогов в степени окисления -1-3 (разд. 36.3), — кислота средней силы  [c.604]

    А) Рассчитайте, какова простейшая формула органического вещества, в котором массовая доля углерода 39,98%, водорода 6,6 % и кислорода 5 ,42 %. Назовите это вещество. Ответ СН,0 формальдегид. 2. (А ) Определите состав углеводорода, если относительная плотность его по водороду (н.у.) равна 13, массовая доля в нем углерода 92,3%. Каким образом можно доказать, что сосуд заполнен газом, состав которого вы определили Ответ С Н,, пропустить газ через аммиачный раствор Си (I) (СиС1) или Ag (1) (А С1). 3. (А) При сгорании металла массой 3 г образуется его оксид массой 5,67 г. Степень окисления металла в оксиде равна +3. Что это за металл Ответ Алюминий. [c.274]

    Для цинка характерна устойчивая степень окисления -(-2, а для алюминия +3. Остальные катионы этой группы проявляют и более высокие степени окисления, а соответствующие им соединения обладают в связи с этим свойствами окислителей. Так, исходя из [c.259]

    Атс М алюминия (Is 2s 2р 3s больше по размеру, чем атом бора, i обладает меньшей энергией ионизации. Следовательно, неме-талли1еские признаки химического элемента алюминия выражены в меньш й степени, чем химического элемента бора. Для алюминия, как и для эора, наиболее характерна степень окисления +3. Отрицательная поляризация атомов алюминия проявляется еще реже. Для алюминия (III) наиболее характерны координационные числа 6 и 4. [c.451]

    Названия оснований строятся из слова гидроксид и названия металла. Если металл не имеет постоянной валентности, то в скобках указывают значение степени окисления (валентности), проявляемое в этом соединении. Например гидроксид цинка Zn(OH)j (читается цинк о аш дважды ), гидроксид натрия NaOH (читается натрии о аш ), гидроксид алюминия А1(0Н) (читается алюминий о аш 1 рижды ), гидроксид железа (II) Fe(OH)j (читается фер-рум о аш дважды ) и гидроксид железа (III) Ре(ОН)з (читается фер-рум (I аш 1рижды ). [c.12]

    Гидроксиды алюминия, хрома (П1) и цинка обладают амфотерными свойствами. В некоторой степени можно говорить и об амфо-терности гидроксида железа (П1) с очень слабо выраженными кислотными свойствами, проявляю[цимися лишь по отношению к концентрированным и горячим растворам ителочей, в которых Р е(ОН)з заметно растворяется с образованием гидроксоферра-тов (П1) натрия или калия. Гидроксиды низшей степени окисления Ре(0Н)2, Мп(ОИ)2, Ni(OH)2 и Со(ОН)2 являются слабыми основаниями, растворимыми в кислотах и в растворах аммониевых солей.[c.259]

    Как объяснить, что при одной и той же степени окисления бора и алюминия, равной 3, первый образует тетрафтороборат-ион, а второй гексафтороалюминат-ион  [c.194]

    Формулы и названия двойных солей начинаются с катиона, имеющего более высокую степень окисления А1К(504)2- 12Н2О — алюминия-калия сульфат. [c.33]

    В соответствии с положением в периодической системе основная степень окисления алюминия +3. В так называемых субсоединениях алюминий проявляет степень окисления +1 (заполненный Зs -ypoвeнь). Эти соединения (А1Х, Х=Р, С1, Вг, I А12 , =0, 8, 5е, а также АЮ) образуются при высоких температурах при реакциях, обратных диспропорционированию  [c.603]

    Соединения алюминия. В своих устойчивых соединениях алю-М1Н1ИЙ обычно проявляет степень окисления +3. [c.254]

    Кроме того, они образуют соединения, отвечающие степени окисления +2 и -ЬЗ. Соединения хрома (III) по свойствам во многом сходны с соединениями алюминия (III). Это объясняется тем, что радиусы ионов Сг + (0,63А) и AF+ (0.54А) близки. Гидроксид хрома Сг(ОН)з, как и А1(0Н)з, амфотерное соединение. В отличие от соединений алюминия соединения хрома (III) обладают восстановительными свойствами. Высшие оксиды рассматриваемых элементов ЭО3 и соответствующие им гидроксиды Н2ЭО4 обладают кислотными свойствами. Соединения хрома (VI) СгОз, Н2СГО4, Н2СГ2О7 и их соли — сильные окислители. [c.97]


общая характеристика, строение; свойства и получение — урок. Химия, 8–9 класс.

Алюминий как атом и химический элемент

Алюминий находится в \(IIIA\) группе Периодической системы химических элементов Д. И. Менделеева.

Строение электронной оболочки атома алюминия — 1s22s22p63s23p1.

 

На внешнем электронном уровне атом содержит \(3\) электрона.

 

Поэтому в своих соединениях алюминий всегда проявляет только одну степень окисления, равную \(+3\).

 

Обрати внимание!

По распространённости в земной коре алюминий занимает третье место после кислорода и кремния, а среди металлов — первое.

В земной коре алюминий встречается только в составе соединений.

 

Основные природные минералы алюминия:

  • боксит, состав которого можно примерно выразить формулой Al2O3 \(•\) xh3O,
  • нефелин (Na,K)O2  \(•\) Al2O3 \(•\) 2h3O,
  • каолинит Al2O3 \(•\) SiO2 \(•\) 2h3O.

Каолинит — образец многочисленных алюмосиликатов, включающих преимущественно атомы кремния и кислорода, которые очень широко распространены в природе.

Физические свойства

В свободном состоянии алюминий — светлый блестящий металл, лёгкий, относительно мягкий, легкоплавкий, имеет высокую тепло- и электропроводность.

 

Алюминий является химически активным металлом, однако при обычных условиях он устойчив на воздухе и сохраняет свой металлический блеск длительное время. Это объясняется тем, что поверхность алюминия покрыта тонкой, невидимой глазу, прозрачной, но плотной плёнкой оксида алюминия, которая препятствует взаимодействию алюминия с компонентами атмосферы (парами воды и кислородом).

 

Свойства алюминия обусловили его широкое применение и необходимость получения алюминия в свободном виде.

В лабораторных условиях небольшое количество алюминия можно получить путём восстановления хлорида алюминия калием при высокой температуре:

 

AlCl3+3K=t3KCl+Al.

 

Так был впервые получен алюминий.

 

В промышленных условиях алюминий получают из бокситов. При нагревании бокситов образуется оксид алюминия. Восстановить алюминий из оксида с помощью традиционных восстановителей практически невозможно, поэтому его получают методом электролиза.

 

При этом на катоде восстанавливается алюминий, а на аноде — окисляется кислород.

 

Суммарная реакция электролиза выражается уравнением:


2Al2O3=4Al+3O2↑.

какую степень окисления проявляет алюминий в соединениях?

Пж помогите 2,3,4 упражнения нужно

Определите массу исходных реагентов оксида меди и 70% азотной кислоты необходимых для получения 0,2 моль натрия медиПомогите пожалуйста:(​

2 и 3 вариант помогите пж​

Определите принадлежность органических соединений к классам непредельных углеводородов.

Срочно пожалуйста!!Напишите у равнения следующих реакций Нитрат серебра + хлорид бария =

Каким газом следует наполнить шарик, чтобы он мог взлететь вверх ( Кислород -O2, Метан -Ch5, Сернистый газ -SO2)? (Средняя молярная масса воздуха равн … а 29 г/моль).

Реализуйте уравнения реакций и определите неизвестные соединения. 1 2 3 4 ca ->x-> ca(oh)2 -> x1 ->cao​

СОРПО ТЕМЕ: «КИСЛОТЫ»1.Выберите ряд, в котором все кислоты являются бескислородными, одноосновными А) серная, соляная, азотная Б) азотная, соляная, се … роводородная В) соляная, сероводородная, йодоводородная Г) фосфорная, бромоводородная, угольная 2. Под каким номером записаны формулы сульфата, сульфита и сульфида калия? А) К2SO3, K2S, K2SO4; Б) К2S, K2SО4, K2SO3; В) К2SO3, K2SO4, K2S; Г) К2SO4, K2SО3, K2S. 3. Составить формулы солей и дать им названия: металлы Na, Аl (кислоты — серная, азотная, ортофосфорная, соляная) Помогите пожалуйста люди добрые ​

СОРПО ТЕМЕ: «КИСЛОТЫ»1. Выберите ряд, в котором все кислоты являются бескислородными, одноосновными А) серная, соляная, азотная Б) азотная, соляная, се … роводородная В) соляная, сероводородная, йодоводородная Г) фосфорная, бромоводородная, угольная 2. Под каким номером записаны формулы сульфата, сульфита и сульфида калия? А) К2SO3, K2S, K2SO4; Б) К2S, K2SО4, K2SO3; В) К2SO3, K2SO4, K2S; Г) К2SO4, K2SО3, K2S. 3. Составить формулы солей и дать им названия: металлы Na, Аl (кислоты — серная, азотная, ортофосфорная, соляная) 4. Составьте формулы веществ: хлорид калия, сульфат железа (3), карбонат натрия, сульфит кальция. 5. Напишите уравнения реакций, которые осуществимы: Аg+НСl= ; Са+НСl= ; Zn+h4PO4=; Fe2O3+h3SO4=​

у якій масі води треба розчинити 30 г пральної соди. щоб приготувати розчин з масовою часткою соди 7.5 %Помогите пожалуйста ​

Урок №52. Алюминий. Нахождение в природе. Свойства алюминия

Алюминий

Дополнительно на страницах учебника «Фоксфорд»

Главную подгруппу III группы периодической системы со­ставляют бор (В), алюминий (Аl), галлий (Ga), индий (In) и таллий (Тl).

Как видно из приведенных данных, все эти элементы были открыты в XIX столетии.

Открытие металлов главной подгруппы III группы

В

Al

Ga

In

Tl

1806 г.

1825 г.

1875 г.

1863 г.

1861 г.

Г.Люссак,

Г.Х.Эрстед

Л. де Буабодран

Ф.Рейх,

У.Крукс

Л. Тенар

(Дания)

(Франция)

И.Рихтер

(Англия)

(Франция)



(Германия)


Бор представляет собой неметалл. Алюминий — переход­ный металл, а галлий, индий и таллий — полноценные метал­лы. Таким образом, с ростом радиусов атомов элементов каждой группы периодической системы металлические свой­ства простых веществ усиливаются.

В данной лекции мы подробнее рассмотрим свойства алюминия.

1. Положение алюминия в таблице Д. И. Менделеева. Строение атома, проявляемые степени окисления.

Элемент алюминий расположен в III группе, главной «А» подгруппе, 3 периоде периодической системы, порядковый номер №13, относительная атомная масса Ar(Al) = 27.  Его соседом слева в таблице является магний – типичный металл, а справа – кремний – уже неметалл. Следовательно, алюминий должен проявлять свойства некоторого промежуточного характера и его соединения являются амфотерными.

Al +13 )2)8)3    , p – элемент,

Основное состояние

1s22s22p63s23p1

 

Возбуждённое состояние

1s22s22p63s13p2

 

 

Алюминий проявляет в соединениях степень окисления +3:

Al0 – 3 e → Al+3

2. Физические свойства

Алюминий в свободном виде — се­ребристо-белый металл, обладающий высокой тепло- и электро­проводностью. Температура плавления  650 оС. Алюминий имеет невысокую плотность (2,7 г/см3) — при­мерно втрое меньше, чем у железа или меди, и одновременно — это прочный металл.

3. Нахождение в природе

По распространённости в природе занимает 1-е среди металлов и 3-е место среди элементов, уступая только кислороду и кремнию. Процент содержания алюминия в земной коре по данным различных исследователей составляет от 7,45 до 8,14 % от массы земной коры.

В природе алюминий встречается только в соединениях (минералах).

 Некоторые из них:

·         Бокситы — Al2O3 • H2O (с примесями SiO2, Fe2O3, CaCO3)

·         Нефелины — KNa3[AlSiO4]4

·         Алуниты — KAl(SO4)2 • 2Al(OH)3

·         Глинозёмы (смеси каолинов с песком SiO2, известняком CaCO3, магнезитом MgCO3)

·         Корунд — Al2O3

·         Полевой шпат (ортоклаз) — K2O×Al2O3×6SiO2

·         Каолинит — Al2O3×2SiO2 × 2H2O

·         Алунит — (Na,K)2SO4×Al2(SO4)3×4Al(OH)3

·         Берилл — 3ВеО • Al2О3 • 6SiO2

Боксит

 

Al2O3

Корунд

 

Рубин

 

Сапфир

 

4. Химические свойства алюминия и его соединений

Алюминий легко взаимодействует с кислородом при обычных условиях и покрыт оксидной пленкой (она придает матовый вид).

ДЕМОНСТРАЦИЯ ОКСИДНОЙ ПЛЁНКИ

Алюминий


Её толщина 0,00001 мм, но благодаря ней алюминий не коррозирует. Для изучения  химических свойств алюминия оксидную пленку удаляют. (При помощи наждачной бумаги, или химически: сначала опуская в раствор щелочи для удаления оксидной пленки, а затем в раствор солей ртути для образования сплава алюминия со ртутью – амальгамы). 

I. Взаимодействие с простыми веществами 

Алюминий уже при комнатной температуре активно реагирует со всеми галогенами, образуя галогениды. При нагревании он взаимодействует с серой (200 °С), азотом (800 °С), фосфором (500 °С) и углеродом (2000 °С), с йодом в присутствии катализатора — воды:

2Аl + 3S = Аl2S3  (сульфид алюминия),

2Аl + N2 = 2АlN  (нитрид алюминия),

Аl + Р = АlР (фосфид алюминия),

4Аl + 3С = Аl4С3 (карбид алюминия).

2 Аl   +  3  I2   =  2 AlI3  (йодид алюминия)    ОПЫТ

Все эти соединения полностью гидролизуются с образованием гидроксида алюминия и, соответственно, сероводорода, аммиака, фосфина и метана:

Al2S3 + 6H2O = 2Al(OH)3 + 3H2

Al4C3 + 12H2O = 4Al(OH)3+ 3CH4­

В виде стружек или порошка он ярко горит на воздухе, выде­ляя большое количество теплоты:

4Аl + 3O2 = 2Аl2О3 + 1676 кДж.

 ГОРЕНИЕ АЛЮМИНИЯ НА ВОЗДУХЕ

 ОПЫТ

II. Взаимодействие со сложными веществами

Взаимодействие с водой

2 Al + 6 H2O  =  2 Al (OH)3  +  3 H2

без оксидной пленки       

 ОПЫТ

Взаимодействие с оксидами металлов:

Алюминий – хороший восстановитель, так как является одним из активных металлов. Стоит в ряду активности сразу после щелочно-земельных металлов. Поэтому восстанавливает металлы из их оксидов. Такая реакция – алюмотермия – используется для получения чистых редких металлов, например таких, как вольфрам, ваннадий и др.                                                                            

3 Fe3O4  +   8 Al =   4 Al2O3  +  9 Fe +Q

Термитная смесь Fe3O4  и   Al (порошок) –используется ещё и в термитной сварке. 

Сr2О3 + 2Аl = 2Сr + Аl2О3

Взаимодействие с кислотами:

С раствором серной кислоты:  2 Al  + 3 H2SO4  =  Al2(SO4)3 +  3 H2

С холодными концентрированными серной и азотной не реагирует (пассивирует). Поэтому азотную кислоту перевозят в алюминиевых цистернах. При нагревании алюминий способен восстанавливать эти кислоты без выделения водорода:

2Аl + 6Н24(конц) = Аl2(SО4)3 + 3SО2 + 6Н2О,

Аl + 6НNO3(конц) = Аl(NO3)3 + 3NO2 + 3Н2О.

Взаимодействие со щелочами.

2 Al + 2 NaOH + 6 H2O  =  2 Na[Al(OH)4]   +  3 H2

     ОПЫТ

Nal(ОН)4]тетрагидроксоалюминат натрия

По предложению химика Горбова, в русско-японскую войну эту реакцию использовали для получения водорода для аэростатов.

С растворами солей:

2Al + 3CuSO4 = Al2(SO4)3 + 3Cu

Если поверхность алюминия потереть солью ртути, то происходит реакция:

2Al + 3HgCl2 = 2AlCl3 + 3Hg

Выделившаяся ртуть растворяет алюминий, образуя  амальгаму.

     Обнаружение ионов алюминия в растворах:              ОПЫТ

5. Применение алюминия и его соединений

РИСУНОК 1

РИСУНОК 2

Физические и химические свойства алюминия обусловили его широкое применение в технике. Крупным потребителем алюминия  является авиационная промышленность: самолет на 2/3 состоит из алюминия и его сплавов. Самолет из стали оказался бы слишком тяжелым и смог бы нести гораздо меньше пассажиров. Поэтому алюминий называют крылатым металлом. Из алюминия изготовляют кабели и провода: при одинаковой электрической проводимости их масса в 2 раза меньше, чем соответствующих изделий из меди.

Учитывая коррозионную устойчивость алюминия, из него изготовляют детали аппаратов и тару для азотной кислоты. Порошок алюминия является основой при изготовлении серебристой краски для защиты железных изделий от коррозии, а также для отражения  тепловых лучей такой краской покрывают нефтехранилища, костюмы пожарных.

Оксид алюминия используется для получения алюминия, а также как огнеупорный материал.

Гидроксид алюминия – основной компонент всем известных лекарств маалокса, альмагеля, которые понижают кислотность желудочного сок.

Соли алюминия сильно  гидролизуются. Данное свойство применяют в процессе очистки воды. В очищаемую воду вводят сульфат алюминия и небольшое количество гашеной извести для нейтрализации образующейся кислоты. В результате выделяется объемный осадок гидроксида алюминия, который, оседая, уносит с собой взвешенные частицы мути и бактерии.

Таким образом, сульфат алюминия является коагулянтом.

6. Получение алюминия

1) Современный рентабельный способ получения алюминия был изобретен американцем Холлом и французом Эру в 1886 году. Он заключается в электролизе раствора оксида алюминия в расплавленном криолите. Расплавленный криолит Na3AlF6 растворяет Al2O3, как вода растворяет сахар. Электролиз “раствора” оксида алюминия в расплавленном криолите происходит так, как если бы криолит был только растворителем, а оксид алюминия — электролитом.

2Al2O3 эл.ток→  4Al + 3O2

В английской “Энциклопедии для мальчиков и девочек” статья об алюминии начинается следующими словами: “23 февраля 1886 года в истории цивилизации начался новый металлический век — век алюминия. В этот день Чарльз Холл, 22-летний химик, явился в лабораторию своего первого учителя с дюжиной маленьких шариков серебристо-белого алюминия в руке и с новостью, что он нашел способ изготовлять этот металл дешево и в больших количествах”. Так Холл сделался основоположником американской алюминиевой промышленности и англосаксонским национальным героем, как человек, сделавшим из науки великолепный бизнес.

2) 2Al2O3   +   3 C  =  4 Al  +  3 CO2

 ЭТО ИНТЕРЕСНО:

  • Металлический алюминий первым выделил в 1825 году датский физик Ханс Кристиан Эрстед. Пропустив газообразный хлор через слой раскаленного оксида алюминия, смешанного с углем, Эрстед выделил хлорид алюминия без малейших следов влаги. Чтобы восстановить металлический алюминий, Эрстеду понадобилось обработать хлорид алюминия амальгамой калия. Через 2 года немецкий химик Фридрих Вёллер. Усовершенствовал метод, заменив амальгаму калия чистым калием.
  • В 18-19 веках алюминий был главным ювелирным металлом. В 1889 году Д.И.Менделеев в Лондоне за заслуги в развитии химии был награжден ценным подарком – весами, сделанными из золота и алюминия.
  • К 1855 году французский ученый  Сен- Клер Девиль разработал способ получения металлического алюминия в технических масштабах. Но способ был очень дорогостоящий. Девиль пользовался особым покровительством Наполеона  III, императора  Франции. В знак  своей преданности и благодарности Девиль изготовил для сына Наполеона, новорожденного принца, изящно гравированную погремушку – первое «изделие ширпотреба» из алюминия. Наполеон намеревался даже снарядить своих гвардейцев алюминиевыми кирасами, но цена оказалась непомерно высокой. В то время 1 кг алюминия стоил 1000 марок, т.е. в 5 раз дороже серебра. Только после изобретения электролитического процесса алюминий по своей стоимости сравнялся с обычными металлами.
  • А знаете ли вы, что алюминий, поступая в организм человека, вызывает расстройство нервной системы.  При его избытке нарушается обмен веществ. А защитными средствами является витамин С, соединения кальция, цинка.
  • При сгорании алюминия в кислороде и фторе выделяется много тепла. Поэтому его используют как присадку к ракетному топливу. Ракета «Сатурн» сжигает за время полёта 36 тонн алюминиевого порошка. Идея использования металлов в качестве компонента ракетного топлива впервые высказал Ф. А. Цандер. 

ТРЕНАЖЁРЫ

Тренажёр №1 — Характеристика алюминия по положению в Периодической системе элементов Д. И. Менделеева

Тренажёр №2 — Уравнения реакций алюминия с простыми и сложными веществами

Тренажёр №3 — Химические свойства алюминия

ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ

№1. Для получения алюминия из хлорида алюминия в качестве восстановителя можно использовать металлический кальций. Составьте уравнение данной химической реакции, охарактеризуйте этот процесс при помощи электронного баланса.
Подумайте! Почему эту реакцию нельзя проводить в водном растворе?

№2. Закончите уравнения химических реакций:
Al + H2SO4 (раствор) ->
Al + CuCl2 ->
Al + HNO3(конц) —t->
Al + NaOH + H2O ->

№3. Осуществите превращения:
Al -> AlCl3 -> Al -> Al2S3 -> Al(OH)3t->Al2O3 -> Al

№4. Решите задачу:
На сплав алюминия и меди подействовали избытком концентрированного раствора гидроксида натрия при нагревании. Выделилось 2,24 л газа (н.у.). Вычислите процентный состав сплава, если его общая масса была 10 г?

Алюминий — свойства, характеристики, обзорная статья

Алюминий (квасцы) — 13 элемент периодической таблицы элементов, 13 группы в современной классификации. Он обладает относительно низкой электропроводностью, но наименьшей плотностью среди других металлов. В природе алюминий встречается в виде стабильного изотопа Al27. Купить алюминий можно на нашем сайте.

Он ценится за высокую коррозийную стойкость и лёгкость. На поверхности изделий алюминия образуется тонкая оксидная плёнка оксидов, которая и защищает металл от дальнейшего окисления. Некоторые алюминиевые сплавы обладают большой твердостью, тугоплавкостью и жаропрочностью и проявляют другие полезные качества, в виду образования алюминидов (интерметаллических сплавов). Полную информацию об этом элементе смотрите в таблице, приведённой ниже.

Свойства атома

Химические свойства

Термодинамические свойства простого вещества

Кристаллическая решётка простого вещества

Прочие характеристики

Имя, символ, номер

Алюминий / Aluminium (Al), 13

Ковалентный радиус

121±4 пм

Термодинамическая фаза

Твёрдое вещество

Структура решётки

кубическая гранецентрированая

Теплопроводность

(300 K) 237 Вт/(м·К)

Группа, период, блок

13, 3

Радиус Ван-дер-Ваальса

184 пм

Плотность (при н. у.)

2,6989 г/см³

Параметры решётки

4,050 Å

Скорость звука

5200 м/с

Атомная масса
(молярная масса)

26,981539 а. е. м. (г/моль)

Радиус иона

51 (+3e) пм

Температура плавления

660 °C, 933,5 K

Температура Дебая

394 K

Электронная конфигурация

[Ne] 3s2 3p1

Электроотрицательность

1,61 (шкала Полинга)

Температура кипения

2518,82 °C, 2792 K

Электроны по оболочкам

2, 8, 3

Электродный потенциал

-1,66 В

Теплота плавления

10,75 кДж/моль

Радиус атома

143 пм

Степени окисления

3,

1 и 2 — менее характерны и проявляются в газовой фазе при температуре выше 800°C

Теплота испарения

284,1 кДж/моль

Поперечное сечение захвата тепловых нейтронов

215*10-25 м2

Энергия ионизации

1-я: 577. 5 кДж/моль (эВ)
2-я: 1816.7 кДж/моль (эВ)

Молярная теплоёмкость

24,35[1] Дж/(K·моль)

Молярный объём

10,0 см³/моль

Область применения

Полуфабрикаты из алюминия:

Алюминий применяется в строительстве, электротехнике, кораблестроении, на производстве холодильных установок, для нужд народного хозяйства. В электротехнике он применяется при изготовлении проводников, корпусов, диодов охладителей. Для защиты металлических изделий от коррозии, алюминий наносят разными способами на их поверхность. Порошок алюминия применяется при производстве металлов, сплавов, а также ячеистого бетона. Большая же часть алюминия выпускается в виде сплавов, так как чистый металл слишком мягок.

Мировые запасы и основные поставщики

Алюминий является самым распространённым металлом и четвертым по содержанию в земной коре химическим элементом (8,8%), но в чистом виде присутствет редко в кристалах размером в несколько микронов. В морской воде содержится 0,01 мг/л3, а в пресной 0,001-10 мг/л3 алюминия. Алюминий обнаружили со 100% уверенностью только в XIX в. В промышленных масштабах его начали производить во второй половине того же века. И лишь с освоением метода производства алюминия электролизом, освоенным Полем Эру (франция) и Чарльзом Холлом (США) в 1886 году, алюминиевая промышленность стала завоёвывать своё почётное второе место в производстве металлов после стальной промышленности. Однако, более 60% алюминия сейчас производится из вторсырья.

Во всех преуспевающих странах этот вид промышленности стал развиваться бурными темпами. До первой мировой войны алюминий производило 6 стран, после — 16, 1967 году — 30 стран. В России первый алюминиевый завод был построен только в 1932 году. Это связано с программой Ленина по электрификации страны и постройкой первой ГЭС на Волхове. Мировыми лидерами по производству алюминия являются: КНР, Россия, Канада, США, Австралия, Бразилия, Индия и другие.

Сырье для производства алюминия

Основным сырьём для производства алюминия являются бокситы (сложные по минеральному составу руды, различной твёрдости, обычно красноватого оттенка). В бокситах содержится 40-60 % глинозёма, который представляет собой смесь оксидов алюминия, натрия, калия и магния.

Крупнейшими производителями высококачественных бокситов являются: Австралия, Гвинея, на Ямайка, Суринам, Гайана, Югославия и другие страны. При этом 2/3 запасов сосредоточено в Гвинее, Бразилии, Австралии, на Ямайке, в Камеруне и Мали. Бокситы добываются открытым или реже закрытым способом, по различным технологическим схемам. Из них производят глинозём. Из глинозёма и производится чистый алюминий электролитическим методом.

Эру и Холл же нашли способ снизить температуру плавления оксида алюминия и энергозатраты. Так как оксид алюминия имеет температуру плавления 2050°C, то они придумали способ электролитической плавки алюминия в расплавленном криолите. С помощью этого метода стало возможным снизить температуру плавления до 950°C. Криолит — это крайне редкий в природе минерал с химическим составом Na3AlF6. Основные известные месторождения криолита сосредоточены в Западной Гренландии, на Южном Урале в Ильменских горах и в штате Колорадо (США). Этот способ производства алюминия был бы весьма дорогостоящим, если бы учёные не научились производить криолит химическим способом, при взаимодействии фторида алюминия и фторида натрия, либо взаимодействия в присутствии соды плавиковой кислоты и гидроксида алюминия.

Получение глинозёма, алюминия из глинозёма, рафинирование

В заголовке выделены основные стадии получения чистого алюминия из бокситов.

Получение глинозёма

Для получения глинозёма бокситы измельчают и смешивают с щелочью и известью. Бокситы выщелачивают при температуре около 240°C в трубчатых или круглых автоклавах в растворе щелочи, в результате чего образуется красный шлам с содержанием оксидов железа и титана и нерастворимых остатков алюмината натрия и силиката натрия. Температуру понижают до 100°C с добавлением раствора щелочи. Промывкой алюминатного раствора и шлама в сгустителях шлам и раствор разделяют. Шлам оседает, а раствор фильтруют. Фильтрованный раствор переливают в ёмкости с мешалками и понижают его температуры до 60°C. В результате перемешивания и процесса кристаллизации образуется гидроокись алюминия Al(OH). С помощью гидроциклонов и вакуумных 60% Al(OH) выпадает в осадок, часть гидроокиси возвращают для последующих операций, остаток также идёт на выщелачивание. Полученную гидроокись обезвоживают во вращающихся трубчатых печах и при температуре 1150-1300оС и получают глинозём с содержанием 30-50% α-Al2O3 (корунд) и γ-Al2O3.

Растворённую в криолите окись алюминия подвергают процедуре электролитического восстановления при температуре около 960°C в ваннах футерованных углеродистыми блоками, которые и выступают катодами в процессе электролиза, через которые подаётся электричество. В роли анодов выступают угольные блоки подвешенные сверху в алюминиевых профилях. На анодах осаждается CO и CO2, а на подины ванны осаждается жидкий алюминий, который в процессе выпускается. Аноды в процессе электролиза выгорают.

Рафинирование

Иногда рафинирование производится путём алюмоорганических комплексных соединений и плавки. Но в основном рафинирование производится методом трёхслойного электролиза в ванных одетых стальным листом при температуре 700-800°C. Нижний анодный слой — это расплавленный алюминий, средний слой — электролит. Верхний катодный слой — чистый алюминий растворяющийся из нижнего слоя в электролите. К верхнему слою подводится графитовый стержень под напряжением. В результате кремний и тяжёлые металлы остаются в анодном слое, а весь алюминий поднимается на поверхность. Полученный сплав разливают. В среднем он содержит:

  • Fe 0,0005-0,002 %
  • Si 0,002-0,005 %
  • Cu 0,0005-0,002 %
  • Zn 0,0005-0,002 %
  • следы Mg
  • остальную часть составляет Al

Полученный в результате рафинирования сплав разливают в формы и получают из него слитки и чушки, которые идут на производство плит, листов, профилей, проволоки, фольги, путём ковки, волочения, проката, штамповки. А порошок получают из жидкого сплава, распыляя на него струю N2 и О2.

Получено первое стабильное соединение со связью алюминий-алюминий

07.11.2017 | Nanonewsnet.ru

Ученые из Технического университета Мюнхена получили диалюмен – первое устойчивое соединение с двойной ковалентной связью алюминий-алюминий. Исследование опубликовано в Journal of the American Chemical Society.

Алюминий — наиболее распространенный элемент в земной коре, многие его производные применяются в органическом синтезе или получении полимеров. Тем не менее, строение производных алюминия до недавнего времени считалось однообразным. Самая предпочтительная степень окисления алюминия — +3, однако в не имеющем электрического заряда нейтральном диалюмене (соединении с двойной связью алюминий-алюминий) металл должен принимать степень окисления +1. В настоящий момент описано несколько соединений алюминия со степенью окисления +1, в которых атомы алюминия связаны одинарной связью Al—Al, однако они неустойчивы и быстро разрушаются с образованием производных Al(0) (или металлического алюминия) и Al(+3).

В новом исследовании ученым удалось синтезировать первый устойчивый алюминийсодержащий аналог алкенов. Для этого химики связали с атомами алюминия, образующими двойную связь, сразу два объемных стабилизирующих заместителя — большой алкилсилильный заместитель и электронодонорный N-гетероциклический карбен. В полученном соединении межатомное расстояние алюминий-алюминий оказалось самым коротким из известных в настоящее время ковалентных связей Al—Al.


Результаты рентгеноструктурного исследования первого устойчивого диалюмена. Атомы углерода изображены в виде серых эллипсоидов азота — синих, кремния — зеленых, алюминия — пурпурных. Атомы водорода не показаны для упрощения картинки. Само полученное вещество представляет собой кристаллы пурпурного цвета. Munchen University.

Темно-пурпурные кристаллы диалюмена оказались достаточно устойчивы (в инертной атмосфере при комнатной температуре соединение с двойной связью алюминий-алюминий не разлагается в течение нескольких недель), хотя и активно взаимодействует с кислородом и влагой воздуха и некоторыми органическими растворителями (например, диэтиловым эфиром). В реакциях с органическими соединениями, содержащими кратную связь углерод-углерод, связь Al=Al вступает в реакцию [2+2] циклоприсоединения, воспроизводя тем самым химические свойства двойных связей углерод-углерод и других.

Химики планирует изучить другие химические свойства полученного диалюмена, рассчитывая обнаружить новые алюмоорганические соединения, которые могут выступать в качестве катализаторов реакций или стать веществами для синтеза практически полезных материалов.

Автор: Аркадий Курамшин

Алюминий

Алюминий — самый распостраненный в земной коре металл. На его долю приходится 5,5-6,6 мол. доли % или 8 масс. %. Главная масса его сосредоточена в алюмосиликатах. Чрезвычайно распространенным продуктом разрушения образованных ими горных пород является глина, основной состав которой отвечает формуле Al2O3.2SiO2.2h3O. Из других природных форм нахождения алюминия наибольшее значение имеют боксит Al2O3. xh3O и минералы корунд Al2O3 и криолит AlF3.3NaF.
Впервые алюминий был получен Велером в 1827 году действием металлического калия на хлорид алюминия. Однако, несмотря на широкую распространенность в природе, алюминий до конца XIX века принадлежал к числу редких металлов.
В настоящее время в промышленности алюминий получают электролизом раствора глинозема Al2O3 в расплавленнном криолите. Al2O3 должен быть достаточно чистым, поскольку из выплавленного алюминия примеси удаляются с большим трудом. Температура плавления Al2O3 около 2050оС, а криолита — 1100оС. Электролизу подвергают расплавленную смесь криолита и Al2O3, содержащую около 10 масс.% Al2O3, которая плавится при 960оС и обладает электрической проводимостью, плотностью и вязкостью, наиболее благоприятствующими проведению процесса. При добавлении AlF3, CaF2 и MgF2 проведение электролиза оказывается возможным при 950оС.
В периодической системе алюминий находится в третьем периоде, в главной подгруппе третьей группы. Заряд ядра +13. Электронное строение атома 1s22s22p63s23p1. Металлический атомный радиус 0,143 нм, ковалентный — 0,126 нм, условный радиус иона Al3+ — 0,057 нм. Энергия ионизации Al — Al+ 5,99 эВ.
Наиболее характерная степень окисления атома алюминия +3.Отрицательная степень окисления проявляется редко. Во внешнем электронном слое атома существуют свободные d-подуровни. Благодаря этому его координационное число в соединениях может равняться не только 4 (AlCl4-, Alh5-, алюмосиликаты), но и 6 (Al2O3,[Al(Oh3)6]3+).
В виде простого вещества алюминий — серебристо-белый, довольно твердый металл с плотностью 2,7 г/см3 (т.пл. 660оС, т. кип. ~2500оС). Кристаллизуется в гранецентрированной кубической решетке. Характеризуется высокой тягучестью, теплопроводностью и электропроводностью (составляющей 0,6 электропроводности меди). С этим связано его использование в производстве электрических проводов. При одинаковой электрической проводимости алюминмевый провод весит вдвое меньше медного.
На воздухе алюминий покрывается тончайшей (0,00001 мм), но очень плотной пленкой оксида, предохраняющей металл от дальнейшего окисления и придающей ему матовый вид. При обработке поверхности алюминия сильными окислителями (конц. HNO3, K2Cr2O7) или анодным окислением толщина защитной пленки возрастает. Устойчивость алюминмя позволяет изготавливать из него химическую аппаратуру и емкости для хранения и транспортировки азотной кислоты.
Алюминий легко вытягивается в проволоку и прокатывается в тонкие листы. Алюминиевая фольга (толщиной 0,005 мм) применяется в пищевой и фармацевтической промышленности для упаковки продуктов и препаратов.
Основную массу алюминия используют для получения различных сплавов, наряду с хорошими механическими качествами характеризующихся своей легкостью. Важнейшие из них — дуралюминий (94% Al, 4% Cu, по 0,5% Mg, Mn, Fe и Si), силумин (85 — 90% Al, 10 — 14% Sk, 0,1% Na) и др. Алюминиевые сплавы применяются в ракетной технике, в авиа-, авто-, судо- и приборостроении, в производстве посуды и во многих других отраслях промышленности. По широте применения сплавы алюминия занимают второе место после стали и чугуна.
Алюминий, кроме того, применяется как легирующая добавка ко многим сплавам для придания им жаростойкости.
При накаливании мелко раздробленного алюминия он энергично сгорает на воздухе. Аналогично протекает и взаимодействие его с серой. С хлором и бромом соединение происходит уже при обычной температуре, с иодом — при нагревании. При очень высоких температурах алюминий непосредственно соединяется также с азотом и углеродом. Напротив, с водородом он не взаимодействует.
По отношению к воде алюминий вполне устойчив. Но если механическим путем или амальгамированием снять предохраняющее действие оксидной пленки, то происходит энергичная реакция:
2Al + 6h3O = 2Al(OH)3 + 3h3
Сильно разбавленные, а также очень концентрированные HNO3 и h3SO4 на алюминий почти не действуют (на холоду), тогда как при средних концентрациях этих кислот он постепенно растворяется. Чистый алюминий довольно устойчив и по отношению к соляной кислоте, но обычный технический металл в ней растворяется.
Алюминий заметно растворяется в растворах солей, имеющих вследствие их гидролиза кислую или щелочную реакцию, например, в растворе Na2CO3.
В ряду напряжений он располагается между Mg и Zn. Во всех своих устойчивых соединениях алюминий трехвалентен.
Соединение алюминия с кислородом сопровождается громадным выделением тепла (1676 кДж/моль Al2O3), значительно большим, чем у многих других металлов. В виду этого при накаливании смеси оксида соответствующего металла с порошком алюминия происходит бурная реакция, ведущая к выделению из взятого оксида свободного металла. Метод восстановления при помощи Al (алюмотермия) часто применяют для получения ряда элементов (Cr, Mn, V, W и др.) в свободном состоянии.
Алюмотермией иногда пользуются для сварки отдельных стальных частей, в часности стыков трамвайных рельсов. Применяемая смесь (“термит”) состоит обычно из тонких порошков алюминия и Fe3O4. Поджигается она при помощи запала из смеси Al и BaO2. Основная реакция идет по уравнению:
8Al + 3Fe3O4 = 4Al2O3 + 9Fe + 3350 кДж
Причем развивается температура около 3000оС.
Оксид алюминия представляет собой белую, очень тугоплавкую (т. пл. 2050оС) и нерастворимую в воде массу. Природный Al2O3 (минерал корунд), а также полученный искусственно и затем сильно прокаленный отличается большой твердостью и нерастворимостью в кислотах. В растворимое состояние Al2O3 (т. н. глинозем) можно перевести сплавлением со щелочами.
Обычно загрязненный оксидом железа природный корунд вследствие своей чрезвычайной твердости применяется для изготовления шлифовальных кругов, брусков и т.д. В мелко раздробленном виде он под названием наждака служит для очистки металлических поверхностей и изготовления наждачной бумаги. Для тех же целей часто пользуются Al2O3, получаемым сплавлением боксита (техническое название — алунд).
Прозрачные окрашеннные кристаллы корунда — красный рубин — примесь хрома — и синий сапфир — примесь титана и железа — драгоценные камни. Их получают так же искусственно и используют для технических целей, например, для изготовления деталей точных приборов, камней в часах и т.п. Кристаллы рубинов, содержащих малую примесь Cr2O3, применяют в качестве квантовых генераторов — лазеров, создающих направленный пучок монохроматического излучения.
Al(OH)3 представляет собой объемистый студенистый осадок белого цвета, практически нерастворимый в воде, но легко растворяющийся в кислотах и сильных щелочах. Он имеет, следовательно, амфотерный характер. Однако и основные и особенно кислотные его свойства выражены довольно слабо. В избытке Nh5OH гидроксид алюминия нерастворим. Одна из форм дегидратированного гидроксида — алюмогель используется в технике в качестве адсорбента.
При взаимодействии с сильными щелочами образуются соответствующие алюминаты:
NaOH + Al(OH)3 = Na[Al(OH)4]
Алюминаты наиболее активных одновалентных металлов в воде хорошо растворимы, но ввиду сильного гидролиза растворы их устойчивы лишь при наличии достаточного избытка щелочи. Алюминаты, производящиеся от более слабых оснований, гидролизованы в растворе практически нацело и поэтому могут быть получены только сухим путем (сплавлением Al2O3 с оксидами соответствующих металлов). Образуются метаалюминаты, по своему составу производящиеся от метаалюминиевой кислоты HAlO2. Большинство из них в воде нерастворимо.
С кислотами Al(OH)3 образует соли. Производные большинства сильных кислот хорошо растворимы в воде, но довольно значительно гидролизованы, и поэтому растворы их показывают кислую реакцию. Еще сильнее гидролизованы растворимые соли алюминия и слабых кислот. Вследствие гидролиза сульфид, карбонат, цианид и некоторые другие соли алюминия из водных растворов получить не удается.
В водной среде анион Al3+ непосредственно окружен шестью молекулами воды. Такой гидратированный ион несколько диссоциирован по схеме:
[Al(Oh3)6]3+ + h3O = [Al(OH)(Oh3)5]2+ + Oh4+
Константа его диссоциации равна 1.10-5,т.е. он является слабой кислотой (близкой по силе к уксусной). Октаэдрическое окружение Al3+ шестью молекулами воды сохраняется и в кристаллогидратах ряда солей алюминия.
Алюмосиликаты можно рассматривать как силикаты, в которых часть кремниекислородных тетраэдров SiO44- заменена на алюмокислородные тетраэдры AlO45-. Из алюмосиликатов наиболее распространены полевые шпаты, на долю которых приходится более половины массы земной коры. Главные их представители — минералы
ортоклаз K2Al2Si6O16 или K2O.Al2O3.6SiO2
альбит Na2Al2Si6O16 или Na2O.Al2O3.6SiO2
анортит CaAl2Si2O8 или CaO.Al2O3.2SiO2
Некоторые алюмосиликаты обладают рыхлой структурой и способны к ионному обмену. Такие силикаты — природные и особенно искусственные — применяются для водоумягчения. Кроме того, благодаря своей сильно развитой поверхности, они используются в качестве носителей катализаторов, т.е. как материалы, пропитываемые катализатором.
Галогениды алюминия в обычных условиях — бесцветные кристаллические вещества. В ряду галогенидов алюминия AlF3 сильно отличается по свойствам от своих аналогов. Он тугоплавок, мало растворяется в воде, химически неактивен. Основной способ получения AlF3 основан на действии безводного HF на Al2O3 или Al:
Al2O3 + 6HF = 2AlF3 + 3h3O
Соединения алюминия с хлором, бромом и иодом легкоплавки, весьма реакционноспособны и хорошо растворимы не только в воде, но и во многих органических растворителях. Взаимодействие галогенидов алюминия с водой сопровождается значительным выделением теплоты. В водном растворе все они сильно гидролизованы, но в отличие от типичных кислотных галогенидов неметаллов их гидролиз неполный и обратимый. Будучи заметно летучими уже при обычных условиях, AlCl3, AlBr3 и AlI3 дымят во влажном воздухе (вследствие гидролиза). Они могут быть получены прямым взаимодействием простых веществ.
Плотности паров AlCl3, AlBr3 и AlI3 при сравнительно невысоких температурах более или менее точно соответствуют удвоенным формулам — Al2Hal6. Пространственная структура этих молекул отвечает двум тетраэдрам с общим ребром. Каждый атом алюминия связан с четырьмя атомами галогена, а каждый из центральных атомов галогена — с обоими атомами алюминия. Из двух связей центрального атома галогена одна является донорно-акцепторной, причем алюминий функционирует в качестве акцептора.
С галогенидными солями ряда одновалентных металлов галогениды алюминия образуют комплексные соединения, главным образом типов M3[AlF6] и M[AlHal4] (где Hal — хлор, бром или иод). Склонность к реакциям присоединения вообще сильно выражена у рассматриваемых галогенидов. Именно с этим связано важнейшее техническое применение AlCl3 в качестве катализатора (при переработке нефти и при органических синтезах).
Из фторалюминатов наибольшее применение (для получения Al, F2, эмалей, стекла и пр.) имеет криолит Na3[AlF6]. Промышленное производство искусственного криолита основано на обработке гидроксида алюминия плавиковой кислотой и содой:
2Al(OH)3 + 12HF + 3Na2CO3 = 2Na3[AlF6] + 3CO2 + 9h3O
Хлоро-, бромо- и иодоалюминаты получаются при сплавлении тригалогенидов алюминия с галогенидами соответствующих металлов.
Хотя с водородом алюминий химически не взаимодействует, гидрид алюминия можно получить косвенным путем. Он представляет собой белую аморфную массу состава (Alh4)n. Разлагается при нагревании выше 105оС с выделением водорода.
При взаимодействии Alh4 с основными гидридами в эфирном растворе образуются гидроалюминаты:
LiH + Alh4 = Li[Alh5]
Гидридоалюминаты — белые твердые вещества. Бурно разлагаются водой. Они — сильные восстановители. Применяются (в особенности Li[Alh5]) в органическом синтезе.
Сульфат алюминия Al2(SO4)3.18h3O получается при действии горячей серной кислоты на оксид алюминия или на каолин. Применяется для очистки воды, а также при приготовлении некоторых сортов бумаги.
Алюмокалиевые квасцы KAl(SO4)2.12h3O применяются в больших количествах для дубления кож, а также в красильном деле в качестве протравы для хлопчатобумажных тканей. В последнем случае действие квасцов основано на том, что образующиеся вследствие их гидролиза гидроксид алюминия отлагается в волокнах ткани в мелкодисперсном состоянии и, адсордбируя краситель, прочно удерживает его на волокне.
Из остальных производных алюминия следует упомянуть его ацетат (иначе — уксуснокислую соль) Al(Ch4COO)3, используемый при крашении тканей (в качестве протравы) и в медицине (примочки и компрессы). Нитрат алюминия легко растворим в воде. Фосфат алюминия нерастворим в воде и уксусной кислоте, но растворим в сильных кислотах и щелочах.
Несмотря на наличие громадных количеств алюминия в почках, растениях, как правило, содержат мало этого элемента. Еще значительно меньше его содержание в животных организмах. У человека оно составляет лишь десятитысячные доли процента по массе. Биологическая роль алюминия не выяснена. Токсичностью соединения его не обладают.

Chemistry of Aluminium (Z = 13) — Chemistry LibreTexts

Алюминий (также называемый алюминием) является третьим по распространенности элементом в земной коре. Он обычно используется в домашнем хозяйстве в качестве алюминиевой фольги, в таких ремеслах, как крашение и гончарное дело, а также в строительстве для изготовления сплавов. В чистом виде металл голубовато-белый и очень пластичный. Он отлично проводит тепло и электричество и находит применение в некоторых проводках. В чистом виде он слишком мягкий для строительных целей, но добавление небольшого количества кремния и железа значительно укрепляет его.

Факты

  • Символ: Al
  • атомный номер: 13
  • Атомный вес: 26.98154 а.е.м.
  • Цвет: Серебристый
  • Точка плавления: 933,4 K
  • Температура кипения: 2792 K
  • Плотность: 2,70 г / см 3
  • Число состояний окисления: 3
  • Отличный восстановитель
  • Имеет 13 электронов, 13 протонов и 14 нейтронов
  • Металл
  • Хороший проводник
  • Устойчив к коррозии
  • Немагнитный
  • Стабильный ион
  • Образует димеры
  • Номер группы: 13

История алюминия

Алюминий занимает третье место в списке десяти самых распространенных элементов земной коры, а его оксид занимает четвертое место среди десяти самых распространенных соединений земной коры.Это самый распространенный металл на планете. Его название происходит от латинского alumen, означающего квасцы. Мягкое, легкое и серебристое, его существование было предложено Лавуазье в 1787 году, оно было названо Дэви в 1807 году и окончательно выделено Эрстедом в 1825 году. До этого он был известен как часть квасцов, которые используются в качестве протравы. установить краситель на ткань. В то время он был известен как очень дорогой металл. В конце 1800-х годов два ученых, Чарльз Мартин Холл и Пол Л. Т. Херу, обнаружили, что они могут производить алюминий из оксида алюминия с помощью электролиза и криолита (расплавленного минерала) растворителя.Это позволило снизить цену и сделать алюминий доступным для коммерческого использования.

Алюминий на Земле

Алюминий — третий по распространенности элемент на Земле и самый распространенный металл. Он составляет 8,1% земной коры по массе после кислорода и кремния. Естественно, он находится в химических соединениях с другими элементами, такими как боксит. Его нелегко удалить из природных руд, потому что сначала его нужно восстановить. Чтобы узнать, как глинозем, который используется для производства алюминия, извлекается из бокситов, прочтите процесс Байера в разделе о рафинировании алюминия.

Электронная конфигурация алюминия

Чтобы найти электронную конфигурацию атома, вам сначала нужно знать количество электронов, которые у него есть. Поскольку атомный номер алюминия тринадцать, у него тринадцать электронов. Затем вы разделяете электроны между разными орбиталями. Первые два электрона алюминия попадают на 1s-орбиталь, а следующие два электрона переходят на 2s-орбиталь. Следующие шесть электронов заполняют 2p-орбиталь второй оболочки (пока это десять электронов, осталось еще три).Затем электроны 11 и 12 заполняют 3s-орбиталь. Наконец, последний электрон занимает 3р-орбиталь.

Электронная конфигурация для алюминия: 1s 2 2s 2 2p 6 3s 2 3p 1 . Электронная конфигурация в основном состоянии [Ne] 3s 2 3p 1 .

Окислительные состояния

Алюминий имеет три степени окисления. Самый распространенный — +3. Два других — +1 и +2. Одна степень окисления +3 для алюминия может быть найдена в составном оксиде алюминия, Al 2 O 3 .В AlO, монооксиде алюминия, он имеет степень окисления +2, а AlH имеет степень окисления +1.

Соединения алюминия

Хотя алюминий не кажется особенно реактивным, он считается активным металлом. Его поведение обманчиво, потому что он быстро реагирует с кислородом воздуха с образованием оксида алюминия (\ (Al_2O_3 \)) или оксида алюминия, который прочно связан с металлом и существует в виде плотного покрытия (в отличие от оксидов железа). Это покрытие защищает его от дальнейшей реакции.Однако очевидно, что это покрытие не является полностью надежным, поскольку алюминий не существует в естественной форме.

Глинозем — это тугоплавкий оксид алюминия, который содержится в боксите и корунде (сапфиры и рубины). Он имеет очень высокую температуру плавления. Одно из применений этого соединения — получение света разного цвета, который можно использовать в качестве лазерного луча. Он также используется в гончарном производстве, крашении, антацидных лекарствах и в производстве химикатов.

Другое соединение, содержащее алюминий, — это Al (OH) 3 , который обычно образуется в виде гелеобразного осадка при гидролизе соединений алюминия в воде.{3+} + 3H_ {2 (g)} \]

При сварке крупных объектов применяется термитная реакция:

\ [2Al _ {(s)} + Fe_2O_ {3 (s)} \ rightarrow Al_2O_ {3 (s)} + Fe _ {(s)} \]

Реакции с галогенами

Галогениды алюминия, как и галогениды бора, являются реактивными кислотами Льюиса, что означает, что они легко принимают пару электронов. Например, важным галогенидным комплексом для производства алюминия является криолит NaAlF 6.

\ [6 HF + Al (OH) _3 + 3NaOH \ стрелка вправо Na_3AlF_6 +6 H_2O \]

Оксид и гидроксид алюминия

Оксид алюминия часто называют глиноземом или корундом после кристаллизации.-_ {(водный)} \]

Рафинирование алюминия

Большая часть алюминия сегодня производится по процессу Холла, который использует значительное количество энергии в форме электричества для электролиза металлического алюминия из расплавленной солевой смеси. Большие первоначальные затраты энергии — одна из важных причин, почему переработка алюминия является такой хорошей и рентабельной идеей.

Поскольку алюминий содержится в соединениях с другими элементами, его необходимо восстанавливать. Процесс Байера был изобретен Карлом Байером в 1887 году.По сути, это относится к переработке боксита, наиболее важной алюминиевой руды, для производства глинозема . Отсюда промежуточный оксид алюминия необходимо переплавить в металлический алюминий с помощью процесса Холла-Эру.

Список литературы

  1. Гарнизон Спозито. Экологическая химия алюминия. pg57-72. 1 декабря 2008 г.
  2. Экологическая химия и токсикология химии. 2 декабря 2008 г.
  3. Petrucci, General Chemistry, Principles & Modern Applications, by Macmillan Publishing Company, Девятое издание, стр. 891-893.
  4. «Алюминий». Колумбийская энциклопедия . 6-е изд. Нью-Йорк: Columbia UP, 2009.
  5. «Глинозем». Колумбийская энциклопедия . 6-е изд. Нью-Йорк: Columbia UP, 2009.

Проблемы

  1. Запишите конфигурацию алюминия, предполагая, что он потерял валентные электроны.
  2. Что происходит с алюминием, когда он вступает в реакцию с хлором?
  3. Уравновесите эти уравнения: a) 2Al (s) → Al 3 + (вод.) + E
    b) Al (s) + Pb + (вод.) → Al 3 + (водн.) + Pb (т. е.)
  4. Какая электронная конфигурация алюминия?
  5. Каков процесс извлечения глинозема из бокситов?
  6. Завершите и сбалансируйте следующие реакции.
    1. Al (OH) 3 (т.) + OH (водн.) →
    2. Al (OH) 3 (т.) + H + (водн.) →

Решения

1. 1s 2 2s 2 2p 6 , или [Ne]

2. Образует димер.

3. a) 2Al (s) → Al 3 + (водн.) + 3 e

b) 2 Al (тв.) + 3 Pb + (водн.) → 2 Al 3 + (водн.) + 3 Pb (тв.)

4.1s 2 2s 2 2p 6 3s 2 3p 1

5. Процесс Байера

6,1 Al (OH) 3 (s) + OH (водн.) → [Al (OH) 4 ] (водн.)

6,2 Al (OH) 3 ( с) + 3 H + (водн.) → Al (H 2 O) 3 ] 3+ (водн.)

Авторы и авторство

  • Lia D’Angelo, Hanna Towers, Даниэль Аренс

Стивен Р.Марсден

неорганическая химия — Какая степень окисления алюминия в NaAlO₂?

неорганическая химия — Какова степень окисления алюминия в NaAlO₂? — Обмен химического стека
Сеть обмена стеков

Сеть Stack Exchange состоит из 176 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.

Посетить Stack Exchange
  1. 0
  2. +0
  3. Авторизоваться Зарегистрироваться

Chemistry Stack Exchange — это сайт вопросов и ответов для ученых, преподавателей, преподавателей и студентов, изучающих химию.Регистрация займет всего минуту.

Зарегистрируйтесь, чтобы присоединиться к этому сообществу

Кто угодно может задать вопрос

Кто угодно может ответить

Лучшие ответы голосуются и поднимаются наверх

Спросил

Просмотрено 3к раз

$ \ begingroup $

На этот вопрос уже есть ответы :

Закрыт 8 месяцев назад.

Я предполагаю, что натрий теряет электрон, поэтому имеет степень окисления +1, а кислород имеет степень окисления −2. Но какая степень окисления у атома алюминия в алюминате натрия ($ \ ce {NaAlO2} $)?

ортокрезол ♦

57.8k99 золотых знаков188188 серебряных знаков337337 бронзовых знаков

Создан 29 авг.

$ \ endgroup $ 0 $ \ begingroup $

Для каждого соединения сумма степеней окисления составляющих его атомов должна быть равна заряду соединения.Итак, поскольку ваше соединение нейтрально, отдельные степени окисления должны составлять до $ 0 $. И поскольку вы уже определили степени окисления 2 атомов в системе, последняя должна быть $ + 3 $, так как $ 1 + 3 — 2 \ cdot 2 = 0 $.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *