Содержание

Закон электромагнитной индукции (закон Фарадея — Максвелла — Ленца) — З — Русский алфавит — Словарь-справочник электрика

Закон электромагнитной индукциизакон Фарадея — Максвелла — Ленца — закон, устанавливающий взаимосвязь между магнитными и электрическими явлениями. Эдс электромагнитной индукции, в контуре численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную этим контуром. Пусть в однородном магнитном поле B помещен прямолинейный отрезок проводника. При передвижении его перпендикулярно к силовым линиям заряды под действием магнитной силы начнут передвигаться вдоль проводника перпендикулярно к направлению движения и вектору поля B. Направление тока легко установить по правилу правой руки. Ток будет течь до тех пор, пока на концах проводника не образуются заряды противоположного знака, которые создадут электрическое поле E, направленное против силы, действующей на заряд. Электрические и магнитные силы уравновесят друг друга, и движение зарядов прекратится. В этот момент E=-q[VB]/q=-[VB]. В рассматриваемом случае заряды накапливаются на концах проводника. Если поместить в магнитное поле замкнутый контур и двигать его так, чтобы плоскость рамки была перпендикулярна к линиям однородного магнитного поля B, то ток пойдет по стороне ab (от a к b) и по dc (от d к c). Две другие стороны можно не рассматривать, так как сила, действующая на заряды, расположенные в проводнике, перпендикулярна к проводу и движение зарядов прекращается. Если токи в сторонах ab и dc текут навстречу друг другу, что приводит к накоплению заряда, замкнутый ток по рамке не пойдет. Величина эдс вдоль рамки равна нулю ΣE

lΔl=Eablab+Ebclbc+Ecdlcd+Edalda=(E+0-E+0)Δl=0. При движении рамки в том же направлении сторона dc выйдет из области, занимаемой магнитным полем, и поток последнего через плоскость рамки начнет уменьшаться. В этом случае сила, действовавшая на заряды, принадлежащие стороне dc, исчезнет и заряды, движущиеся от a к b, ничто уравновешивать не будет. По рамке пойдет замкнутый ток. То же самое будет наблюдаться при движении, например, соленоида относительно неподвижно лежащей рамки. Величина эдс в этом случае равна ΣEΔl=E
ab
lab+0+0+0=Eablab=VBΔl. Таким образом, наведенная в проводе эдс электромагнитной индукции пропорциональна величине магнитной индукции поля, в котором движется проводник, длине провода и скорости его движения в направлении, перпендикулярном к магнитным силовым линиям.

Если обозначить скорость V=Δx/Δt где Δx — смещение рамки за время Δt, то ΣEΔl=-BΔxΔl/Δt. Знак минус в правой части равенства объясняется законом Ленца. Так как произведение ΔxΔl равно изменению площади ΔS, пронизываемой магнитным потоком, а ΔSB=ΔΦ — изменение самого магнитного потока за время t, то получим ΣEΔl=-ΔΦ/Δt. Таким образом, при изменении магнитного потока через контур начинает идти ток (индукционный или наведенный), который обязан своим возникновением электрическому полю. Величина эдс поля зависит от скорости изменения магнитного потока.

20.Закон Фарадея-Максвела

6.1. Явление электромагнитной индукции.

Закон Фарадея–Максвелла

Содержание опытов Фарадея можно пояснить следующими рисунками. Разместим на одном сердечнике две проводящие катушки (рис.6.1, а). Одну из них замкнем на гальванометр, а другую будем подключать к источнику тока при помощи ключа К. В момент замыкания (или размыкания) цепи ключом К гальванометр будет давать показания, т.е. в цепи второй катушки будет возникать электрический ток. Итак, по результатам такого опыта можно сделать вывод, что первая катушка электрически влияет на вторую. Однако, что было причиной появления тока в катушке 2: возникновение (или исчезновение) тока в катушке
1
или магнитного поля этого тока?

Для ответа на этот вопрос поставим второй опыт (рис. 6.1, б). Теперь катушка 1 постоянно подключена к источнику, а поэтому ток в ней неизменен. Однако в процессе смещения катушек друг относительно друга гальванометр дает показания, т.е. причиной появления тока в катушке 2 является изменение магнитного поля, в котором она находилась.

Чтобы подтвердить этот вывод, Фарадей проводит третий опыт (рис.6.1, в), в котором первая катушка заменяется постоянным магнитом. Результаты опыта при смещении магнита относительно катушки 2 полностью аналогичны предыдущим. Однако в этом случае видно, что причиной всех электрических явлений в катушке 2 является исключительно поведение магнитного поля, в которое она помещена, а источник создания магнитного поля никак не влияет на результат наблюдений.

Общим для всех трех опытов было то, что при осуществлении действий, описанных выше, изменялся магнитный поток через вторую катушку, в которой создавался (индуцировался) электрический ток. Важно также и то, что появление тока наблюдалось только

в процессе изменения магнитного потока. Как только изменение магнитного потока прекращалось (полностью замыкался ключ, прекращалось относительное смещение катушек или останавливался магнит), стрелка гальванометра занимала нулевое положение. Если гальванометр заменить вольтметром, то он аналогично будет показывать появление разности потенциалов на концах катушки 2.

Наблюдаемое явление Фарадей назвал электромагнитной индукцией, т.е. явлением возникновения ЭДС индукции (а также индукционного тока в замкнутом контуре) при любом изменении магнитного потока через площадь, ограниченную контуром.

Экспериментально обнаружено, что величина возбуждаемой ЭДС определяется только скоростью изменения магнитного потока через контур и не зависит от способа его изменения. Напомним, что, согласно определению магнитного потока (5.18), его величина может изменяться при изменении модуля индукции в точках поверхности, ограниченной контуром, при изменении ориентации контура относительно линий магнитной индукции поля, при изменении площади контура.

Также экспериментально выяснено, что направление индукционного тока в контуре таково, что своим магнитным полем он компенсирует изменение магнитного потока, вызвавшего его появление (правило Ленца). На рис. 6.2 показано, что при увеличении тока в контуре 1 будет увеличиваться магнитная индукция поля, создаваемого этим контуром. В этом случае магнитный поток этого поля через контур 2 также возрастает. Это приводит к появлению в контуре 2 электромагнитной индукции, т.е. в контуре создается индукционный ток . Его направление таково, что линии индукции создаваемого им магнитного поля () направлены противоположно внешнему. Тогда суммарный магнитный поток через контур
2
определяется разностью потоков внешнего и индуцированного полей. Поэтому величина магнитного потока через контур 2 увеличивается слабее. Если же ток в контуре 1 будет уменьшаться, то явление электромагнитной индукции создаст ток в контуре 2, направленный в противоположную сторону.

Таким образом, процессы, происходящие при электромагнитной индукции, приводят к тому, что магнитный поток через исследуемый контур стремится остаться неизменным. Можно показать, что это – следствие закона сохранения энергии. Итак, правило Ленца показывает, что следствие процесса (появляющийся индукционный ток) всегда препятствует причине, его вызывающей (изменению магнитного потока).

Поясним это еще на одном примере (рис.6.3). Поместим в однородное магнитное поле с индукцией систему двух параллельных проводников, замкнутых на резистор сопротивлением
R
. Пусть между проводниками располагается перемычка, способная перемещаться по ним без нарушения электрического контакта. Тогда при ее движении вправо со скоростью будет увеличиваться площадь проводящего контура, образованного проводниками, резистором и перемычкой. Соответственно, будет увеличиваться и магнитный поток через этот контур, что приведет к появлению индукционного тока. Индукционный ток в контуре будет иметь такое направление (против часовой стрелки), что вектор его магнитной индукции будет противоположен вектору индукции внешнего магнитного поля. В магнитном поле с индукцией на перемычку с индукционным током будет действовать сила Ампера, направление которой определим по правилу левой руки (см. рис. 6.3). Появившаяся сила стремится замедлить движение перемычки, т.е. препятствует ее движению. Поскольку причиной электромагнитной индукции в контуре было движение перемычки, то следствие явления – появившаяся сила Ампера – препятствует причине своего появления.

Выведем количественные соотношения, описывающие содержание явления электромагнитной индукции.

1 способ (на основе закона сохранения энергии). Рассмотрим схему, аналогичную предыдущей. На рис.6.4 показан проводящий контур, образованный двумя параллельными проводниками, замкнутыми свободно двигающейся по ним перемычкой. В контур включен источник тока с ЭДС E и резистор сопротивлением R. Поместим контур в однородное магнитное поле с индукцией . Поскольку в контуре существует электрический ток, то на перемычку будет действовать сила Ампера, что вызовет движение перемычки вправо. Поэтому площадь контура будет возрастать, а, следовательно, магнитный поток через площадь, ограниченную контуром, также будет увеличиваться. Это будет причиной появления электромагнитной индукции.

Согласно закону сохранения энергии работа, совершенная источником тока за время , равна работе сил магнитного поля по перемещению перемычки и выделившемуся в контуре за это время количеству теплоты: , т.е.

,

где – заряд, перенесенный источником за время . Поскольку , то

,

откуда сила тока в контуре

.

Поскольку, согласно закону Ома, числитель последнего выражения должен определять суммарную ЭДС в контуре, то, следовательно, второе слагаемое выражает ЭДС индукции, возникшую в нем:

. (6.1)

2 способ (на основе электронных представлений). Рассмотрим процессы, происходящие внутри перемычки (рис.6.5, а). Поскольку все свободные электроны двигаются вместе с ней вправо, то со стороны магнитного поля на них действует магнитная составляющая силы Лоренца (5.29). Ее действие приводит к смещению электронов к нижнему краю перемычки, в результате чего происходит разделение зарядов внутри нее. Между разделенными зарядами возникает электрическое поле напряженностью , которое действует на электроны с силой (рис.6.5,

б). В стационарном режиме . Следовательно, , т.е. . Найдем разность потенциалов между концами перемычки:

,

поскольку – площадь, очерчиваемая проводником за время при движении (рис.6.5, в). Перемычка играет роль источника индукционного тока, а положительным направлением тока внутри источника считается направление от “–” к “+”. Поэтому ЭДС индукции, возникшая при движении перемычки, определится как

. (6.2)

Мы видим, что оба рассмотрения приводят к одному и тому же результату. Обобщим его на произвольный случай движения контура во внешнем магнитном поле (рис.6.6). Поскольку ЭДС – это удельная работа сторонних сил по переносу заряда вдоль контура, а роль сторонней силы выполняет , то. Преобразуем это выражение, используя свойства смешанного произведения векторов:

.

Поменяем местами сомножители в векторном произведении, изменив знак произведения:

.

Поскольку (см. п.5.5), то

. (6.3)

Итак, при движении замкнутого проводящего контура во внешнем магнитном поле в нем возникает ЭДС индукции, равная скорости изменения магнитного потока через площадь поверхности, ограниченной контуром. Полученный вывод и соотношение (6.3) выражают основной закон электромагнитной индукции, названный законом Фарадея–Максвелла. Знак “–“ в соотношении (6.3) показывает, что индукционный ток, возникающий в контуре, своим магнитным полем компенсирует изменение магнитного потока, вызвавшего появление индукционного тока.

Закон Фарадея для электромагнитной индукции в трансформаторах

Электричество обладает способностью генерировать магнитное поле. В 1831 году М. Фарадей ввел понятие электромагнитная индукция. Он смог получить в закрытой системе проводников электричество, появляющееся при изменении показателей магнитного потока. Формула закона Фарадея дала толчок для развития электродинамики.

История развития

После доказательства закона электромагнитной индукции английским ученым М. Фарадеем над открытием работали российские ученые Э. Ленц и Б. Якоби. Благодаря их трудам, сегодня разработанный принцип положен в основу функционирования многих приборов и механизмов.

Основными агрегатами, в которых применяется закон электромагнитной индукции Фарадея, являются двигатель, трансформатор и множество иных приборов.

Индукцией электромагнитно именуется индуцирование в замкнутой проводящей системе электрического тока. Такое явление становится возможным при физическом передвижении через проводниковую систему магнитного поля. Механическое действие влечет за собой появление электричества. Его принято называть индукционным. До открытия закона Фарадея человечество не знало об иных способах создания электричества, кроме гальваники.

Если сквозь проводник пропустить магнитное поле, в нем будет возникать ЭДС индукции. Ее еще именуют электродвижущей силой. При помощи этого открытия удается представить в количественном выражении показатель.

Опытное доказательство

Проводя свои исследования, английский ученый установил, что индукционный ток получается одним из двух способов. В первом опыте он появляется при движении рамки в магнитном поле, создаваемом неподвижной катушкой. Второй способ предполагает неподвижное положение рамки. В этом эксперименте изменяется только поле катушки при ее движении или изменении силы тока в ней.

Опыты Фарадея привели исследователя к выводу, что при генерировании индукционного тока провоцируется увеличением или уменьшением магнитного потока в системе. Также опыты Фарадея позволили утверждать, что значение электричества, полученного опытным путем, не зависит от методологии, которой был изменен поток магнитной индукции. На показатель влияет только скорость такого изменения.

Количественное выражение

Установить количественное значение явления электромагнитной индукции позволяет закон Фарадея. Он гласит, что ЭДС, определяющаяся в системе, меняет значение пропорционально скорости перемещения потока в проводнике. Формула будет иметь такой вид:

Отрицательный знак свидетельствует о том, что ЭДС препятствует появлению изменений внутри контура. Для решения некоторых задач отрицательный знак в формуле не ставят. В этом случае результат записывают в виде модуля.

Система может включать в себя несколько витков. Количество их обозначается латинской буквой N. Все элементы контура пронизываются единым магнитным потоком. ЭДС индукции будет рассчитываться так:

Понятным примером воссоздания электричества в проводнике считается катушка, сквозь которую перемещается постоянный магнит.

Работа Э. Ленца

Направленность индукционного тока предоставляет возможность определить правило Ленца. Краткая формулировка звучит достаточно просто. Появляющийся при изменении показателей поля проводникового контура ток, препятствует благодаря своему магнитному полю такому изменению.

Если в катушку постепенно вводить магнит, в ней повышается уровень магнитного потока. Согласно правилу Ленца, магнитное поле будет иметь направление противоположное увеличению поля магнита. Чтобы понять эту направленность, необходимо смотреть на магнит с северной стороны. Отсюда будет вкручиваться буравчик навстречу северному полюсу. Ток будет перемещаться в сторону движения часовой стрелки.

Если магнит выводится из системы, магнитный поток в ней уменьшится. Чтобы установить направление тока, выкручивается буравчик. Вращения будет направлено в обратную сторону перемещения по циферблату часовой стрелки.

Формулировки Ленца приобретают большое значение для системы с контуром замкнутого типа и отсутствующим сопротивлением. Его принято именовать идеальным контуром. По правилу Ленца, в нем невозможно увеличить или уменьшить магнитный поток.

Понятие самоиндукции

Генерация индукции в идеальной системе, которое имеет место при падении или возрастании электричества в проводнике, именуется самоиндукцией.

Закон Фарадея для самоиндукции выражается равенством, когда при изменении электричества не произошло иных изменений:

где е – ЭДС, L – индуктивность закрытой катушки, ΔI/Δt – скорость, с которой происходят изменения силы тока.

Индуктивность

Отношение, которое показывает пропорциональность между такими категориями, как сила тока в проводящей системе и магнитным потоком именуется индуктивностью. На показатель имеет влияние физические габариты катушки и магнитные характеристики среды. Отношение описывается формулой:

Движущееся в контуре электричество провоцирует появление магнитного поля. Оно пронизывает собственный проводник и влечет появление своего потока сквозь контур. Причем собственный поток пропорционален электричеству, которая его порождает:

Фс = L*I

Значение индуктивности также формируется из закона Фарадея.

Недвижимая система

Сила Лоренца объясняет возникновение ЭДС при движении системы в поле со значением постоянным. Индукционная ЭДС имеет способность возникать и при неподвижной проводящей системе, находящейся в переменном магнитном поле. Сила Лоренца в таком примере не способна объяснить появление ЭДС индукции.

Максвелл для проводящих систем неподвижного типа предложил применять особое уравнение. Оно объясняет возникновение в таких системах ЭДС. Главным принципом закона Фарадея-Максвелла является факт, что переменное поле образует в пространстве вокруг себя электрическое поле. Оно выступает фактором, провоцирующим появление тока индукции в недвижимой системе. Перемещение вектора (Е) по стационарным контурам (L) является ЭДС:

При наличии тока переменного значения законы Фарадея водятся в уравнения Максвелла. Причем они могут быть представлены как в дифференциальной форме, так и в виде интегралов.

Труды в области электролиза

При использовании законов Фарадея описываются закономерности, которые существуют при электролизе. Этот процесс заключается в превращении веществ с разнообразными характеристиками. Это происходит при движении электричества сквозь электролит.

Эти закономерности были доказаны М. Фарадеем в 1834 году. Первое утверждение гласит, что масса вещества, которое образуется на электроде, меняется соответственно заряду, перемещенному сквозь электролит.

Второе утверждение гласит, что эквиваленты компонентов с разными характеристиками пропорциональны химическим эквивалентам этих компонентов.

Оба представленных утверждения совмещаются в объединенный закон Фарадея. Из него следует, что число Фарадея будет равняться электричеству, способному выделить на электролите 1 моль вещества. Ее рассчитывают на единицу валентности. Именно по объединенной формуле в далеком 1874 году был вычислен заряд электрона.

Законы электролиза, установленные Фарадеем, тестировались при различном значении тока, температуры, давления, а также при одновременном выделении двух и более веществ. Электролиз также проводился в разных расплавах и растворителях. Концентрация электролита также отличалась в разных опытах. При этом иногда наблюдались небольшие отклонения от закона Фарадея. Они объясняются электронной проводимостью электролитов, которая определяется наравне с ионной проводимостью.

Открытия, сделанные английским физиком М. Фарадеем, позволили описать множество явлений. Его законы являются основой современной электродинамики. По этому принципу функционирует различное современное оборудование.

Какая формула выражает закон электромагнитной индукции ответ — MOREREMONTA

История развития и опыты Фарадея

До середины XIX века считалось, что электрическое и магнитное поле не имеют никакой связи, и природа их существования различна. Но М. Фарадей был уверен в единой природе этих полей и их свойств. Явление электромагнитной индукции, обнаруженное им, впоследствии стало фундаментом для устройства генераторов всех электростанций. Благодаря этому открытию знания человечества о электромагнетизме шагнули далеко вперед.

Фарадей проделал следующий опыт: он замыкал цепь в катушке I и вокруг нее возрастало магнитное поле. Далее линии индукции данного магнитного поля пересекали катушку II, в которой возникал индукционный ток.

Рис. 1. Схема опыта Фарадея

Сколько бы экспериментов не проводил Фарадей, неизменным оставалось одно условие: для образования индукционного тока важным является изменение магнитного потока, пронизывающего замкнутый проводящий контур (катушку).

Закон Фарадея

Явление электромагнитной индукции определяется возникновением электрического тока в замкнутом электропроводящем контуре при изменении магнитного потока через площадь этого контура.

Основной закон Фарадея заключается в том, что электродвижущая сила (ЭДС) прямо пропорциональна скорости изменения магнитного потока.

Формула закона электромагнитной индукции Фарадея выглядит следующим образом:

Рис. 2. Формула закона электромагнитной индукции

И если сама формула, исходя из вышесказанных объяснений не порождает вопросов, то знак «-» может вызвать сомнения. Оказывается существует правило Ленца – русского ученого, который проводил свои исследования, основываясь на постулатах Фарадея. По Ленцу знак «-» указывает на направление возникающей ЭДС, т.е. индукционный ток направлен так, что магнитный поток, который он создает, через площадь, ограниченную контуром, стремится препятствовать тому изменению потока, которое вызывает данный ток.

Закон Фарадея-Максвелла

В 1873 Дж.К.Максвелл по-новому изложил теорию электромагнитного поля. Уравнения, которые он вывел, легли в основу современной радиотехники и электротехники. Они выражаются следующим образом:

  • Edl = -dФ/dt – уравнение электродвижущей силы
  • Hdl = -dN/dt – уравнение магнитодвижущей силы.

Где E – напряженность электрического поля на участке dl; H – напряженность магнитного поля на участке dl; N – поток электрической индукции, t – время.

Симметричный характер данных уравнений устанавливает связь электрических и магнитных явлений, а также магнитных с электрическими. физический смысл, которым определяются эти уравнения, можно выразить следующими положениями:

  • если электрическое поле изменяется, то это изменение всегда сопровождается магнитным полем.
  • если магнитное поле изменяется, то это изменение всегда сопровождается электрическим полем.

Рис. 3. Возникновение вихревого магнитного поля

Что мы узнали?

Ученикам 11 класса необходимо знать, что электромагнитную индукцию впервые как явление обнаружил Майкл Фарадей. Он доказал, что электрическое и магнитное поле имеют общую природу. Самостоятельные исследования на основе опытов Фарадея также проводили такие великие деятели как Ленц и Максвелл, которые расширили наши познания в области электромагнитного поля.

Явление электромагнитной индукции

Электромагнитная индукция – явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было открыто М. Фарадеем.

  • На одну непроводящую основу были намотаны две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй – подключены к источнику тока. При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.
  • Первая катушка была подключена к источнику тока, вторая, подключенная к гальванометру, перемещалась относительно нее. При приближении или удалении катушки фиксировался ток.
  • Катушка замкнута на гальванометр, а магнит движется – вдвигается (выдвигается) – относительно катушки.

Опыты показали, что индукционный ток возникает только при изменении линий магнитной индукции. Направление тока будет различно при увеличении числа линий и при их уменьшении.

Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.

Объяснения возникновения индукционного тока

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС. Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Его называют вихревым электрическим полем. Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 году.

Свойства вихревого электрического поля:

  • источник – переменное магнитное поле;
  • обнаруживается по действию на заряд;
  • не является потенциальным;
  • линии поля замкнутые.

Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике.

Магнитный поток

Магнитным потоком через площадь ​ ( S ) ​ контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ​ ( B ) ​, площади поверхности ​ ( S ) ​, пронизываемой данным потоком, и косинуса угла ​ ( alpha ) ​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):

Обозначение – ​ ( Phi ) ​, единица измерения в СИ – вебер (Вб).

Магнитный поток в 1 вебер создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м 2 , расположенную перпендикулярно вектору магнитной индукции:

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​ ( alpha ) ​ магнитный поток может быть положительным ( ( alpha ) ( alpha ) > 90°). Если ( alpha ) = 90°, то магнитный поток равен 0.

Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

Закон электромагнитной индукции Фарадея

Закон электромагнитной индукции (закон Фарадея):

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром:

Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре имеет всегда такое направление, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

Если контур состоит из ​ ( N ) ​ витков, то ЭДС индукции:

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​ ( R ) ​:

При движении проводника длиной ​ ( l ) ​ со скоростью ​ ( v ) ​ в постоянном однородном магнитном поле с индукцией ​ ( vec ) ​ ЭДС электромагнитной индукции равна:

где ​ ( alpha ) ​ – угол между векторами ​ ( vec ) ​ и ( vec ) .

Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

Важно!
Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

  • магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле;
  • вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея.

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:

  • в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца;
  • в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Правило Ленца

Направление индукционного тока определяется по правилу Ленца: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

Алгоритм решения задач с использованием правила Ленца:

  • определить направление линий магнитной индукции внешнего магнитного поля;
  • выяснить, как изменяется магнитный поток;
  • определить направление линий магнитной индукции магнитного поля индукционного тока: если магнитный поток уменьшается, то они сонаправлены с линиями внешнего магнитного поля; если магнитный поток увеличивается, – противоположно направлению линий магнитной индукции внешнего поля;
  • по правилу буравчика, зная направление линий индукции магнитного поля индукционного тока, определить направление индукционного тока.

Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.

Самоиндукция

Самоиндукция – это явление возникновения ЭДС индукции в проводнике в результате изменения тока в нем.

При изменении силы тока в катушке происходит изменение магнитного потока, создаваемого этим током. Изменение магнитного потока, пронизывающего катушку, должно вызывать появление ЭДС индукции в катушке.

В соответствии с правилом Ленца ЭДС самоиндукции препятствует нарастанию силы тока при включении и убыванию силы тока при выключении цепи.

Это приводит к тому, что при замыкании цепи, в которой есть источник тока с постоянной ЭДС, сила тока устанавливается через некоторое время.

При отключении источника ток также не прекращается мгновенно. Возникающая при этом ЭДС самоиндукции может превышать ЭДС источника.

Явление самоиндукции можно наблюдать, собрав электрическую цепь из катушки с большой индуктивностью, резистора, двух одинаковых ламп накаливания и источника тока. Резистор должен иметь такое же электрическое сопротивление, как и провод катушки.

Опыт показывает, что при замыкании цепи электрическая лампа, включенная последовательно с катушкой, загорается несколько позже, чем лампа, включенная последовательно с резистором. Нарастанию тока в цепи катушки при замыкании препятствует ЭДС самоиндукции, возникающая при возрастании магнитного потока в катушке.

При отключении источника тока вспыхивают обе лампы. В этом случае ток в цепи поддерживается ЭДС самоиндукции, возникающей при убывании магнитного потока в катушке.

ЭДС самоиндукции ​ ( varepsilon_ ) ​, возникающая в катушке с индуктивностью ​ ( L ) ​, по закону электромагнитной индукции равна:

ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в катушке.

Индуктивность

Электрический ток, проходящий по проводнику, создает вокруг него магнитное поле. Магнитный поток ​ ( Phi ) ​ через контур из этого проводника пропорционален модулю индукции ​ ( vec ) ​ магнитного поля внутри контура, а индукция магнитного поля, в свою очередь, пропорциональна силе тока в проводнике.

Следовательно, магнитный поток через контур прямо пропорционален силе тока в контуре:

Индуктивность – коэффициент пропорциональности ​ ( L ) ​ между силой тока ​ ( I ) ​ в контуре и магнитным потоком ​ ( Phi ) ​, создаваемым этим током:

Индуктивность зависит от размеров и формы проводника, от магнитных свойств среды, в которой находится проводник.

Единица индуктивности в СИ – генри (Гн). Индуктивность контура равна 1 генри, если при силе постоянного тока 1 ампер магнитный поток через контур равен 1 вебер:

Можно дать второе определение единицы индуктивности: элемент электрической цепи обладает индуктивностью в 1 Гн, если при равномерном изменении силы тока в цепи на 1 ампер за 1 с в нем возникает ЭДС самоиндукции 1 вольт.

Энергия магнитного поля

При отключении катушки индуктивности от источника тока лампа накаливания, включенная параллельно катушке, дает кратковременную вспышку. Ток в цепи возникает под действием ЭДС самоиндукции.

Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Для создания тока в контуре с индуктивностью необходимо совершить работу на преодоление ЭДС самоиндукции. Энергия магнитного поля тока вычисляется по формуле:

Основные формулы раздела «Электромагнитная индукция»

Алгоритм решения задач по теме «Электромагнитная индукция»:

1. Внимательно прочитать условие задачи. Установить причины изменения магнитного потока, пронизывающего контур.

2. Записать формулу:

  • закона электромагнитной индукции;
  • ЭДС индукции в движущемся проводнике, если в задаче рассматривается поступательно движущийся проводник; если в задаче рассматривается электрическая цепь, содержащая источник тока, и возникающая на одном из участков ЭДС индукции, вызванная движением проводника в магнитном поле, то сначала нужно определить величину и направление ЭДС индукции. После этого задача решается по аналогии с задачами на расчет цепи постоянного тока с несколькими источниками.

3. Записать выражение для изменения магнитного потока и подставить в формулу закона электромагнитной индукции.

4. Записать математически все дополнительные условия (чаще всего это формулы закона Ома для полной цепи, силы Ампера или силы Лоренца, формулы кинематики и динамики).

5. Решить полученную систему уравнений относительно искомой величины.

«Физика — 11 класс»

Опыты Фарадея показали, что сила индукционного тока Ii в проводящем контуре пропорциональна скорости изменения числа линий магнитной индукции , пронизывающих поверхность, ограниченную этим контуром, т.е. скорости изменения магнитного потока.

ЭДС индукции

В цепи появляется электрический ток, когда на свободные заряды проводника действуют сторонние силы.
Величину, численно равную работе этих сил при перемещении единичного положительного заряда вдоль замкнутого контура, называют электродвижущей силой (ЭДС).

При изменении магнитного потока через поверхность, ограниченную контуром, в контуре появляются сторонние силы, действие которых характеризует ЭДС индукции.
Обозначение ЭДС индукции — .

Согласно закону Ома для замкнутой цепи индукционный ток в контуре

Закон электромагнитной индукции.

ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром.

Как в законе электромагнитной индукции учесть направление индукционного тока (или знак ЭДС индукции) в соответствии с правилом Ленца?

Пусть положительное направление обхода контура — против часовой стрелки.
Нормаль к контуру образует правый винт с направлением обхода.

Если магнитная индукция В внешнего магнитного поля направлена вдоль нормали к контуру и возрастает со временем.
Тогда магнитный поток Ф > 0 и скорость измененеия магнитного потока тоже > 0.
По правилу Ленца индукционный ток создает магнитный поток Ф’ меньше 0.
Индукционный ток Ii по правилу буравчика направлен по часовой стрелке (против направления положительного обхода).
ЭДС индукции отрицательна.
Поэтому в формуле для закона электромагнитной индукции должен стоять знак «-»,
указывающий на то, что ЭДС индукции и скорость изменения магнитного потока имеют разные знаки:

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин

Электромагнитная индукция. Физика, учебник для 11 класса — Класс!ная физика

Закон Фарадея для электромагнитной индукции и для электролиза

Для описания процессов в физике и химии есть целый ряд законов и соотношений, полученных экспериментальным и расчетным путем. Ни единого исследования нельзя провести без предварительной оценки процессов по теоретическим соотношениям. Законы Фарадея применяются и в физике, и в химии, а в этой статье мы постараемся кратко и понятно рассказать о всех знаменитых открытиях этого великого ученого.

История открытия

Закон Фарадея в электродинамике был открыт двумя ученными: Майклом Фарадеем и Джозефом Генри, но Фарадей опубликовал результаты своих работ раньше – в 1831 году.

В своих демонстрационных экспериментах в августе 1831 г. он использовал железный тор, на противоположные концы которого был намотан провод (по одному проводу на стороны). На концы одного первого провода он подал питание от гальванической батареи, а на выводы второго подключил гальванометр. Конструкция была похожа на современный трансформатор. Периодически включая и выключая напряжение на первом проводе, он наблюдал всплески на гальванометре.

Гальванометр — это высокочувствительный прибор для измерения силы токов малой величины.

Таким образом было изображено влияние магнитного поля, образовавшегося в результате протекания тока в первом проводе, на состояние второго проводника. Это воздействие передавалось от первого ко второму через сердечник – металлический тор. В результате исследований было обнаружено и влияние постоянного магнита, который двигается в катушке, на её обмотку.

Тогда Фарадей объяснял явление электромагнитной индукции с точки зрения силовых линий. Еще одной была установка для генерирования постоянного тока: медный диск вращался вблизи магнита, а скользящий по нему провод был токосъёмником. Это изобретение так и называется — диск Фарадея.

Ученные того периода не признали идеи Фарадея, но Максвелл взял исследования для основы своей магнитной теории. В 1836 г. Майкл Фарадей установил соотношения для электрохимических процессов, которые назвали Законами электролиза Фарадея. Первый описывает соотношения выделенной на электроде массы вещества и протекающего тока, а второй соотношения массы вещества в растворе и выделенного на электроде, для определенного количества электричества.

Электродинамика

Первые работы применяются в физике, конкретно в описании работы электрических машин и аппаратов (трансформаторов, двигателей и пр.). Закон Фарадея гласит:

Для контура индуцированная ЭДС прямо пропорциональна величине скорости магнитного потока, который перемещается через этот контур со знаком минус.

Это можно сказать простыми словами: чем быстрее магнитный поток движется через контур, тем больше на его выводах генерируется ЭДС.

Формула выглядит следующим образом:

Здесь dФ – магнитный поток, а dt – единица времени. Известно, что первая производная по времени – это скорость. Т.е скорость перемещения магнитного потока в данном конкретном случае. Кстати перемещаться может, как и источник магнитного поля (катушка с током – электромагнит, или постоянный магнит), так и контур.

Здесь же поток можно выразить по такой формуле:

B – магнитное поле, а dS – площадь поверхности.

Если рассматривать катушку с плотнонамотанными витками, при этом в количестве витков N, то закон Фарадея выглядит следующим образом:

Магнитный поток в формуле на один виток, измеряется в Веберах. Ток, протекающий в контуре, называется индукционным.

Электромагнитная индукция – явление протекания тока в замкнутом контуре под воздействием внешнего магнитного поля.

В формулах выше вы могли заметить знаки модуля, без них она имеет слегка иной вид, такой как было сказано в первой формулировке, со знаком минус.

Знак минус объясняет правило Ленца. Ток, возникающий в контуре, создает магнитное поле, оно направлено противоположно. Это является следствием закона сохранения энергии.

Направление индукционного тока можно определить по правилу правой руки или буравчика, мы его рассматривали на нашем сайте подробно.

Как уже было сказано, благодаря явлению электромагнитной индукции работают электрические машины трансформаторы, генераторы и двигатели. На иллюстрации показано протекание тока в обмотке якоря под воздействием магнитного поля статора. В случае с генератором, при вращении его ротора внешними силами в обмотках ротора возникает ЭДС, ток порождает магнитное поле направленное противоположно (тот самый знак минус в формуле). Чем больше ток, потребляемый нагрузкой генератора, тем больше это магнитное поле, и тем больше затрудняется его вращение.

И наоборот — при протекании тока в роторе возникает поле, которое взаимодействует с полем статора и ротор начинает вращаться. При нагрузке на вал ток в статоре и в роторе повышается, при этом нужно обеспечить переключение обмоток, но это уже другая тема, связанная с устройством электрических машин.

В основе работы трансформатора источником движущегося магнитного потока является переменное магнитное поле, возникающее в следствие протекания в первичной обмотке переменного тока.

Если вы желаете более подробно изучить вопрос, рекомендуем просмотреть видео, на котором легко и доступно рассказывается Закон Фарадея для электромагнитной индукции:

Электролиз

Кроме исследований ЭДС и электромагнитной индукции ученный сделал большие открытия и в других дисциплинах, в том числе химии.

При протекании тока через электролит ионы (положительные и отрицательные) начинают устремляться к электродам. Отрицательные движутся к аноду, положительные к катоду. При этом на одном из электродов выделяется определенная масса вещества, которое содержится в электролите.

Фарадей проводил эксперименты, пропуская разный ток через электролит и измеряя массу вещества отложившегося на электродах, вывел закономерности.

m=k*Q

m – масса вещества, q – заряд, а k – зависит от состава электролита.

А заряд можно выразить через ток за промежуток времени:

I=q/t, тогда q = i*t

Теперь можно определить массу вещества, которое выделится, зная ток и время, которое он протекал. Это называется Первый закон электролиза Фарадея.

Второй закон:

Масса химического элемента, который осядет на электроде, прямо пропорциональна эквивалентной массе элемента (молярной массе разделенной на число, которое зависит от химической реакции, в которой участвует вещество).

С учетом вышесказанного эти законы объединяются в формулу:

m – масса вещества, которое выделилось в граммах, n – количество переносимых электронов в электродном процессе, F=986485 Кл/моль – число Фарадея, t – время в секундах, M молярная масса вещества г/моль.

В реальности же из-за разных причин, масса выделяемого вещества меньше чем расчетная (при расчетах с учетом протекающего тока). Отношение теоретической и реальной масс называют выходом по току:

Bт = 100% * mрасч/mтеор

Ну и напоследок рекомендуем просмотреть подробное объяснение закона Фарадея для электролиза:

Законы Фарадея внесли существенный вклад в развитие современной науки, благодаря его работам мы имеем электродвигатели и генераторы электроэнергии (а также работам его последователей). Работа ЭДС и явления электромагнитной индукции подарили нам большую часть современного электрооборудования, в том числе и громкоговорители и микрофоны, без которых невозможно прослушивание записей и голосовая связь. Процессы электролиза применяются в гальваническом методе покрытия материалов, что несет как декоративную ценность, так и практическую.

Похожие материалы:

По какой формуле рассчитывается закон электромагнитной индукции. Закон электромагнитной индукции формула

В 1831 году мир впервые узнал о понятии электромагнитной индукции. Именно тогда Майкл Фарадей обнаружил это явление, ставшее в итоге важнейшим открытием в электродинамике.

История развития и опыты Фарадея

До середины XIX века считалось, что электрическое и магнитное поле не имеют никакой связи, и природа их существования различна. Но М. Фарадей был уверен в единой природе этих полей и их свойств. Явление электромагнитной индукции, обнаруженное им, впоследствии стало фундаментом для устройства генераторов всех электростанций. Благодаря этому открытию знания человечества о электромагнетизме шагнули далеко вперед.

Фарадей проделал следующий опыт: он замыкал цепь в катушке I и вокруг нее возрастало магнитное поле. Далее линии индукции данного магнитного поля пересекали катушку II, в которой возникал индукционный ток.

Рис. 1. Схема опыта Фарадея

На самом деле, одновременно с Фарадеем, но независимо от него, другой ученый Джозеф Генри обнаружил это явление. Однако Фарадей опубликовал свои исследования раньше. Таким образом, автором закона электромагнитной индукции стал Майкл Фарадей.

Сколько бы экспериментов не проводил Фарадей, неизменным оставалось одно условие: для образования индукционного тока важным является изменение магнитного потока, пронизывающего замкнутый проводящий контур (катушку).

Закон Фарадея

Явление электромагнитной индукции определяется возникновением электрического тока в замкнутом электропроводящем контуре при изменении магнитного потока через площадь этого контура.

Основной закон Фарадея заключается в том, что электродвижущая сила (ЭДС) прямо пропорциональна скорости изменения магнитного потока.

Формула закона электромагнитной индукции Фарадея выглядит следующим образом:

Рис. 2. Формула закона электромагнитной индукции

И если сама формула, исходя из вышесказанных объяснений не порождает вопросов, то знак «-» может вызвать сомнения. Оказывается существует правило Ленца – русского ученого, который проводил свои исследования, основываясь на постулатах Фарадея. По Ленцу знак «-» указывает на направление возникающей ЭДС, т.е. индукционный ток направлен так, что магнитный поток, который он создает, через площадь, ограниченную контуром, стремится препятствовать тому изменению потока, которое вызывает данный ток.

Закон Фарадея-Максвелла

В 1873 Дж.К.Максвелл по-новому изложил теорию электромагнитного поля. Уравнения, которые он вывел, легли в основу современной радиотехники и электротехники. Они выражаются следующим образом:

  • Edl = -dФ/dt – уравнение электродвижущей силы
  • Hdl = -dN/dt – уравнение магнитодвижущей силы.

Где E – напряженность электрического поля на участке dl; H – напряженность магнитного поля на участке dl; N – поток электрической индукции, t – время.

Симметричный характер данных уравнений устанавливает связь электрических и магнитных явлений, а также магнитных с электрическими. физический смысл, которым определяются эти уравнения, можно выразить следующими положениями:

  • если электрическое поле изменяется, то это изменение всегда сопровождается магнитным полем.
  • если магнитное поле изменяется, то это изменение всегда сопровождается электрическим полем.

Рис. 3. Возникновение вихревого магнитного поля

Также Максвелл установил, что распространение электромагнитного поля равна скорости распространения света.

Всего получено оценок: 134.

В 1831 году английский ученый физик в своих опытах М.Фарадей открыл явление электромагнитной индукции . Затем изучением этого явления занимались русские ученый Э.Х. Ленц и Б.С.Якоби.

В настоящее время, в основе многих устройств лежит явление электромагнитной индукции, например в двигателе или генераторе электрического тока тока, в трансформаторах, радиоприемниках, и многих других устройствах.

Электромагнитная индукция — это явление возникновения тока в замкнутом проводнике, при прохождении через него магнитного потока. То есть, благодаря этому явлению мы можем преобразовывать механическую энергию в электрическую — и это замечательно. Ведь до открытия этого явления люди не знали о методах получения электрического тока , кроме гальваники.

Когда проводник оказывается под действием магнитного поля, в нем возникает ЭДС, которую количественно можно выразить через закон электромагнитной индукции.

Закон электромагнитной индукции

Электродвижущая сила, индуцируемая в проводящем контуре, равна скорости изменения магнитного потока, сцепляющегося с этим контуром.

В катушке, которая имеет несколько витков, общая ЭДС зависит от количества витков n:

Но в общем случае, применяют формулу ЭДС с общим потокосцеплением:

ЭДС возбуждаемая в контуре, создает ток. Наиболее простым примером появления тока в проводнике является катушка, через которую проходит постоянный магнит . Направление индуцируемого тока можно определить с помощью правила Ленца .


Правило Ленца

Ток, индуцируемый при изменении магнитного поля проходящего через контур, своим магнитным полем препятствует этому изменению.

В том случае, когда мы вводим магнит в катушку, магнитный поток в контуре увеличивается, а значит магнитное поле, создаваемое индуцируемым током, по правилу Ленца, направлено против увеличения поля магнита. Чтобы определить направление тока, нужно посмотреть на магнит со стороны северного полюса. С этой позиции мы будем вкручивать буравчик по направлению магнитного поля тока, то есть навстречу северному полюсу. Ток будет двигаться по направлению вращения буравчика, то есть по часовой стрелке.

В том случае, когда мы выводим магнит из катушки, магнитный поток в контуре уменьшается, а значит магнитное поле, создаваемое индуцируемым током, направлено против уменьшения поля магнита. Чтобы определить направление тока, нужно выкручивать буравчик, направление вращения буравчика укажет направление тока в проводнике – против часовой стрелки.

>>Физика и астрономия >>Физика 11 класс >> Закон электромагнитной индукции

Закон Фарадея. Индукция

Электромагнитной индукцией называют такое явление, как возникновение электрического тока в замкнутом контуре, при условии изменения магнитного потока, который проходит через этот контур.

Закон электромагнитной индукции Фарадея записывается такой формулой:

И гласит, что:



Каким же образом ученым удалось вывести такую формулу и сформулировать этот закон? Мы с вами уже знаем, что вокруг проводника с током всегда существует магнитное поле, а электричество обладает магнитной силой. Поэтому в начале 19го века и возникла задача о необходимости подтверждения влияния магнитных явлений на электрические, которую пытались решить многие ученые, и английский ученый Майкл Фарадей был в их числе. Почти 10 лет, начиная с 1822 года, он потратил на различные опыты, но безуспешно. И только 29 августа 1831 года наступил триумф.

После напряженных поисков, исследований и опытов, Фарадей пришел к выводу, что только меняющееся со временем магнитное поле может создать электрический ток.

Опыты Фарадей

Опыты Фарадей состояли в следующем:

Во-первых, если взять постоянный магнит и двигать его внутри катушки, к которой присоединен гальванометр, то в цепи возникал электрический ток.
Во-вторых, если этот магнит выдвигать из катушки, то мы наблюдаем, что гальванометр так же показывает ток, но этот ток имеет противоположное направление.



А теперь давайте попробуем этот опыт немного изменить. Для этого мы попробуем на неподвижный магнит одевать и снимать катушку. И что мы в итоге видим? А мы с вами наблюдаем то, что во время движения катушки относительно магнита в цепи снова появляется ток. А если в катушке прекратилось, то и ток сразу же исчезает.



Теперь давайте проделаем еще один опыт. Для этого мы с вами возьмем и поместим в магнитное поле плоский контур без проводника, а его концы попробуем соединить с гальванометром. И что мы наблюдаем? Как только контур гальванометр поворачивается, то мы наблюдаем появление в нем индукционного тока. А если попробовать вращать магнит внутри него и рядом с контуром, то в этом случае также появится ток.



Думаю, вы уже заметили, ток появляется в катушке тогда, когда изменяется магнитный поток, который пронизывает эту катушку.

И тут возникает вопрос, при всяких ли движениях магнита и катушки, может возникнуть электрический ток? Оказывается не всегда. Ток не возникнет в том случае, когда магнит вращается вокруг вертикальной оси.

А из этого следует, что при любом изменении магнитного потока, мы наблюдаем то, что в этом проводнике возникает электрический ток, который существовал в течении всего процесса, пока происходили изменения магнитного потока. Именно в этом и заключается явление электромагнитной индукции. А индукционным током является тот ток, который был получен данным методом.

Если мы с вами проанализируем данный опыт, то увидим, что значение индукционного тока совершенно не зависит от причины изменения магнитного потока. В данном случае, первостепенное значение имеет лишь скорость, которая влияет на изменения магнитного потока. Из опытов Фарадея следует, что чем быстрее двигается магнит в катушке, тем больше отклоняется стрелка гальванометра.



Теперь мы можем подвести итог данного урока и сделать вывод, что закон электромагнитной индукции является одним из основных законом электродинамики. Благодаря изучению явлений электромагнитной индукции, учеными разных стран были созданы различные электродвигатели и мощные генераторы. Огромный вклад в развитие электротехники внесли и такие известные ученые, как Ленц, Якоби, и другие.

Что может быть лучше, чем вечером понедельника почитать про основы электродинамики . Правильно, можно найти множество вещей, которые будут лучше. Тем не менее, мы все равно предлагаем Вам прочесть эту статью. Времени занимает не много, а полезная информация останется в подсознании. Например, на экзамене, в условиях стресса, можно будет успешно извлечь из недр памяти закон Фарадея. Так как законов Фарадея несколько, уточним, что здесь мы говорим о законе индукции Фарадея.

Электродинамика – раздел физики, изучающий электромагнитное поле во всех его проявлениях.

Это и взаимодействие электрического и магнитного полей, электрический ток, электро-магнитное излучение, влияние поля на заряженные тела.

Здесь мы не ставим целью рассмотреть всю электродинамику. Упаси Боже! Рассмотрим лучше один из основных ее законов, который называется законом электромагнитной индукции Фарадея .

История и определение

Фарадей, параллельно с Генри, открыл явление электромагнитной индукции в 1831 году. Правда, успел опубликовать результаты раньше. Закон Фарадея повсеместно используется в технике, в электродвигателях, трансформаторах, генераторах и дросселях. В чем суть закона Фарадея для электромагнитной индукции, если говорить просто? А вот в чем!

При изменении магнитного потока через замкнутый проводящий контур, в контуре возникает электрический ток. То есть, если мы скрутим из проволоки рамку и поместим ее в изменяющееся магнитное поле (возьмем магнит, и будем крутить его вокруг рамки), по рамке потечет ток!

Этот ток Фарадей назвал индукционным, а само явление окрестил электромагнитной индукцией.

Электромагнитная индукция – возникновение в замкнутом контуре электрического тока при изменении магнитного потока, проходящего через контур.

Формулировка основного закона электродинамики – закона электромагнитной индукции Фарадея, выглядит и звучит следующим образом:

ЭДС , возникающая в контуре, пропорциональна скорости изменения магнитного потока Ф через контур.

А откуда в формуле минус, спросите Вы. Для объяснения знака минус в этой формуле есть специальное правило Ленца . Оно гласит, что знак минус, в данном случае, указывает на то, как направлена возникающая ЭДС. Дело в том, что создаваемое индукционным током магнитное поле направлено так, что препятствует изменению магнитного потока, который вызвал индукционный ток.

Примеры решения задач

Вот вроде бы и все. Значение закона Фарадея фундаментально, ведь на использовании данного закона построена основа почти всей электрической промышленности. Чтобы понимание пришло быстрее, рассмотрим пример решения задачи на закон Фарадея.

И помните, друзья! Если задача засела, как кость в горле, и нет больше сил ее терпеть — обратитесь к нашим авторам! Теперь вы знаете . Мы быстро предоставим подробное решение и разъясним все вопросы!

В результате многочисленных опытов Фарадей установил основной количественный закон электромагнитной индукции. Он показал, что всякий раз, когда происходит изменение сцепленного с контуром потока магнитной индукции, в контуре возникает индукционный ток. Возникновение индукционного тока указывает на наличие в цепи электродвижущей силы, называемой электродвижущей силой электромагнитной индукции. Фарадей установил, что значение ЭДС электромагнитной индукции E i пропорционально скорости изменения магнитного потока:

E i = -К , (27.1)

где К – коэффициент пропорциональности, зависящий только от выбора единиц измерения.

В системе единиц СИ коэффициент К = 1, т.е.

E i = — . (27.2)

Эта формула и представляет собой закон электромагнитной индукции Фарадея. Знак минус в этой формуле соответствует правилу (закону) Ленца.

Закон Фарадея можно сформулировать еще таким образом: ЭДС электромагнитной индукции E i в контуре численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную этим контуром. Этот закон является универсальным: ЭДС E i не зависит от способа изменения магнитного потока.

Знак минус в (27.2) показывает, что увеличение потока ( > 0) вызывает ЭДС E i 0 т. е. направления магнитного потока индукционного тока и потока, вызвавшего его, совпадают. Знак минус в формуле (27.2) является математическим выражением правила Ленца — общего правила для нахождения направления индукционного тока (а значит и знака и ЭДС индукции), выведенного в 1833 г. Правило Ленца: индукционный ток всегда направлен так, чтобы противодействовать причине, его вызывающей. Иначе говоря, индукционный ток создает магнитный поток, препятствующий изменению магнитного потока, вызывающего ЭДС индукции.

ЭДС индукции выражается в вольтах (В). Действительно, учитывая, что единицей магнитного потока является вебер (Вб), получим:

Если замкнутый контур, в котором индуцируется ЭДС индукции, состоит из N витков, то E i будет равна сумме ЭДС, индуцируемых в каждом из витков. И если магнитный поток, охватываемый каждым витком, одинаков и равен Ф, то суммарный поток сквозь поверхность N витков, равен (NФ) – полный магнитный поток (потокосцепление). В этом случае ЭДС индукции равна:

E i = -N× , (27.3)

Формула (27.2) выражает закон электромагнитной индукции в общей форме. Она применима как к неподвижным контурам, так и к движущимся проводникам в магнитном поле. Входящая в нее производная от магнитного потока по времени в общем случае состоит из двух частей, одна из которых обусловлена изменением магнитной индукции во времени, а другая – движением контура относительно магнитного поля (или его деформацией). Рассмотрим некоторые примеры применения этого закона.

Пример 1. Прямолинейный проводник длиной l движется параллельно самому себе в однородном магнитном поле (рисунок 38). Этот проводник может входить в состав замкнутой цепи, остальные части которой неподвижны. Найдем ЭДС, возникающую в проводнике.

Если мгновенное значение скорости проводника есть v , то за время dt он опишет площадь dS = l×v ×dt и за это время пересечет все линии магнитной индукции, проходящие через dS. Поэтому изменение магнитного потока через контур, в состав которого входит движущийся проводник, будет dФ = B n ×l×v ×dt. Здесь B n — составляющая магнитной индукции, перпендикулярная к dS. Подставляя это в формулу (27.2) получаем величину ЭДС:

E i = B n ×l×v . (27.4)

Направление индукционного тока и знак ЭДС определяются правилом Ленца: индукционный ток в контуре всегда имеет такое направление, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызвавшего этот индукционный ток. В некоторых случаях возможно определение направления индукционного тока (полярности ЭДС индукции) согласно другой формулировке правила Ленца: индукционный ток в движущемся проводнике направлен таким образом, что возникающая при этом сила Ампера противоположна вектору скорости (тормозит движение).

Разберем численный пример. Вертикальный проводник (автомобильная антенна) длиной l = 2 м движется с востока на запад в магнитном поле Земли со скоростью v = 72 км/час = 20 м/с. Вычислим напряжение между концами проводника. Так как проводник разомкнут, то тока в нем не будет и напряжение на концах будет равно ЭДС индукции. Учитывая, что горизонтальная составляющая магнитной индукции поля Земли (т.е. составляющая, перпендикулярная к направлению движения) для средних широт равна 2×10 -5 Тл, по формуле (27.4) находим

U = B n ×l×v = 2×10 -5 ×2×20 = 0,8×10 -3 В,

т.е. около 1 мВ. Магнитное поле Земли направлено с юга на север. Поэтому мы находим, что ЭДС направлена сверху вниз. Это значит, что нижний конец провода будет иметь более высокий потенциал (зарядится положительно), а верхний – более низкий (зарядится отрицательно).

Пример 2. В магнитном поле находится замкнутый проволочный контур, пронизываемый магнитным потоком Ф. Предположим, что этот поток уменьшается до нуля, и вычислим полную величину заряда, прошедшего по цепи. Мгновенное значение ЭДС в процессе исчезновения магнитного потока выражается формулой (27.2). Следовательно, согласно закону Ома мгновенное значение силы тока есть

где R – полное сопротивление цепи.

Величина прошедшего заряда равна

q = = — = . (27.6)

Полученное соотношение выражает закон электромагнитной индукции в форме, найденной Фарадеем, который из своих опытов заключил, что величина заряда, прошедшего по цепи, пропорциональна полному числу линий магнитной индукции, пересеченных проводником (т.е. изменению магнитного потока Ф 1 -Ф 2), и обратно пропорциональна сопротивлению цепи R. Соотношение (27.6) позволяет дать определение единицы магнитного потока в системе СИ: вебер – магнитный поток, при убывании которого до нуля в сцепленном с ним контуре сопротивлением 1 Ом проходит заряд 1 Кл.

Согласно закону Фарадея, возникновение ЭДС электромагнитной индукции возможно и в случае неподвижного контура, находящегося в переменном магнитном поле. Однако сила Лоренца на неподвижные заряды не действует, поэтому в данном случае она не может быть причиной возникновения ЭДС индукции. Максвелл для объяснения ЭДС индукции в неподвижных проводниках предположил, что всякое переменное магнитное поле возбуждает в окружающем пространстве вихревое электрическое поле, которое и является причиной возникновения индукционного тока в проводнике. Циркуляция вектора напряженности этого поля по любому неподвижному контуру L проводника представляет собой ЭДС электромагнитной индукции:

E i = = — . (27.7)

Линии напряженности вихревого электрического поля представляют собой замкнутые кривые, поэтому при перемещении заряда в вихревом электрическом поле по замкнутому контуру совершается отличная от нуля работа. В этом заключается отличие вихревого электрического поля от электростатического, линии напряженности которого начинаются и заканчиваются на зарядах.

В чем заключается физический смысл закона электромагнитной

Индукция магнитного поля численно равна максимальной силе, с которой данное поле действует на проводник длиной 1 метр с силой тока 1 Ампер.

Направление индукции магнитного поля –

от Южного к Северному полюсу свободно установившейся магнитной стрелки.

Магнитный поток

Нарисуем замкнутый контур, n – нормаль к его плоскости.

Поместим контур в магнитное поле с индукцией В.

Магнитный поток- это скалярная физическая величина, равная произведению модуля вектора индукции магнитного поля на площадь контура и на косинус угла между вектором индукции и нормалью к площади контура

Единица измерения магнитного потока – Вебер

Явление электромагнитной индукции

Явление электромагнитной индукции было открыто выдающимся английским физиком М. Фарадеем в 1831 г. Фарадей наблюдал возникновение электрического тока в замкнутом проводящем контуре при изменении во времени магнитного потока, пронизывающего контур.

Вопрос Фарадея:: если током можно намагнитить железо, то не может ли магнит вызвать появление тока?

Явление ЭМИ состоит в том, что при любом изменении магнитного потока, пронизывающего замкнутый контур, в контуре возникает ЭДС индукции. Если контур проводящий, то в нем будет протекать ток, который называется индукционным. Если контур из диэлектрика, то он поляризуется.

Сторонние силы действуют внутри источника тока и вызывают разделение зарядов, т. е. движение электронов от + к – источника. Имеют неэлектрическую природу.

ЭДС индукции возникает только в тот интервал времени, когда магнитный поток изменяется.

Изменение магнитного потока через контур:

.

Закон электромагнитной индукции (закон Фарадея)

ЭДС индукции

По закону ЭМИ изменение магнитного потока приводит к появлению ЭДС, которая называется ЭДС индукции.

Опыт показывает, что сила тока пропорциональна скорости изменения магнитного потока.

По закону Ома для полной цепи сила тока равна отношению ЭДС к полному сопротивлению цепи

следовательно, ЭДС индукции пропорциональна скорости изменения магнитного потока

Закон электромагнитной индукции (Фарадея): ЭДС индукции в замкнутом контуре равна скорости изменения магнитного потока, взятой с обратным знаком. Знак означает правило Ленца.

Понятие об электромагнитной теории Максвелла. Вихревое электрическое поле. Правило Ленца. Самоиндукция. Индуктивность.

Направление индукционного тока.

Правило Ленца (1883 г)индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

Опыт Ленца

Описание опыта:замкнутое кольцо отталкивается от магнита, если его вдвигают в кольцо, и притягивается, если магнит выдвигают.

Движение кольца обусловлено магнитным полем индукционного тока.

Применение правила Ленца

Пример Магнит движется вправо (вдвигается в контур)

1. Определить направление силовых линий внешнего поля B.

2. Определить, увеличивается или уменьшается магнитный поток через

3. Определить направление индукционного магнитного поля Bi

Если магнитный поток увеличивается, Bi направлено против B, компенсируя это увеличение. Если магнитный поток уменьшается, Bi направлено одинаково с B, компенсируя это уменьшение.

  1. По правилу буравчика определить направление индукционного тока.

Вихревое электрическое поле

Причина появления ЭДС индукции в замкнутом контуре при изменении магнитного потока заключается в возникновении вихревого электрического поля в любой области пространства, где существует переменное магнитное поле. – гипотеза Максвелла. Силовые линии вихревого поля замкнуты.

Перечислим свойства известных нам полей

1. Электростатическое, возникает везде, где есть эл. заряды. Силовые линии начинаются и заканчиваются на зарядах. Потенциальное, т.е. работа по замкнутому контуру равна нулю. напряженность, потенциал.

2. Поле тока – магнитное, вихревое, работа по замкнутому контуру не равна нулю. Ток течет в сторону убывания потенциала. Поле действует только на движущиеся заряды.

3. Вихревое электрическое поле. Действует на любые заряды. Работа по замкнутому контуру равна ЭДС индукции. ЭДС индукции определяется законом Фарадея.

Самоиндукция. Индуктивность

Самоиндукция является важным частным случаем

электромагнитной индукции, когда изменяющийся

магнитный поток, вызывающий ЭДС индукции,

создается током в самом контуре.

В любом контуре, по которому протекает ток,

возникает магнитное поле. Силовые линии этого поля

пронизывают все окружающее пространство, в том числе, пересекают площадь самого контура.

Магнитный поток, который вызван током в этом самом контуре, называется собственным магнитным потоком.

Поскольку магнитный поток пропорционален индукции магнитного поля, собственный магнитный поток пропорционален силе тока в контуре

Следовательно, можно ввести коэффициент пропорциональности

Коэффициент пропорциональности L между собственным магнитным потоком в контуре и силой тока в нем называется индуктивностью контура.

Индуктивность проводника зависит от размеров, формы проводника, магнитных свойств среды.

Единица измерения индуктивности называется Генри

Последнее изменение этой страницы: 2016-09-20; Нарушение авторского права страницы

В современном мире электронная техника развивается семимильными шагами. Каждый день появляется что-то новое, и это не только небольшие улучшения уже существующих моделей, но и результаты применения инновационных технологий, позволяющих в разы улучшить характеристики.

Не отстает от электронной техники и приборостроительная отрасль – ведь чтобы разработать и выпустить на рынок новые устройства, их необходимо тщательно протестировать, как на этапе проектирования и разработки, так и на этапе производства. Появляются новая измерительная техника и новые методы измерения, а, следовательно – новые термины и понятия.

Для тех, кто часто сталкивается с непонятными сокращениями, аббревиатурами и терминами и хотел бы глубже понимать их значения, и предназначена эта рубрика.

В физике возможны (хотя и редко) ситуации, когда одна и та же формула допускает различное содержание, т.е. описывает разные по сути физические законы. Рассмотрим один такой случай, связанный со знаменитым законом электромагнитной индукции, открытым Фарадеем.

«Правило потока» как объединение двух законов

Физический смысл закона Фарадея заключается в том, что изменяющееся во времени магнитное поле порождает вихревое электрическое поле. А именно, при изменении во времени магнитного потока (Ф), пронизывающего поверхность, ограниченную замкнутым неподвижным проводником, в этом проводнике индуцируется ЭДС (εi), равная по величине и противоположная по знаку скорости изменения этого потока:

Это соотношение называют также «правилом потока».

Однако формулу (*), называя по-прежнему законом электромагнитной индукции, в ряде учебников, в том числе и школьных, понимают более широко, включая еще одну причину возникновения ЭДС в проводящем контуре. Этой причиной является сила Лоренца, т.е. сила, действующая на движущийся заряд в магнитном поле. Величина этой силы равна

где q — величина заряда, υ — скорость его движения, В — модуль вектора магнитной индукции поля, в котором движется заряд, α — угол между векторами υ и B . Направление силы Лоренца определяется известным правилом левой руки.

Рассмотрим простейший случай движения проводника в магнитном поле, показанный на рисунке 1. Под действием силы Лоренца свободные электроны в проводнике (пластинке) перемещаются так, что нижний конец пластинки заряжается отрицательно, а верхний — положительно. Это происходит до тех пор, пока возникающее из-за смещения электронов электрическое поле не начнет действовать на электроны кулоновской силой, равной по величине и противоположной по направлению силе Лоренца. Таким образом действие силы Лоренца на свободные заряды проводника, движущегося в магнитном поле, приводит к возникновению ЭДС индукции. Хотя эта ЭДС не имеет никакого отношения к закону электромагнитной индукции Фарадея, оказывается, что ее можно описать точно такой же формулой. Действительно, напряженность наведенного в проводнике электрического поля равна

Но в данном случае под ΔФ понимается не величина изменения во времени магнитного потока, пронизывающего данный контур (как в законе Фарадея), а величина магнитного потока, пересекаемого движущимся проводником за время Δt. Для замкнутого контура, перемещающегося или деформируемого в магнитном поле, под ΔФ понимается происходящее при этом изменение магнитного потока через этот контур.

Обобщение формулы ЭДС электромагнитной индукции, или «правила потока», на движение проводника в магнитном поле (говорят еще — на явление пересечения проводником линий магнитной индукции) можно использовать при решении широкого круга задач — для сколь угодно сложной конфигурации проводящего контура и для любого характера движения его частей (надо только применить этот расчет к отдельным элементам сложного контура и просуммировать результат). Часто гораздо удобнее вычислять величину ЭДС, индуцируемой при движении проводника в магнитном поле, пользуясь «правилом потока», а не прямым вычислением работы силы Лоренца.

Итак, «правило потока» утверждает, что ЭДС в контуре равна взятой с обратным знаком скорости изменения магнитного потока через данный контур независимо от того, меняется ли величина потока из-за изменения магнитного поля во времени при неподвижном контуре, или в результате перемещения или деформации контура, или из-за того и другого вместе.

Так может быть, и не стоит различать причины возникновения ЭДС индукции и считать «правило потока» фундаментальным обобщением закона электромагнитной индукции? Оказывается, стоит, иначе такое отношение к «правилу потока» может вести к парадоксам. Вот несколько примеров.

1) Магнитный поток, пронизывающий контур, остается неизменным

, а ЭДС создается (рис.2).

Когда медный диск вращается, контур тока, казалось бы, не изменяется, проходя в пространстве по диску от контакта К к его оси, следовательно, магнитный поток через контур остается постоянным. Но физически эта часть контура осуществляется меняющимися в процессе вращения участками диска, поэтому на свободные электроны в диске, обладающие из-за его вращения скоростью, действует сила Лоренца и возникает ЭДС индукции.

2) Изменение магнитного потока сквозь контур не приводит к возникновению ЭДС индукции (рис.3).

При повороте металлических пластин с несколько изогнутыми поверхностями соприкосновения, помещенных в однородное магнитное поле, перпендикулярное их плоскости, на некоторый угол магнитный поток через цепь, замыкающуюся в пластинах по точечным линиям, изменяется на большую величину. Однако поворот пластин связан с незначительным их перемещением, при котором произведение υB в формуле для силы Лоренца близко к нулю, поэтому ЭДС индукции практически отсутствует.

В чем же причина этих парадоксов?

В тех случаях, когда справедлив закон электромагнитной индукции, ЭДС существует вдоль данного геометрического контура независимо от того, материализуется этот контур или нет. В противоположность этому, для существования ЭДС индукции, порождаемой силой Лоренца, совершенно необходимо, чтобы контур был овеществлен, т.е. представлял собой проводник. Именно в этом и состоит принципиальное различие явлений возникновения ЭДС индукции, вызываемых действием двух разных законов, объединенных одной формулой «правила потока»-. Эта формула и оказывается именно правилом, а не законом. Но «нет правил без исключений». Вот мы и познакомились с исключениями из «правила потока».

А как избежать ошибок при использовании такого удобного правила и не наткнуться как раз на исключение?

Оказывается, имеется надежный ориентир: необходимо проверять, чтобы все время сохранялось точное соответствие между физическим контуром, состоящим из проводников, и геометрическим контуром, по которому вычисляется наводимая ЭДС. При нарушении такого соответствия необходимо вычисления производить раздельно: по закону Фарадея или непосредственно с помощью силы Лоренца. Иначе, как показывают приведенные выше примеры, возможны ошибки.

История развития и опыты Фарадея

До середины XIX века считалось, что электрическое и магнитное поле не имеют никакой связи, и природа их существования различна. Но М. Фарадей был уверен в единой природе этих полей и их свойств. Явление электромагнитной индукции, обнаруженное им, впоследствии стало фундаментом для устройства генераторов всех электростанций. Благодаря этому открытию знания человечества о электромагнетизме шагнули далеко вперед.

Фарадей проделал следующий опыт: он замыкал цепь в катушке I и вокруг нее возрастало магнитное поле. Далее линии индукции данного магнитного поля пересекали катушку II, в которой возникал индукционный ток.

Рис. 1. Схема опыта Фарадея

Сколько бы экспериментов не проводил Фарадей, неизменным оставалось одно условие: для образования индукционного тока важным является изменение магнитного потока, пронизывающего замкнутый проводящий контур (катушку).

Закон Фарадея

Явление электромагнитной индукции определяется возникновением электрического тока в замкнутом электропроводящем контуре при изменении магнитного потока через площадь этого контура.

Основной закон Фарадея заключается в том, что электродвижущая сила (ЭДС) прямо пропорциональна скорости изменения магнитного потока.

Формула закона электромагнитной индукции Фарадея выглядит следующим образом:

Рис. 2. Формула закона электромагнитной индукции

И если сама формула, исходя из вышесказанных объяснений не порождает вопросов, то знак «-» может вызвать сомнения. Оказывается существует правило Ленца – русского ученого, который проводил свои исследования, основываясь на постулатах Фарадея. По Ленцу знак «-» указывает на направление возникающей ЭДС, т.е. индукционный ток направлен так, что магнитный поток, который он создает, через площадь, ограниченную контуром, стремится препятствовать тому изменению потока, которое вызывает данный ток.

Закон Фарадея-Максвелла

В 1873 Дж.К.Максвелл по-новому изложил теорию электромагнитного поля. Уравнения, которые он вывел, легли в основу современной радиотехники и электротехники. Они выражаются следующим образом:

  • Edl = -dФ/dt – уравнение электродвижущей силы
  • Hdl = -dN/dt – уравнение магнитодвижущей силы.

Где E – напряженность электрического поля на участке dl; H – напряженность магнитного поля на участке dl; N – поток электрической индукции, t – время.

Симметричный характер данных уравнений устанавливает связь электрических и магнитных явлений, а также магнитных с электрическими. физический смысл, которым определяются эти уравнения, можно выразить следующими положениями:

  • если электрическое поле изменяется, то это изменение всегда сопровождается магнитным полем.
  • если магнитное поле изменяется, то это изменение всегда сопровождается электрическим полем.

Рис. 3. Возникновение вихревого магнитного поля

Что мы узнали?

Ученикам 11 класса необходимо знать, что электромагнитную индукцию впервые как явление обнаружил Майкл Фарадей. Он доказал, что электрическое и магнитное поле имеют общую природу. Самостоятельные исследования на основе опытов Фарадея также проводили такие великие деятели как Ленц и Максвелл, которые расширили наши познания в области электромагнитного поля.

8.8: Уравнение Максвелла-Фарадея — Engineering LibreTexts

В этом разделе мы обобщаем закон напряжения Кирхгофа (KVL), который ранее использовался как принцип электростатики в разделах 5.10 и 5.11. KVL утверждает, что в отсутствие изменяющегося во времени магнитного потока электрический потенциал, накопленный при прохождении замкнутого пути \ (\ mathcal {C} \), равен нулю. Вот эта идея в математической форме: \ [V = \ oint _ {\ mathcal {C}} {{\ bf E} \ cdot d {\ bf l}} = 0 \] Теперь вспомните закон Фарадея (раздел [m0055_Faradays_Law]) :

\ [V = — \ frac {\ partial} {\ partial t} \ Phi = — \ frac {\ partial} {\ partial t} \ int _ {\ mathcal {S}} {{\ bf B} \ cdot d {\ bf s}} \]

Здесь \ (\ mathcal {S} \) — любая открытая поверхность, которая пересекает все силовые линии магнитного поля, проходящие через \ (\ mathcal {C} \), с относительной ориентацией \ (\ mathcal {C} \) и \ (d {\ bf s} \) определяется обычным способом по соглашению теоремы Стокса.Обратите внимание, что закон Фарадея согласуется с KVL в магнитостатическом случае. Если магнитный поток постоянен, то закон Фарадея гласит \ (V = 0 \). Однако закон Фарадея очень четко не согласуется с KVL, если магнитный поток меняется во времени. Исправление достаточно простое; мы можем просто установить эти выражения равными. Поехали:

\ [\ boxed {\ oint _ {\ mathcal {C}} {{\ bf E} \ cdot d {\ bf l}} = — \ frac {\ partial} {\ partial t} \ int _ {\ mathcal {S }} {{\ bf B} \ cdot d {\ bf s}}} \ label {m0050_eMFEI} \]

Эта общая форма известна под разными именами; здесь мы называем его уравнением Максвелла-Фарадея (MFE).

Интегральная форма уравнения Максвелла-Фарадея (Equation \ ref {m0050_eMFEI}) утверждает, что электрический потенциал, связанный с замкнутым контуром \ (\ mathcal {C} \), полностью обусловлен электромагнитной индукцией в соответствии с законом Фарадея.

Несмотря на большое значение этого выражения как одного из уравнений Максвелла, можно возразить, что все, что мы сделали, — это просто написали закон Фарадея несколько более подробным образом. Это правда. Реальная мощность MFE высвобождается, когда она выражается в дифференциальной, а не в интегральной форме.Давайте теперь сделаем это.

Мы можем преобразовать левую часть уравнения \ ref {m0050_eMFEI} в интеграл по \ (\ mathcal {S} \), используя теорему Стокса. Применяя теорему Стокса слева, получаем

\ [\ int _ {\ mathcal {S}} {\ left (\ nabla \ times {\ bf E} \ right) \ cdot d {\ bf s}} = — \ frac {\ partial} {\ partial t} \ int _ {\ mathcal {S}} {{\ bf B} \ cdot d {\ bf s}} \]

Теперь меняем порядок интеграции и дифференцирования в правой части:

\ [\ int _ {\ mathcal {S}} {\ left (\ nabla \ times {\ bf E} \ right) \ cdot d {\ bf s}} = \ int _ {\ mathcal {S}} {\ left (- \ frac {\ partial} {\ partial t} {\ bf B} \ right) \ cdot d {\ bf s}} \]

Поверхность \ (\ mathcal {S} \) с обеих сторон одинакова, и мы никоим образом не ограничивали \ (\ mathcal {S} \).\ (\ mathcal {S} \) может быть любой математически допустимой открытой поверхностью в любом месте пространства, любого размера и любой ориентации. Единственный способ, которым приведенное выше выражение может быть универсально истинным в этих условиях, — это если подынтегральные выражения с каждой стороны равны в каждой точке пространства. Следовательно,

\ [\ boxed {\ nabla \ times {\ bf E} = — \ frac {\ partial} {\ partial t} {\ bf B}} \ label {m0050_eMFED} \]

, который является MFE в дифференциальной форме.

Что это значит? Напомним, что локон \ ({\ bf E} \) — это способ взять директиву \ ({\ bf E} \) относительно позиции (раздел 4.8). Следовательно, MFE ограничивает пространственные производные \ ({\ bf E} \) просто связанными со скоростью изменения \ ({\ bf B} \). Сказано прямо:

Дифференциальная форма уравнения Максвелла-Фарадея (Equation \ ref {m0050_eMFED}) связывает изменение электрического поля в зависимости от положения с изменением магнитного поля во времени.

Теперь, когда — это , возможно, новая и полезная информация. Теперь мы видим, что электрическое и магнитное поля связаны не только линейными интегралами и потоками, но и в каждой точке пространства.

Авторы и авторство

Магнетизм — Закон индукции Фарадея

Магнетизм — Закон индукции Фарадея — Физика 299

« Перестань говорить Богу, что делать с его кубиками. «

Нильс Бор
  • До сих пор мы рассматривали электричество и магнетизм как почти отдельные предметы.Теперь мы начинаем обсуждать явления, которые показать, что электричество и магнетизм неразрывно связаны, отсюда и термин электромагнетизм . Первое из этих свойств известен как Закон Фарадея Индукция .
Формально, время независимое электрические и магнитные свойства можно описать, рассматривая электричество и магнетизм как в значительной степени отдельные явления. Однако, когда зависимость от времени становится частью «уравнения» мы обнаруживаем, что электрические и магнитные свойства становятся неразрывно связаны — электромагнетизм.
  • Этот закон удобно записать в терминах магнитного потока, который определяется так же, как электрический поток.

где S — поверхность, по которой идет поток. оценен.

Для постоянного B, перпендикулярно поверхности, Φ B = BA, где A — площадь поверхности S.

Магнитный поток Φ B составляет важно, что у него есть собственная единица Вебера — 1 Вебер = 1 т.м 2 . В первые дни электромагнетизм было принято измерять магнитное ( B ) поле по Веберу / м 2 .

  • В терминах закона индукции Фарадея магнитного потока предоставлено,

Индуцированная электродвижущая сила ( ЭДС ) в цепи равна скорости изменения магнитного поток через цепь.

ЭДС не сила, скорее его можно рассматривать как напряжение , индуцированное в замкнутом контуре.

Фарадей экспериментально определил свой закон в изложенной выше форме.



  • Один из самых простых способов изменить магнитный поток через цепь — перемещать постоянный (стержневой) магнит к цепи или от нее, как показано на диаграммы ниже.

(а) Магнитный поток проходит по цепи, но не меняется со временем, поэтому нет наведенной ЭДС и, следовательно, нет индуцированной Текущий.

(б) Поток через контур увеличивается с увеличением время, вызывающее наведенную ЭДС и ток.

(c) По мере того, как магнит движется быстрее, скорость изменение потока со временем увеличивается, вызывая большее ЭДС и ток.

(d) Когда магнит удаляется от цепи поток уменьшается со временем, поэтому наведенная ЭДС и ток поменяны местами.


  • Причина изменения магнитного потока (поля) не ограничивается постоянными магнитами. В магнитное поле из-за второй цепи может производить аналогичный эффект, как описано в примерах ниже.
На диаграмме справа ток в левой цепи постоянный, но поток через другую цепь увеличивается как две цепи становятся ближе.

В положении слева оба контура стационарные. Течение в левая цепь изначально равна нулю, но быстро увеличивается до постоянного значения, когда переключатель находится в закрыто.Когда ток достигает своего финала (постоянное) значение потока через правую цепь увеличивается со временем, таким образом, по формуле Фарадея Закон, вызывающий кратковременный импульс индуцированного ток во второй цепи. Когда выключатель разомкнут поток в правой цепи быстро уменьшается, вызывая короткий индуцированный ток импульс в обратном направлении.


Мне сказали, что у меня кровь группы А, но это был Тип О.


Доктор К. Л. Дэвис
Физический факультет
Луисвиллский университет
электронная почта : [email protected]

Закон Фарадея, закон Ампера, закон Ленца и сила Лоренца

Работа электродвигателей регулируется различными законами электричества и магнетизма, включая закон индукции Фарадея, закон Ампера, закон Ленца и силу Лоренца.Первые два — закон Фарадея и закон Ампера — включены в уравнения Максвелла. Вместе с законом Ленца и силой Лоренца эти принципы составляют основу электромагнетизма.


Закон индукции Фарадея

Закон индукции Фарадея — это основной закон, по которому работают электродвигатели. Майкл Фарадей приписывают открытие индукции в 1831 году, но Джеймс Клерк Максвелл описал ее математически и использовал в качестве основы своей количественной электромагнитной теории в 1860-х годах.


Индуктивность — это свойство устройства, которое показывает, насколько эффективно оно индуцирует ЭДС в другом устройстве (или на самом себе).


Закон Фарадея обычно гласит, что в замкнутой катушке (контуре) провода изменение магнитной среды катушки вызывает в катушке напряжение или ЭДС (электродвижущую силу).

Изменение магнитной среды может быть вызвано изменением напряженности магнитного поля, перемещением магнита по направлению к катушке или от нее, перемещением катушки в магнитное поле или из него или вращением катушки в поле.

Индуцированная ЭДС равна отрицательной скорости изменения магнитного потока, умноженной на количество витков в катушке:

Где:

E = ЭДС (В)

N = количество витков в катушке

Φ = магнитный поток (Вебер, Вт)

t = время (с)


Обратите внимание, что магнитный поток равен среднему магнитному полю, B (тесла, или Вт / м 2 ), умноженному на площадь перпендикулярной поверхности катушки, которая проникает в магнитное поле, A (м 2 ).


Закон Ленца

Закон Ленца демонстрирует причину отрицательного знака в законе индукции Фарадея. Другими словами, закон Ленца объясняет , почему ЭДС, генерируемая в соответствии с законом Фарадея, отрицательна.

Обычный способ сформулировать закон Ленца: «Когда ЭДС генерируется изменением магнитного потока, полярность индуцированной ЭДС такова, что она генерирует ток, магнитное поле которого направлено в направлении, противоположном изменению, которое его вызвало. (исходное магнитное поле).То есть индуцированное магнитное поле всегда поддерживает постоянный магнитный поток.

Когда магнитный поток изменяется (ΔB), магнитное поле наведенной ЭДС (B Induced ) работает, чтобы противодействовать изменению.
Изображение предоставлено: К. Р. Нейв, Государственный университет Джорджии,

Закон Ленца аналогичен третьему закону Ньютона в механике, который гласит, что для каждого действия существует равная и противоположная реакция.


Сила Лоренца

Существуют разногласия по поводу того, была ли сила Лоренца первоначально получена Джеймсом Клерком Максвеллом или Оливером Хевисайдом, но, как правило, это Хевисайд.Хендрик Лоренц вывел современную форму уравнения в 1891 году.

Сила Лоренца — это сила, которую частица испытывает из-за электрического и магнитного полей. Электрические поля действуют на частицу независимо от того, движется она или нет, в то время как магнитные поля действуют только тогда, когда частица находится в движении. Комбинация сил электрического и магнитного полей определяется как:

Что упрощается до:

Где:

F = сила (Н)

q = частица заряда (кулон, Кл)

E = электрическое поле (N / C)

v = скорость перпендикулярно магнитному полю (м / с)

B = магнитное поле (тесла, Тл)

Поскольку ток — это, по сути, поток движущихся заряженных частиц, он также испытывает силу, обусловленную магнитным полем.В случае тока в магнитном поле уравнение силы Лоренца принимает следующий вид:

Где:

I = ток (А)

l = длина провода через поле (м)

Направление силы Лоренца определяется по правилу правой руки: большой палец направьте в направлении тока, первый палец — в направлении магнитного поля, а второй (средний) палец — в направлении тока. сила.


Окружной закон Ампера

Несмотря на свое название, круговой закон Ампера был выведен не Андре-Мари Ампера, а Джеймсом Клерком Максвеллом в 1860 году и является одним из уравнений Максвелла электромагнетизма. (Ампер сформулировал закон силы Ампера, который описывает силу притяжения или отталкивания между двумя токоведущими проводами.)

Магнитное поле действует на прямой провод, по которому течет ток. По закону движения Ампера напряженность магнитного поля может быть определена по формуле:

Где:

B = магнитное поле (Тл)

μ 0 = магнитная проницаемость воздуха, Т-м / А

I = ток (А)

r = расстояние от провода (м)

Когда провод представляет собой петлю, магнитное поле вызывает силу в одном направлении на одной стороне петли и в противоположном направлении на другой стороне петли.Это создает крутящий момент, который заставляет катушку вращаться. Обратите внимание, что при подаче постоянного тока катушка будет колебаться вперед и назад, но не будет совершать полных оборотов — это причина, по которой в двигателях постоянного тока используются коммутаторы. Двигатели, работающие на переменном токе (двигатели переменного тока), не имеют этой проблемы.

Изображение предоставлено: TutorVista.com

закон Фарадея

закон Фарадея
Следующая: Электрический скалярный потенциал? Up: Зависящие от времени уравнения Максвелла Предыдущая: Введение История развития физики человечеством можно рассматривать как историю синтеза идей.Физики продолжают находить, что очевидно несопоставимые явления можно понимать как разные аспекты некоторых более фундаментальное явление. Этот процесс продолжается до сегодняшнего дня. явления могут быть описаны в терминах трех фундаментальных сил: силы тяжести , силы тяжести
Электрослабая сила и сильная сила . Одна из главных целей современной физики состоит в том, чтобы найти способ объединить эти три силы, чтобы все физики можно описать в терминах единой объединенной силы.Этот, по сути, это цель теории струн.

Первый великий синтез идей в физике произошел в 1666 году, когда Исаак Ньютон понял, что сила, заставляющая яблоки падать вниз, такая же, как у сила, которая удерживает планеты на эллиптических орбитах вокруг Солнца. Секунда великий синтез, который мы собираемся изучить более подробно, произошел в 1830 г., когда Майкл Фарадей открыл, что электричество и магнетизм — это два аспекты одного и того же, обычно называемые электромагнетизм .Третий великий синтез, который мы обсудим в настоящее время произошло в 1873 году, когда Джеймс Клерк Максвелл продемонстрировал этот свет и электромагнетизм тесно связаны. Последний (но, надеюсь, не последний) великий синтез произошел в 1967 году, когда Стив Вайнберг и Абдус Салам показал, что электромагнитная сила и слабое ядерное взаимодействие (, то есть , которое отвечает за распады) можно комбинировать для создания электрослабой силы. К сожалению, работа Вайнберга выходит далеко за рамки этого курса лекций.

Давайте теперь рассмотрим эксперименты Фарадея, поместив их в надлежащее положение. исторический контекст. До 1830 года единственный известный способ изготовления электрического ток через проводник должен был соединить концы провода с положительное и отрицательное клеммы аккумуляторной батареи. Мы измеряем способность батареи передавать ток вниз по проводу с точки зрения его напряжения , под которым мы понимаем разницу напряжений между его положительным и отрицательным выводами. Чему соответствует напряжение в физику? Что ж, вольт — это единицы измерения электрического скалярного потенциала, поэтому, когда мы Говоря о батарее 6 В, мы действительно говорим о том, что разница в электрический скалярный потенциал между его положительным и отрицательным выводами составляет шесть вольт.Это понимание позволяет нам писать

(370)

где — напряжение аккумуляторной батареи, обозначает положительный полюс, отрицательный вывод, и является элементом длины вдоль провод. Конечно, приведенное выше уравнение является прямым следствием . Ясно, что разница напряжений между двумя концами провода прикрепленный к батарее подразумевает наличие электрического поля, которое проталкивает заряды через провод. Это поле направлено от положительной клеммы аккумулятора к отрицательной. терминал, и, следовательно, таков, что заставляет электроны течь через провод от отрицательного к положительному выводу.Как и ожидалось, это означает, что Чистая положительный ток течет от положительной клеммы к отрицательной. Дело в том, что — консервативное поле гарантирует, что разность напряжений не зависит от путь провода. Другими словами, два разных провода, подключенных к одной батарее развиваются одинаковые разности напряжений.

Давайте теперь рассмотрим замкнутый контур провода (без батареи). Напряжение вокруг такой петли, которую иногда называют электродвижущей силой . force или e.м.ф. , это

(371)

Это прямое следствие уравнения поля . Итак, поскольку это консервативное поле, то электродвижущая сила вокруг замкнутый контур провода автоматически равен нулю, и ток по проводу не течет. Кажется, все это имеет смысл. Однако Майкл Фарадей собирается бросить гаечный ключ в наших работах! В 1830 году он обнаружил, что изменяющееся магнитное поле может вызвать протекание тока по замкнутому шлейф провода (при отсутствии аккумулятора).Что ж, если по проводу течет ток, значит должен быть электродвигатель. сила. Так,
(372)

что сразу означает, что это не консервативная область, и что . Ясно, что нам придется изменить некоторые наших идей относительно электрических полей.

Фарадей продолжил свои эксперименты и обнаружил, что другой способ создания электродвижущей силы вокруг проволочной петли состоит в том, чтобы поддерживать постоянное магнитное поле и переместите петлю.В конце концов, Фарадей смог сформулировать закон, который объяснял все его эксперименты. Э.д.с. генерируется вокруг проволочной петли в магнитном поле, пропорционально скорость изменения потока магнитного поля через петлю. Так, если обозначена петля, и это некоторая поверхность, прикрепленная к петле, то фарадеевский эксперименты можно резюмировать, написав

(373)

где — коэффициент пропорциональности.Таким образом, изменяющийся поток магнитного поля через петлю создает электрическое поле, направленное вокруг петли. Этот процесс известен как магнитная индукция .

единиц S.I. были тщательно отобраны, чтобы приведенное выше уравнение. Единственное, что нам теперь нужно решить, это то, или . Другими словами, в каком направлении вокруг петли возникает наведенная ЭДС. хотите погонять ток? У нас есть общий принцип, который позволяет нам решать подобные вопросы.Это называется Принцип Ле-Шателье . Согласно принципу Ле Шателье, каждое изменение вызывает реакцию, которая пытается минимизировать изменение. По сути, это означает что Вселенная устойчива к малым возмущениям. Когда этот принцип применяется к частному случаю магнитная индукция, его обычно называют законом Ленца . По словам Ленца закон, ток, индуцированный вокруг замкнутого контура всегда такова, что создаваемое магнитное поле пытается противодействовать изменение магнитного потока, создающего электродвижущую силу.Из рис. 34 видно, что если магнитное поле увеличивается, и ток циркулирует по часовой стрелке (как видно сверху), затем он создает поле, которое противодействует увеличению магнитного потока через петлю, в в соответствии с законом Ленца. Направление тока противоположно смысл токовой петли (при условии, что поток через петля положительна), так что это означает, что в уравнении. (373). Таким образом, фарадеевский закон принимает форму

(374)

Рисунок 34:

Экспериментально установлено, что закон Фарадея правильно предсказывает e.м.ф. (, т.е. , ) генерируется в любом проводном шлейфе, независимо от положение или форма петли. Резонно предположить, что та же ЭДС. было бы генерируется в отсутствие провода (конечно, ток не будет течь в этом случае). Таким образом, уравнение. (374) действительно для любого замкнутого контура. Если Фарадея закон должен иметь какой-то смысл, тогда он также должен быть верным для любой поверхности, прикрепленной к петля . Ясно, что если поток магнитного поля через петлю зависит от поверхность, на которой это оценивается, то закон Фарадея будет предсказывать разные е.m.f.s для разных поверхностей. Поскольку нет предпочтительной поверхности для обычная некопланарная петля, это не имело бы особого смысла. Состояние для потока магнитного поля, , зависеть только на петле, к которой прикреплена поверхность, а не на натуре самой поверхности, является

(375)

для любой закрытой поверхности.

Закон Фарадея, Ур. (374), можно преобразовать в уравнение поля, используя Теорема Стокса.Мы получаем

(376)

Это последнее уравнение Максвелла. Он описывает, как изменяющееся магнитное поле может генерировать или индуцировать электрическое поле. Теорема Гаусса применяется к уравнению. (375) дает знакомое уравнение поля
(377)

Это гарантирует, что магнитный поток через петлю является четко определенной величиной.

Расхождение уравнения.(376) дает

(378)

Таким образом, уравнение поля (376) фактически требует, чтобы дивергенция магнитное поле должно быть постоянным во времени для самосогласования (это означает что поток магнитного поля через петлю не обязательно должен быть четко определенным количество, пока его производная по времени хорошо определена). Однако постоянная несоленоидное магнитное поле может быть создано только магнитными монополями, а магнитных монополей не существует (насколько нам известно).Следовательно, . Отсутствие магнитных монополей это факт наблюдения: его не может предсказать никакая теория. Если завтра будут открыты магнитные монополи, это не вызовет у физиков какие-то проблемы. Мы знаем, как обобщить уравнения Максвелла, чтобы включить как магнитные монополи, так и токи магнитных монополей. В этом обобщенном формализма, уравнения Максвелла полностью симметричны относительно электрические и магнитные поля, и . Тем не мение, к правая часть уравнения.(376), чтобы сделать его самосогласованным.

Следующая: Электрический скалярный потенциал? Up: Зависящие от времени уравнения Максвелла Предыдущая: Введение
Ричард Фицпатрик 2006-02-02

Уравнения Максвелла: определение, вывод, как запоминать (с примерами)

Решение загадок электромагнетизма было одним из величайших достижений физики на сегодняшний день, и извлеченные уроки полностью отражены в уравнениях Максвелла.

Джеймс Клерк Максвелл дал свое имя этим четырем элегантным уравнениям, но они являются кульминацией десятилетий работы многих физиков, в том числе Майкла Фарадея, Андре-Мари Ампера и Карла Фридриха Гаусса, которые дали свои имена трем из четырех уравнений. — и многие другие. Хотя сам Максвелл добавил член только к одному из четырех уравнений, у него хватило дальновидности и понимания, чтобы собрать самые лучшие работы, которые были выполнены по этой теме, и представить их в том виде, который используется физиками сегодня.

В течение многих-многих лет физики считали электричество и магнетизм отдельными силами и разными явлениями. Но благодаря экспериментальной работе таких людей, как Фарадей, становилось все более ясно, что они на самом деле были двумя сторонами одного и того же явления, и уравнения Максвелла представляют эту единую картину, которая по-прежнему актуальна сегодня, как и в 19 веке. Если вы собираетесь изучать физику на более высоком уровне, вам абсолютно необходимо знать уравнения Максвелла и то, как их использовать. 2} \ frac {∂} {∂t} \ int \ bm {E ∙} d \ bm {A}

Символы, используемые в уравнениях Максвелла

В уравнениях Максвелла используется довольно большой набор символов, и это важно, чтобы вы Поймите, что они означают, если вы собираетесь научиться их применять.Итак, вот краткое изложение значений используемых символов:

ρ = плотность электрического заряда

ε 0 = диэлектрическая проницаемость свободного пространства = 8,854 × 10 -12 м -3 кг -1 с 4 A 2

q = общий электрический заряд (чистая сумма положительных и отрицательных зарядов)

𝜙 B = магнитный поток

Дж = плотность тока

I = электрический ток

c = скорость света = 2.998 × 10 8 м / с

μ 0 = проницаемость свободного пространства = 4π × 10 −7 Н / Д 2

Кроме того, важно знать, что ∇ — это оператор del, точка между двумя величинами ( X Y ) показывает скалярное произведение, жирный символ умножения между двумя величинами представляет собой векторное произведение ( X × Y ), что оператор del с точкой называется «дивергенцией» (напр.g., ∇ ∙ X = расхождение X = div X ), а оператор del со скалярным произведением называется curl (например, ∇ × Y = изгиб Y = изгиб Y ). Наконец, A in d A означает площадь закрытой поверхности, для которой вы рассчитываете (иногда записывается как d S ), а s в d s — очень маленькая часть границы открытой поверхности, которую вы рассчитываете (хотя иногда это d l , имея в виду бесконечно малую компонент линии).

Вывод уравнений

Первое уравнение уравнений Максвелла — это закон Гаусса, который утверждает, что чистый электрический поток через замкнутую поверхность равен полному заряду, содержащемуся внутри формы, деленному на диэлектрическую проницаемость свободного пространства. . Этот закон может быть выведен из закона Кулона после того, как будет сделан важный шаг по выражению закона Кулона в терминах электрического поля и его влияния на пробный заряд.

Второе уравнение Максвелла по существу эквивалентно утверждению, что «магнитных монополей не существует.Он утверждает, что чистый магнитный поток через замкнутую поверхность всегда будет равен 0, потому что магнитные поля всегда являются результатом действия диполя. Этот закон можно вывести из закона Био-Савара, который описывает магнитное поле, создаваемое элементом тока.

Третье уравнение — закон индукции Фарадея — описывает, как изменяющееся магнитное поле создает напряжение в петле из проволоки или проводника. Первоначально он был получен в результате эксперимента. Однако, учитывая результат, заключающийся в том, что изменяющийся магнитный поток индуцирует электродвижущую силу (ЭДС или напряжение) и, следовательно, электрический ток в проволочной петле, а также тот факт, что ЭДС определяется как линейный интеграл электрического поля вокруг цепи, закон легко собрать.

Четвертое и последнее уравнение, закон Ампера (или закон Ампера-Максвелла, чтобы отдать ему должное за его вклад) описывает, как магнитное поле создается движущимся зарядом или изменяющимся электрическим полем. Закон является результатом эксперимента (и поэтому — как и все уравнения Максвелла — на самом деле не был «выведен» в традиционном смысле), но использование теоремы Стокса является важным шагом на пути к получению основного результата в форма используется сегодня.

Примеры уравнений Максвелла: закон Гаусса

Откровенно говоря, особенно если вы не совсем разбираетесь в своем векторном исчислении, уравнения Максвелла выглядят довольно устрашающе, несмотря на то, насколько все они относительно компактны.Лучший способ по-настоящему понять их — рассмотреть несколько примеров их использования на практике, и закон Гаусса — лучшее место для начала. Закон Гаусса — это, по сути, более фундаментальное уравнение, которое выполняет работу закона Кулона, и из него довольно легко вывести закон Кулона, рассматривая электрическое поле, создаваемое точечным зарядом. 2 = \ frac {q} {ε_0}

Обратите внимание, что Вместо E для электрического поля используется простая величина, потому что поле точечного заряда будет просто равномерно распространяться во всех направлениях от источника.2}

Где нижние индексы добавлены для различения двух сборов. Это закон Кулона, сформулированный в стандартной форме, который является простым следствием закона Гаусса.

Примеры уравнений Максвелла: Закон Фарадея

Закон Фарадея позволяет вычислить электродвижущую силу в петле из проволоки, возникающую в результате изменения магнитного поля. Простым примером является проволочная петля с радиусом r = 20 см в магнитном поле, величина которого увеличивается от B i = 1 T до B f = 10 Тл в пространстве ∆ t = 5 с — какова наведенная ЭДС в этом случае? Интегральная форма закона включает поток:

\ int \ bm {E ∙} d \ bm {s} = — \ frac {∂ \ phi_B} {∂t}

ϕ = BA \ cos (θ)

Ключевой частью проблемы здесь является определение скорости изменения потока, но поскольку проблема довольно проста, вы можете заменить частную производную простым «изменением» каждой величины. 2} {∆t} \\ & = — \ frac {(10 \ text {T} — 1 \ text {T}) × π × (0.2} {5 \ text {s}} \\ & = — 0,23 \ text {V} \ end {align}

Это всего лишь небольшое напряжение, но закон Фарадея применяется одинаково независимо.

Примеры уравнений Максвелла: Закон Ампера-Максвелла

Закон Ампера-Максвелла — последнее из уравнений Максвелла, которое вам необходимо применять на регулярной основе. Уравнение возвращается к закону Ампера в отсутствие изменяющегося электрического поля, так что это самый простой пример для рассмотрения. Вы можете использовать его, чтобы вывести уравнение для магнитного поля, возникающего из-за прямого провода, по которому течет ток I , и этого базового примера достаточно, чтобы показать, как используется уравнение.2} \ frac {∂} {∂t} \ int \ bm {E ∙} d \ bm {A}

Но без изменения электрического поля оно уменьшается до:

\ int \ bm {B ∙} d \ bm {s} = μ_0 I

Теперь, как и в случае с законом Гаусса, если вы выберете круг для поверхности с центром на проволочной петле, интуиция подсказывает, что результирующее магнитное поле будет симметричным, и поэтому вы можете заменить интеграл с простым произведением длины окружности петли и напряженности магнитного поля, получаем:

B × 2πr = μ_0 I

Деление на 2π r дает:

B = \ frac {μ_0 I} { 2πr}

Что является общепринятым выражением для магнитного поля на расстоянии r , возникающего от прямого провода, по которому проходит ток.

Электромагнитные волны

Когда Максвелл собрал свою систему уравнений, он начал находить их решения, чтобы помочь объяснить различные явления в реальном мире, и понимание, которое она дала в свете, является одним из самых важных результатов, которые он получил.

Поскольку изменяющееся электрическое поле создает магнитное поле (по закону Ампера), а изменяющееся магнитное поле создает электрическое поле (по закону Фарадея), Максвелл пришел к выводу, что самораспространяющаяся электромагнитная волна может быть возможна.Он использовал свои уравнения, чтобы найти волновое уравнение, описывающее такую ​​волну, и определил, что она будет двигаться со скоростью света. Это был своего рода момент «эврики»; он понял, что свет — это форма электромагнитного излучения, работающая точно так же, как поле, которое он себе представлял!

Электромагнитная волна состоит из волны электрического поля и волны магнитного поля, колеблющейся взад и вперед, выровненных под прямым углом друг к другу. Колебания электрической части волны создают магнитное поле, а колебания этой части, в свою очередь, снова создают электрическое поле, продолжающееся и продолжающееся по мере того, как оно движется в пространстве.

Как и любая другая волна, электромагнитная волна имеет частоту и длину волны, и их произведение всегда равно c , скорости света. Электромагнитные волны окружают нас повсюду, и, помимо видимого света, волны других длин обычно называют радиоволнами, микроволнами, инфракрасными, ультрафиолетовыми, рентгеновскими и гамма-лучами. Все эти формы электромагнитного излучения имеют одну и ту же основную форму, как объясняется уравнениями Максвелла, но их энергии меняются в зависимости от частоты (т.е., более высокая частота означает более высокую энергию).

Итак, для физика Максвелл сказал: «Да будет свет!»

Уравнения Максвелла

Уравнения электромагнетизма Максвелла

Уравнения Максвелла — это набор из четырех уравнений, которые описывают поведение электрических и магнитных полей и их взаимосвязь. В конечном итоге они демонстрируют, что электрическое и магнитное поля — два проявления одного и того же явления.

В вакууме без заряда или тока уравнения Максвелла имеют дифференциальную форму:

· E = 0

· B = 0

∇ x E = — ( B / т)

∇ x B = µ 0 ε 0 ( E / т)

где E и E — электрическое поле и плотность магнитного потока, а ∇ · и ∇ × — операторы дивергенции и ротора соответственно.Переменные µ 0 и ε 0 являются фундаментальными универсальными константами, называемыми проницаемостью свободного пространства и диэлектрической проницаемостью свободного пространства соответственно. В вакууме без электрических зарядов математические решения этих дифференциальных уравнений представляют собой плоские синусоидальные волны с электрическим полем и магнитными полями, перпендикулярными друг другу и направлению движения, имеющими скорость

, где распознается c . как скорость света.

Уравнения Максвелла — это макроскопические выражения; они применяются к средним полям и не включают квантовые эффекты.

Уравнения Максвелла: общая форма

В самом общем виде уравнения Максвелла могут быть записаны как

· D = ρ (закон электричества Гаусса)

∇ · B = 0 (закон Гаусса) магнетизма)

∇ x E = — (∂ B / ∂t) (закон индукции Фарадея)

∇ x H = Дж + ∂ D / ∂t (закон Ампера)

В первом уравнении ρ — плотность свободного электрического заряда.В последнем уравнении Дж — это плотность свободного тока.

Для линейных материалов отношения между E , D , B и H составляют

D = ε E

B = µ H Здесь

ε — электрическая проницаемость, µ — магнитная проницаемость. Для нелинейных материалов e и µ зависят от напряженности поля. В изотропных средах e и µ не зависят от положения.В неизотропных средах e и µ можно описать как матрицы 3 × 3, которые представляют различные значения диэлектрической проницаемости и проницаемости вдоль различных пространственных осей среды. Во всех средах e и µ также меняются в зависимости от частоты излучения.

Чтобы соответствовать уравнениям Максвелла, величины векторов электрического и магнитного полей должны удовлетворять следующему соотношению:

Таким образом, в электромагнитном излучении вектор электрического поля имеет гораздо большую амплитуду, чем вектор магнитного поля.

Основы индукции

Опираясь на работы других, в частности Хамфри Дэви, Ганса Кристиана Эрстеда и Алессандро Вольта, английский исследователь Майкл Фарадей сформулировал свой Закон электромагнитной индукции. Этот самый основной из всех законов, управляющих электромагнетизмом, определяет количественно взаимодействие магнитного поля и электрической цепи, производящее электродвижущую силу (ЭДС) или, на современном языке техников и исследователей, напряжение.

В аппарате с железным кольцом Фарадея изменение магнитного потока левой катушки индуцирует ток в правой катушке.

Джозеф Генри в Америке независимо открыл то же явление в 1832 году, но поскольку Фарадей первым опубликовал свои открытия, ему обычно приписывают открытие электромагнитной индукции. Закон, носящий его имя, можно сформулировать просто: Индуцированная ЭДС в замкнутой электрической цепи равна отрицательной скорости изменения магнитного потока, заключенного в цепи. Это утверждение не является универсальным, однако строго применяется только тогда, когда электрическая цепь состоит из бесконечно тонкого проводника.

Закон индукции Фарадея. Здесь ε — электродвижущая сила, а Φ B — магнитный поток. Уравнение Максвелла – Фарадея обобщает закон Фарадея. Здесь ∇ — оператор ротора, E — электрическое поле, B — магнитное поле. Эти поля обычно могут быть функциями положения и времени. Интегральная форма уравнения Максвелла-Фарадея, где Σ — поверхность, ограниченная замкнутым контуром ∂Σ, dℓ — бесконечно малый векторный элемент контура ∂Σ, dA — бесконечно малый вектор элемент поверхности Σ.

Джеймс Клерк Максвелл в 1861 году внес поправки, обобщения и включения закона индукции Фарадея в третье уравнение электромагнетизма Максвелла, согласно которому изменяющееся во времени магнитное поле всегда сопровождается пространственно-изменяющимся неконсервативным электрическим полем (генератором) и временем — изменяющееся электрическое поле всегда сопровождается изменяющимся в пространстве неконсервативным магнитным полем (электродвигатель).

Фарадей был глубоко религиозным человеком с сильным этичным чувством. Он происходил из небогатой семьи и получил минимальное формальное образование.В его сознательной социальной среде ему приходилось бороться, чтобы обеспечить себе жизнь. В конце концов его усердие и мощный интеллект были широко признаны, и он получил множество наград. В конце жизни к нему обратилось британское правительство с просьбой помочь в производстве химического оружия, которое будет использовано в Крымской войне. Фарадей отклонил это предложение по этическим соображениям.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *