биография, годы жизни. Что изобрел Джон Непер?

Джон Непер (фото его портрета размещено далее в статье) – шотландский математик, писатель и богослов. Получил известность благодаря созданию концепции логарифмов как математического аппарата для помощи в расчетах.

Джон Непер: биография

Родился в 1550 году в Мерчистон-Касле, близ Эдинбурга (Шотландия), в семье сэра Арчибальда Непера и Дженет Ботуэлл. В возрасте 13 лет Джон поступил в университет Сент-Андруса, но его пребывание там, вероятно, было кратковременным, и он остался без высшего образования.

О ранней жизни Непера мало известно, но полагают, что он ездил за границу, как было принято у отпрысков шотландской знати. Достоверно известно, что к 1571 году он уже вернулся домой и провел всю оставшуюся жизнь либо в Мерчистоне, либо в Гартнессе. В следующем году Джон Непер взял себе в жены Элизабет Стирлинг, которая родила сына и дочь. Через несколько лет после смерти жены в 1579 г. Непер женился на ее родственнице Агнес. Второй брак принес супружеской паре десятерых, дочерей и сыновей поровну. После смерти отца Непера в 1608 году он и его семья переехали в замок Мерчистон в Эдинбурге, где оставался до конца своих дней.

Богословие и изобретательство

Жизнь Джона Непера проходила среди во время острых религиозных распрей. Страстный и бескомпромиссный протестант в отношениях с римской церковью, он не искал милостей и не занимался благотворительностью. Хорошо известно, что король Шотландии Джеймс VI надеялся на восшествие Елизаветы I на английский престол, и было подозрение, что он искал помощи католика Филиппа II, короля Испании, чтобы эта цель была достигнута. Общее собрание шотландской церкви, с которой Непер был тесно связан, просило короля бороться с католиками, и Джон трижды становился членом комитета, который отчитывался королю о благосостоянии церкви и убеждал его в том, что необходимо учинить справедливость против врагов церкви Божией.

Письмо королю

В январе 1594 года Джон Непер обратился к королю Шотландии с письмом, в котором было сформулировано его «Простое объяснение всего откровения святого Иоанна». Работа, которая должна была носить строго научный характер, была рассчитана на то, чтобы оказать влияние на современные события. В ней Непер писал: «Пусть преобразование всеобщей чудовищности вашей страны станет постоянной заботой Вашего Величества, и, в первую очередь, Вашего Величества собственного дома, семейства и суда, а также очищение их ото всех подозрений в папизме, атеизме и нейтралитете, о которых это Откровение предсказывает, что число их должно значительно возрасти в эти последние дни».

Произведение занимает видное место в шотландской церковной истории.

Разработка оружия

После публикации «Простого объяснения» он, похоже, занялся созданием тайных орудий войны. Коллекция рукописей, теперь хранящаяся в Ламбетском дворце в Лондоне, содержит документ, который подписал Джон Непер. Что изобрел шотландский математик понятно из перечня различных устройств, созданных «милостью Божией и трудом мастеров» для защиты своей страны. Среди них –два вида зажигательных зеркал, часть артиллерийского орудия и металлическая колесница, из которой можно производить выстрелы через маленькие отверстия.

Вклад в математику

Джон Непер годы жизни посвятил изучению математики, в частности, созданию методов облегчения вычислений, известнейшим из которых является метод логарифмов, который сегодня носит имя его создателя. Он начал работать над ним, вероятно, уже в 1594 году, постепенно разрабатывая свою вычислительную систему, в которой корни, произведения и частное от деления чисел можно быстро вычислить с помощью таблиц степеней фиксированного числа, используемого в качестве основания.

Его вклад в этот мощный математический инструмент изложен в двух трактатах: Mirifici Logarithmorum Canonis Descriptio («Описание чудесных канонов логарифмов»), опубликованном в 1614 году, а также Mirifici Logarithmorum Canonis Constructio («Создание чудесных канонов логарифмов»), который был напечатан через два года после смерти автора. В первой работе шотландский математик описал шаги, которые привели к его изобретению.

Упрощение вычислений

Логарифмы должны были упростить вычисления, в частности умножение, которое было необходимым для астрономии. Непер обнаружил, что основой для этого расчета были отношения между арифметической прогрессией – последовательностью чисел, каждое из которых вычисляется путем геометрической прогрессии из предшествующего умножением его на постоянный коэффициент, превышающий 1 (например, последовательность 2, 4, 8, 16...), или меньше 1 (например, 8, 4, 2, 1, 1/2...).

В Descriptio, помимо описания характера логарифмов, Джон Непер ограничился перечислением сферы их использования. Он пообещал объяснить способ их построения в более поздней работе. Ею была Constructio, которая заслуживает внимания систематическим использованием десятичной точки для отделения дробной части чисел от целой. Десятичные дроби уже были представлены фламандским инженером и математиком Симоном Стевином в 1586 году, но его нотация была громоздкой. В Constructio часто встречается использование в качестве разделителя точки. Швейцарский математик Юст Бюрги в 1603–1611 годах независимо от шотландского математика изобрел собственную систему логарифмов, которую опубликовал в 1620 г. Но Непер работал над ними раньше Бюрги и приоритет был отдан ему благодаря более ранней дате публикации в 1614 году.

Рабдология и тригонометрия

Хотя изобретение Джоном Непером логарифмов затмевает все другие его работы, ими его вклад в математику не ограничился. В 1617 году он опубликовал свою Rabdologiae, seu Numerationis per Virgulas Libri Duo («Рабдология, или Две книги счета с помощью палочек», 1667), в которой он описал оригинальные методы умножения и деления небольшими продолговатыми стержнями, разделенными поперечными линиями на 9 квадратов с нанесенными на них цифрами. Эти приспособления для счета, известные как палочки Непера, были предтечей логарифмической линейки.

Он также внес важный вклад в сферическую тригонометрию, в частности за счет уменьшения числа уравнений, используемых для выражения тригонометрических отношений, с десяти до двух. Ему также приписывают тригонометрические формулы аналогии Непера, но вполне вероятно, что английский математик Генри Бриггс также участвовал в их составлении.

Умер Джон Непер 4 апреля 1617 года в Мерчистон-Касле.

fb.ru

Непер, Джон — Википедия. Что такое Непер, Джон

У этого термина существуют и другие значения, см. Непер.

Джон Не́пер (англ. John Napier ['neɪpɪə][4]; 1550—1617) — шотландский математик, один из изобретателей логарифмов, первый публикатор логарифмических таблиц, астроном. 8-й лэрд Мерчистона.

Биография

Подробности жизни учёного известны главным образом из книги «Биография Джона Непера из Мерчистона, его родословная, жизнь и время, с историей изобретения логарифмов», написанной его дальним потомком Марком Непером (1798—1879)[5].

6-й лэрд Александр Непер, дед учёного, погиб в трагической для шотландцев битве при Пинки (1547 год), и замок перешёл к его старшему сыну, 14-летнему Арчибальду (1534—1608). Спустя два года Арчибальд Непер женился на Дженет Босуэлл, Их сын Джон Непер появился на свет в 1550 году в родовом замке Мерчистон, который его предки воздвигли в XV веке. Замок (строго говоря, башня) защищал юго-западные окрестности Эдинбурга. После Джона в семье родились ещё двое детей — младший сын Фрэнсис и дочь Дженет. Отец Арчибальд был образованным человеком, хорошо знал латынь, с 1576 года руководил финансами Шотландии (в должности «Мастер Монетного двора»)[6].

Мерчистон, родовой замок Джона Непера

В декабре 1563 года неожиданно умерла мать, Дженет Непер. Отец решил отправить 13-летнего Джона в Сент-Эндрюсский университет. Закончив обучение, Непер совершил путешествие по Германии, Франции и (возможно) Италии. Некоторые историки предполагают, что в ходе путешествия Непер продолжал своё обучение, в частности, он мог общаться с такими крупными учёными, как Симон Стевин, Франсуа Виет и Михаэль Штифель

[7].

Непер вернулся на родину в 1571 году, поселился в своем родном замке и затем уже никогда не оставлял Шотландии. В 1572 году он женился на Элизабет Стирлинг, у них родились сын Арчибальд и дочь Джоан. В 1579 году Элизабет умерла, и Непер женился вторично на её троюродной сестре Агнес. Во втором браке у него родились десять детей — пять сыновей и пять дочерей[8].

Как раз в этот период (1560 год) в Шотландии после ожесточённой борьбы совершилась протестантская Реформация. Страна переживала религиозный подъём, противостоя одновременно попыткам католической реставрации и давлению соседней англиканской церкви. Непер, искренне верующий пуританин, посвящал всё своё время занятиям богословием, астрологией и связанными с последней математическими расчётами. По его собственным словам, истолкование библейских пророчеств всегда составляло главный предмет его занятий, математика же служила для него только отдыхом

[9].

Тем не менее Непер вошёл в историю как изобретатель замечательного вычислительного инструмента — логарифмов. Это открытие вызвало гигантское облегчение труда вычислителя. Кроме того, оно привело к появлению новой трансцендентной функции и показало пример решения дифференциального уравнения. Лаплас говорил, что Непер своим изобретением «продлил жизнь астрономов», упростив и ускорив их вычисления[10].

В 1588 году Джон Непер был избран делегатом шотландского парламента (Генерального Собрания) от эдинбургской пресвитерианской общины[11].

В начале 1617 года Непер тяжело заболел и 4 апреля скончался.

Память

В честь Джона Непера названы:

Открытие логарифмов

Потребность в сложных расчётах в XVI веке быстро росла. Значительная часть трудностей была связана с умножением и делением многозначных чисел. В ходе тригонометрических расчётов, Неперу пришла в голову идея: заменить трудоёмкое умножение на простое сложение, сопоставив с помощью специальных таблиц геометрическую и арифметическую прогрессии, при этом геометрическая будет исходной. Тогда и деление автоматически заменяется на неизмеримо более простое и надёжное вычитание

[12].

Можно с большой вероятностью предполагать, что Непер был знаком с книгой «Arithmetica integra» Михаэля Штифеля, в которой нашла своё выражение идея логарифма: сопоставить умножению в одной шкале (базовой) сложение в другой шкале (логарифмической). Штифель, впрочем, не приложил серьёзных усилий для реализации своей идеи[13].

В 1614 году Непер опубликовал в Эдинбурге сочинение под названием «Описание удивительной таблицы логарифмов» (лат. Mirifici Logarithmorum Canonis Decriptio, 56 страниц текста и 90 страниц таблиц). Там было краткое описание логарифмов и их свойств, а также семизначные таблицы логарифмов синусов, косинусов и тангенсов для углов от 0° до 90°, с шагом 1'. Немного позже и независимо от Непера таблицу логарифмов опубликовал швейцарский математик Йост Бюрги, однако таблицы Непера были практичнее и удобнее в пользовании[13].

В предисловии к этой книге Непер писал[14]:

Убедившись в том, что нет ничего другого… что вызывало бы бо́льшие трудности в математической практике, а также мешало и досаждало бы вычислителям, чем умножение, деление, извлечение квадратных и кубических корней, каковые операции помимо утомительной траты времени являются основным источником многочисленных ошибок, я начал размышлять над тем, каким надёжным и лёгким способом я мог бы устранить эти препятствия. И, обдумывая различные средства, пригодные для достижения этой цели, я, наконец, нашёл замечательные короткие правила, которыми можно будет пользоваться в дальнейшем. Среди всех этих правил нет более полезных, чем те, что… исключают из вычислений числа, которые должны быть перемножены, разделены или превращены в корни, и на их месте ставят другие числа, с помощью которых все вычисления выполняются только сложением, вычитанием или делением на два или три.

Сочинение Непера разделено на 2 книги, из которых первая посвящена логарифмам, а вторая — плоской и сферической тригонометрии, причём вторая часть одновременно служит практическим пособием по первой. Более развёрнутое описание содержалось в другом труде, изданном посмертно его сыном; там же Непер пояснил, как он составлял свои таблицы. Понятия функции тогда ещё не было, и Непер определил логарифм кинематически, сопоставив равномерное и логарифмически-замедленное движение. В современной записи модель Непера можно изобразить дифференциальным уравнением:

dx/x = −dy/M, где M — масштабный множитель, введённый для того, чтобы значение получилось целым числом с нужным количеством знаков (десятичные дроби тогда ещё не нашли широкого применения). Непер взял M = 10000000[15].

Титульный лист «Рабдологии», 1617

Строго говоря, Непер табулировал не ту функцию, которая сейчас называется логарифмом. Если обозначить его функцию LogNap(x), то она связана с натуральным логарифмом (ln) следующим образом[16]:

LogNap⁡(x)=M×(ln⁡(M)−ln⁡(x)){\displaystyle \operatorname {LogNap} (x)=M\times (\ln(M)-\ln(x))}

Очевидно, LogNap(M) = 0, то есть логарифм «полного синуса» есть нуль — этого и добивался Непер своим определением. LogNap(0) = ∞.

Основное свойство логарифма Непера: если величины образуют геометрическую прогрессию, то их логарифмы образуют прогрессию арифметическую. Однако правила логарифмирования для неперовой функции отличались от правил для современного логарифма[16].

Например, LogNap(ab) = LogNap(a) + LogNap(b) − LogNap(1).

Все значения таблицы Непера, как оказалось, содержали вычислительную ошибку после шестого знака. Однако это не помешало новой методике вычислений получить широчайшую популярность, составлением и уточнением логарифмических таблиц занялись многие европейские математики, включая Кеплера. Книга Непера переиздавалась 5 раз и была переведена на многие языки мира[17].

В 1615 году Непера посетил оксфордский профессор математики Генри Бригс. Непер уже был болен, поэтому не смог усовершенствовать свои таблицы, однако дал Бригсу рекомендации видоизменить определение логарифма, приблизив его к современному. Бригс опубликовал свои таблицы в год смерти Непера (1617). Они уже включали десятичные, а не натуральные, логарифмы, и не только синусов, но и самих чисел (от 1 до 1000, с 14 знаками). Логарифм единицы теперь, как положено, был равен нулю. Но и в таблицах Бригса обнаружились ошибки. Первое безошибочное издание на основе таблиц Георга Веги появилось только в 1857 году в Берлине (таблицы Бремикера)[17].

В 1620-е годы Эдмунд Уингейт и Уильям Отред изобрели первую логарифмическую линейку, до появления карманных калькуляторов — незаменимый инструмент инженера[18].

Современное определение логарифмирования — как операции, обратной возведению в степень — впервые появилось у Валлиса и Иоганна Бернулли, а окончательно было узаконено Эйлером в XVIII веке. Эйлеру принадлежит и заслуга распространения логарифмической функции на комплексную область[17].

Другие области деятельности

Немалую популярность получил придуманный Непером оригинальный прибор для быстрого умножения — палочки Непера. Важным вкладом в сферическую тригонометрию стали открытые им «формулы аналогии Непера»[19]. В указанном выше сочинении 1614 года Непер сформулировал метод упрощённого получения всех основных соотношений в прямоугольном сферическом треугольнике, математически обоснованный в 1765 году с помощью звёздчатого пятиугольника Ламбертом и ныне известный в сферической тригонометрии как мнемоническое правило Непера[20]. Непер изобрёл также гидравлический винтовой насос оригинальной конструкции для выкачивания воды из угольных шахт, который запатентовал в 1597 году[21].

Помимо математики, Непер занимался астрономией, астрологией и богословием. Его толкование Апокалипсиса: «Простое объяснение всех откровений св. Иоанна» (A plaine discovery of the whole revelation of S. John etc.) вышло в Эдинбурге, в 1593 году (последнее издание при жизни автора — Лондон, 1611). Оно написано в математической форме, то есть с разделением содержания на теоремы и доказательства. В частности, 26-я теорема утверждала, что папа есть Антихрист, 36-я — что упоминаемая в Апокалипсисе саранча означает турок и арабов. Конец света, как доказал автор, должен иметь место между 1688 и 1700 годами. Книга имела несравненно больший успех, чем все научные произведения автора. Появилось несколько её переводов в Германии, а французский, изданный в протестантской тогда Ла-Рошели, выдержал два издания (в 1662-м и 1665-м годах). В Англии после смерти Непера вышло ещё несколько изданий этой работы[13][22].

Труды

  • (1593) Простое объяснение всех откровений св. Иоанна (A Plaine Discovery of the Whole Revelation of St. John). Толкование Апокалипсиса.
  • (1614) Описание удивительной таблицы логарифмов (Mirifici logarithmorum canonis descriptio). В1616 году переведена на английский. Кроме логарифмов, трактат содержит описание тригонометрических открытий Непера, включая мнемоническое правило Непера и формулы аналогии Непера.
  • (1617) Рабдология (Rabdologiæ seu Numerationis per Virgulas libri duo). Этот и следующий труд изданы посмертно сыном Непера, Робертом. В «Рабдологии» описаны несколько изобретений, облегчающих вычисления, в том числе палочки Непера.
  • (1619) Построение удивительной таблицы логарифмов (Mirifici logarithmorum canonis constructio). Подробно разъясняет технологию расчёта логарифмических таблиц. Написано ранее, чем Описание 1614 года, но при жизни Непер воздерживался от публикации.
  • (1839) Искусство логистики (De arte logistica). Издано посмертно дальним потомком Непера, Марком. Под логистикой Непер понимал искусство вычислений.

Примечания

  1. 1 2 data.bnf.fr: платформа открытых данных — 2011.
  2. 1 2 Архив по истории математики Мактьютор
  3. ↑ SNAC
  4. ↑ Napier на сайте Dictionary.com
  5. ↑ Гутер Р. С., Полунов Ю. Л., 1980, с. 6.
  6. ↑ Гутер Р. С., Полунов Ю. Л., 1980, с. 18, 26.
  7. ↑ Гутер Р. С., Полунов Ю. Л., 1980, с. 35.
  8. ↑ Гутер Р. С., Полунов Ю. Л., 1980, с. 44.
  9. ↑ Гутер Р. С., Полунов Ю. Л., 1980, с. 56—62.
  10. Швецов К. И., Бевз Г. П. Справочник по элементарной математике. Арифметика, алгебра. Киев: Наукова Думка, 1966. §40. Исторические сведения о логарифмах и логарифмической линейке.
  11. ↑ Гутер Р. С., Полунов Ю. Л., 1980, с. 45.
  12. ↑ История математики, том II, 1970, с. 54—55.
  13. 1 2 3 История математики, том II, 1970, с. 56.
  14. ↑ Гутер Р. С., Полунов Ю. Л., 1980, с. 77.
  15. ↑ История математики, том II, 1970, с. 57—59.
  16. 1 2 История математики, том II, 1970, с. 59—60.
  17. 1 2 3 История математики, том II, 1970, с. 61—62.
  18. ↑ История математики, том II, 1970, с. 66.
  19. ↑ История математики, том II, 1970, с. 57.
  20. Лаптев Б. Л. Ламберт — геометр // Историко-математические исследования. — М.: Наука, 1980. — № 25. — С. 248-252.
  21. ↑ Гутер Р. С., Полунов Ю. Л., 1980, с. 64—65.
  22. ↑ Гутер Р. С., Полунов Ю. Л., 1980, с. 48—54.

Литература

Ссылки

wiki.sc

Непер, Джон — Википедия

У этого термина существуют и другие значения, см. Непер.

Джон Не́пер (англ. John Napier ['neɪpɪə][4]; 1550—1617) — шотландский математик, один из изобретателей логарифмов, первый публикатор логарифмических таблиц, астроном. 8-й лэрд Мерчистона.

Подробности жизни учёного известны главным образом из книги «Биография Джона Непера из Мерчистона, его родословная, жизнь и время, с историей изобретения логарифмов», написанной его потомком Марком Непером (1798—1879)[5].

6-й лэрд Александр Непер, дед учёного, погиб в битве при Пинки (1547 год), и замок перешёл к его старшему сыну, 14-летнему Арчибальду (1534—1608). Спустя два года Арчибальд Непер женился на Дженет Босуэлл (Janet Bothwell). Их сын Джон Непер появился на свет в 1550 году в родовом замке Мерчистон, который его предки воздвигли в XV веке. Замок (строго говоря, башня) защищал юго-западные окрестности Эдинбурга. После Джона в семье родились ещё двое детей: младший сын Фрэнсис и дочь Дженет. Отец Арчибальд был образованным человеком, хорошо знал латынь, с 1576 года руководил финансами Шотландии (в должности «мастер Монетного двора»)[6].

Мерчистон, родовой замок Джона Непера

В декабре 1563 года неожиданно умерла мать, Дженет Непер. Отец решил отправить 13-летнего Джона в Сент-Эндрюсский университет. В этот период Непер совершил путешествие по Германии, Франции и, возможно, Италии. Историки предполагают, что в ходе путешествия Непер продолжал своё обучение, в частности, он мог общаться с такими крупными учёными, как Симон Стевин, Франсуа Виет и Михаэль Штифель[7].

Непер вернулся на родину в 1571 году, поселился в своем родном замке и затем уже никогда не оставлял Шотландии. В 1572 году он женился на Элизабет Стирлинг, у них родились сын Арчибальд и дочь Джоан. В 1579 году Элизабет умерла, и Непер женился вторично на её троюродной сестре Агнес. Во втором браке у него родились десять детей: пять сыновей и пять дочерей[8].

Как раз в этот период (1560 год) в Шотландии после ожесточённой борьбы совершилась протестантская Реформация. Страна переживала религиозный подъём, противостоя одновременно попыткам католической реставрации и давлению соседней англиканской церкви. Непер, искренне верующий пуританин, посвящал всё своё время занятиям богословием, астрологией и связанными с последней математическими расчётами. По его собственным словам, истолкование библейских пророчеств всегда составляло главный предмет его занятий, математика же служила для него только отдыхом[9].

Тем не менее Непер вошёл в историю как изобретатель замечательного вычислительного инструмента — логарифмов. Это открытие вызвало гигантское облегчение труда вычислителя. Кроме того, оно привело к появлению новой трансцендентной функции и показало пример решения дифференциального уравнения. Лаплас говорил, что Непер своим изобретением «продлил жизнь астрономов», упростив и ускорив их вычисления[10].

В 1588 году Джон Непер был избран делегатом шотландского парламента (Генерального Собрания) от эдинбургской пресвитерианской общины[11].

В начале 1617 года Непер тяжело заболел и 4 апреля скончался.

В честь Джона Непера названы:

Потребность в сложных расчётах в XVI веке быстро росла. Значительная часть трудностей была связана с умножением и делением многозначных чисел. В ходе тригонометрических расчётов, Неперу пришла в голову идея: заменить трудоёмкое умножение на простое сложение, сопоставив с помощью специальных таблиц геометрическую и арифметическую прогрессии, при этом геометрическая будет исходной. Тогда и деление автоматически заменяется на неизмеримо более простое и надёжное вычитание[12].

Можно с большой вероятностью предполагать, что Непер был знаком с книгой «Arithmetica integra» Михаэля Штифеля, в которой нашла своё выражение идея логарифма: сопоставить умножению в одной шкале (базовой) сложение в другой шкале (логарифмической). Штифель, впрочем, не приложил серьёзных усилий для реализации своей идеи[13].

В 1614 году Непер опубликовал в Эдинбурге сочинение под названием «Описание удивительной таблицы логарифмов» (лат. Mirifici Logarithmorum Canonis Decriptio, 56 страниц текста и 90 страниц таблиц). Там было краткое описание логарифмов и их свойств, а также семизначные таблицы логарифмов синусов, косинусов и тангенсов для углов от 0° до 90°, с шагом 1'. Немного позже и независимо от Непера таблицу логарифмов опубликовал швейцарский математик Йост Бюрги, однако таблицы Непера были практичнее и удобнее в пользовании[13].

В предисловии к этой книге Непер писал[14]:

Убедившись в том, что нет ничего другого… что вызывало бы бо́льшие трудности в математической практике, а также мешало и досаждало бы вычислителям, чем умножение, деление, извлечение квадратных и кубических корней, каковые операции помимо утомительной траты времени являются основным источником многочисленных ошибок, я начал размышлять над тем, каким надёжным и лёгким способом я мог бы устранить эти препятствия. И, обдумывая различные средства, пригодные для достижения этой цели, я, наконец, нашёл замечательные короткие правила, которыми можно будет пользоваться в дальнейшем. Среди всех этих правил нет более полезных, чем те, что… исключают из вычислений числа, которые должны быть перемножены, разделены или превращены в корни, и на их месте ставят другие числа, с помощью которых все вычисления выполняются только сложением, вычитанием или делением на два или три.

Сочинение Непера разделено на 2 книги, из которых первая посвящена логарифмам, а вторая — плоской и сферической тригонометрии, причём вторая часть одновременно служит практическим пособием по первой. Более развёрнутое описание содержалось в другом труде, изданном посмертно его сыном; там же Непер пояснил, как он составлял свои таблицы. Понятия функции тогда ещё не было, и Непер определил логарифм кинематически, сопоставив равномерное и логарифмически-замедленное движение. В современной записи модель Непера можно изобразить дифференциальным уравнением: dx/x = −dy/M, где M — масштабный множитель, введённый для того, чтобы значение получилось целым числом с нужным количеством знаков (десятичные дроби тогда ещё не нашли широкого применения). Непер взял M = 10000000[15].

Титульный лист «Рабдологии», 1617

Строго говоря, Непер табулировал не ту функцию, которая сейчас называется логарифмом. Если обозначить его функцию LogNap(x), то она связана с натуральным логарифмом (ln) следующим образом[16]:

LogNap⁡(x)=M×(ln⁡(M)−ln⁡(x)){\displaystyle \operatorname {LogNap} (x)=M\times (\ln(M)-\ln(x))}

Очевидно, LogNap(M) = 0, то есть логарифм «полного синуса» есть нуль — этого и добивался Непер своим определением. LogNap(0) = ∞.

Основное свойство логарифма Непера: если величины образуют геометрическую прогрессию, то их логарифмы образуют прогрессию арифметическую. Однако правила логарифмирования для неперовой функции отличались от правил для современного логарифма[16].

Например, LogNap(ab) = LogNap(a) + LogNap(b) − LogNap(1).

Все значения таблицы Непера, как оказалось, содержали вычислительную ошибку после шестого знака. Однако это не помешало новой методике вычислений получить широчайшую популярность, составлением и уточнением логарифмических таблиц занялись многие европейские математики, включая Кеплера. Книга Непера переиздавалась 5 раз и была переведена на многие языки мира[17].

В 1615 году Непера посетил оксфордский профессор математики Генри Бригс. Непер уже был болен, поэтому не смог усовершенствовать свои таблицы, однако дал Бригсу рекомендации видоизменить определение логарифма, приблизив его к современному. Бригс опубликовал свои таблицы в год смерти Непера (1617). Они уже включали десятичные, а не натуральные, логарифмы, и не только синусов, но и самих чисел (от 1 до 1000, с 14 знаками). Логарифм единицы теперь, как положено, был равен нулю. Но и в таблицах Бригса обнаружились ошибки. Первое безошибочное издание на основе таблиц Георга Веги появилось только в 1857 году в Берлине (таблицы Бремикера)[17].

В 1620-е годы Эдмунд Уингейт и Уильям Отред изобрели первую логарифмическую линейку, до появления карманных калькуляторов — незаменимый инструмент инженера[18].

Современное определение логарифмирования — как операции, обратной возведению в степень — впервые появилось у Валлиса и Иоганна Бернулли, а окончательно было узаконено Эйлером в XVIII веке. Эйлеру принадлежит и заслуга распространения логарифмической функции на комплексную область[17].

Немалую популярность получил придуманный Непером оригинальный прибор для быстрого умножения — палочки Непера. Важным вкладом в сферическую тригонометрию стали открытые им «формулы аналогии Непера»[19]. В указанном выше сочинении 1614 года Непер сформулировал метод упрощённого получения всех основных соотношений в прямоугольном сферическом треугольнике, математически обоснованный в 1765 году с помощью звёздчатого пятиугольника Ламбертом и ныне известный в сферической тригонометрии как мнемоническое правило Непера[20]. Непер изобрёл также гидравлический винтовой насос оригинальной конструкции для выкачивания воды из угольных шахт, который запатентовал в 1597 году[21].

Помимо математики, Непер занимался астрономией, астрологией и богословием. Его толкование Апокалипсиса: «Простое объяснение всех откровений св. Иоанна» (A plaine discovery of the whole revelation of S. John etc.) вышло в Эдинбурге, в 1593 году (последнее издание при жизни автора — Лондон, 1611). Оно написано в математической форме, то есть с разделением содержания на теоремы и доказательства. В частности, 26-я теорема утверждала, что папа есть Антихрист, 36-я — что упоминаемая в Апокалипсисе саранча означает турок и арабов. Конец света, как доказал автор, должен иметь место между 1688 и 1700 годами. Книга имела несравненно больший успех, чем все научные произведения автора. Появилось несколько её переводов в Германии, а французский, изданный в протестантской тогда Ла-Рошели, выдержал два издания (в 1662-м и 1665-м годах). В Англии после смерти Непера вышло ещё несколько изданий этой работы[13][22].

  • (1593) Простое объяснение всех откровений св. Иоанна (A Plaine Discovery of the Whole Revelation of St. John). Толкование Апокалипсиса.
  • (1614) Описание удивительной таблицы логарифмов (Mirifici logarithmorum canonis descriptio). В1616 году переведена на английский. Кроме логарифмов, трактат содержит описание тригонометрических открытий Непера, включая мнемоническое правило Непера и формулы аналогии Непера.
  • (1617) Рабдология (Rabdologiæ seu Numerationis per Virgulas libri duo). Этот и следующий труд изданы посмертно сыном Непера, Робертом. В «Рабдологии» описаны несколько изобретений, облегчающих вычисления, в том числе палочки Непера.
  • (1619) Построение удивительной таблицы логарифмов (Mirifici logarithmorum canonis constructio). Подробно разъясняет технологию расчёта логарифмических таблиц. Написано ранее, чем Описание 1614 года, но при жизни Непер воздерживался от публикации.
  • (1839) Искусство логистики (De arte logistica). Издано посмертно дальним потомком Непера, Марком. Под логистикой Непер понимал искусство вычислений.
  1. 1 2 идентификатор BNF: платформа открытых данных — 2011.
  2. 1 2 Архив по истории математики Мактьютор
  3. ↑ SNAC — 2010.
  4. ↑ Napier на сайте Dictionary.com
  5. ↑ Гутер Р. С., Полунов Ю. Л., 1980, с. 6.
  6. ↑ Гутер Р. С., Полунов Ю. Л., 1980, с. 18, 26.
  7. ↑ Гутер Р. С., Полунов Ю. Л., 1980, с. 35.
  8. ↑ Гутер Р. С., Полунов Ю. Л., 1980, с. 44.
  9. ↑ Гутер Р. С., Полунов Ю. Л., 1980, с. 56—62.
  10. Швецов К. И., Бевз Г. П. Справочник по элементарной математике. Арифметика, алгебра. Киев: Наукова Думка, 1966. §40. Исторические сведения о логарифмах и логарифмической линейке.
  11. ↑ Гутер Р. С., Полунов Ю. Л., 1980, с. 45.
  12. ↑ История математики, том II, 1970, с. 54—55.
  13. 1 2 3 История математики, том II, 1970, с. 56.
  14. ↑ Гутер Р. С., Полунов Ю. Л., 1980, с. 77.
  15. ↑ История математики, том II, 1970, с. 57—59.
  16. 1 2 История математики, том II, 1970, с. 59—60.
  17. 1 2 3 История математики, том II, 1970, с. 61—62.
  18. ↑ История математики, том II, 1970, с. 66.
  19. ↑ История математики, том II, 1970, с. 57.
  20. Лаптев Б. Л. Ламберт — геометр // Историко-математические исследования. — М.: Наука, 1980. — № 25. — С. 248-252.
  21. ↑ Гутер Р. С., Полунов Ю. Л., 1980, с. 64—65.
  22. ↑ Гутер Р. С., Полунов Ю. Л., 1980, с. 48—54.

ru.wikiyy.com

Непер, Джон — WiKi

Подробности жизни учёного известны главным образом из книги «Биография Джона Непера из Мерчистона, его родословная, жизнь и время, с историей изобретения логарифмов», написанной его потомком Марком Непером (1798—1879)[5].

6-й лэрд Александр Непер, дед учёного, погиб в битве при Пинки (1547 год), и замок перешёл к его старшему сыну, 14-летнему Арчибальду (1534—1608). Спустя два года Арчибальд Непер женился на Дженет Босуэлл (Janet Bothwell). Их сын Джон Непер появился на свет в 1550 году в родовом замке Мерчистон, который его предки воздвигли в XV веке. Замок (строго говоря, башня) защищал юго-западные окрестности Эдинбурга. После Джона в семье родились ещё двое детей: младший сын Фрэнсис и дочь Дженет. Отец Арчибальд был образованным человеком, хорошо знал латынь, с 1576 года руководил финансами Шотландии (в должности «мастер Монетного двора»)[6].

  Мерчистон, родовой замок Джона Непера

В декабре 1563 года неожиданно умерла мать, Дженет Непер. Отец решил отправить 13-летнего Джона в Сент-Эндрюсский университет. В этот период Непер совершил путешествие по Германии, Франции и, возможно, Италии. Историки предполагают, что в ходе путешествия Непер продолжал своё обучение, в частности, он мог общаться с такими крупными учёными, как Симон Стевин, Франсуа Виет и Михаэль Штифель[7].

Непер вернулся на родину в 1571 году, поселился в своем родном замке и затем уже никогда не оставлял Шотландии. В 1572 году он женился на Элизабет Стирлинг, у них родились сын Арчибальд и дочь Джоан. В 1579 году Элизабет умерла, и Непер женился вторично на её троюродной сестре Агнес. Во втором браке у него родились десять детей: пять сыновей и пять дочерей[8].

Как раз в этот период (1560 год) в Шотландии после ожесточённой борьбы совершилась протестантская Реформация. Страна переживала религиозный подъём, противостоя одновременно попыткам католической реставрации и давлению соседней англиканской церкви. Непер, искренне верующий пуританин, посвящал всё своё время занятиям богословием, астрологией и связанными с последней математическими расчётами. По его собственным словам, истолкование библейских пророчеств всегда составляло главный предмет его занятий, математика же служила для него только отдыхом[9].

Тем не менее Непер вошёл в историю как изобретатель замечательного вычислительного инструмента — логарифмов. Это открытие вызвало гигантское облегчение труда вычислителя. Кроме того, оно привело к появлению новой трансцендентной функции и показало пример решения дифференциального уравнения. Лаплас говорил, что Непер своим изобретением «продлил жизнь астрономов», упростив и ускорив их вычисления[10].

В 1588 году Джон Непер был избран делегатом шотландского парламента (Генерального Собрания) от эдинбургской пресвитерианской общины[11].

В начале 1617 года Непер тяжело заболел и 4 апреля скончался.

Потребность в сложных расчётах в XVI веке быстро росла. Значительная часть трудностей была связана с умножением и делением многозначных чисел. В ходе тригонометрических расчётов, Неперу пришла в голову идея: заменить трудоёмкое умножение на простое сложение, сопоставив с помощью специальных таблиц геометрическую и арифметическую прогрессии, при этом геометрическая будет исходной. Тогда и деление автоматически заменяется на неизмеримо более простое и надёжное вычитание[12].

Можно с большой вероятностью предполагать, что Непер был знаком с книгой «Arithmetica integra» Михаэля Штифеля, в которой нашла своё выражение идея логарифма: сопоставить умножению в одной шкале (базовой) сложение в другой шкале (логарифмической). Штифель, впрочем, не приложил серьёзных усилий для реализации своей идеи[13].

В 1614 году Непер опубликовал в Эдинбурге сочинение под названием «Описание удивительной таблицы логарифмов» (лат. Mirifici Logarithmorum Canonis Decriptio, 56 страниц текста и 90 страниц таблиц). Там было краткое описание логарифмов и их свойств, а также семизначные таблицы логарифмов синусов, косинусов и тангенсов для углов от 0° до 90°, с шагом 1'. Немного позже и независимо от Непера таблицу логарифмов опубликовал швейцарский математик Йост Бюрги, однако таблицы Непера были практичнее и удобнее в пользовании[13].

В предисловии к этой книге Непер писал[14]:

Убедившись в том, что нет ничего другого… что вызывало бы бо́льшие трудности в математической практике, а также мешало и досаждало бы вычислителям, чем умножение, деление, извлечение квадратных и кубических корней, каковые операции помимо утомительной траты времени являются основным источником многочисленных ошибок, я начал размышлять над тем, каким надёжным и лёгким способом я мог бы устранить эти препятствия. И, обдумывая различные средства, пригодные для достижения этой цели, я, наконец, нашёл замечательные короткие правила, которыми можно будет пользоваться в дальнейшем. Среди всех этих правил нет более полезных, чем те, что… исключают из вычислений числа, которые должны быть перемножены, разделены или превращены в корни, и на их месте ставят другие числа, с помощью которых все вычисления выполняются только сложением, вычитанием или делением на два или три.

Сочинение Непера разделено на 2 книги, из которых первая посвящена логарифмам, а вторая — плоской и сферической тригонометрии, причём вторая часть одновременно служит практическим пособием по первой. Более развёрнутое описание содержалось в другом труде, изданном посмертно его сыном; там же Непер пояснил, как он составлял свои таблицы. Понятия функции тогда ещё не было, и Непер определил логарифм кинематически, сопоставив равномерное и логарифмически-замедленное движение. В современной записи модель Непера можно изобразить дифференциальным уравнением: dx/x = −dy/M, где M — масштабный множитель, введённый для того, чтобы значение получилось целым числом с нужным количеством знаков (десятичные дроби тогда ещё не нашли широкого применения). Непер взял M = 10000000[15].

  Титульный лист «Рабдологии», 1617

Строго говоря, Непер табулировал не ту функцию, которая сейчас называется логарифмом. Если обозначить его функцию LogNap(x), то она связана с натуральным логарифмом (ln) следующим образом[16]:

LogNap⁡(x)=M×(ln⁡(M)−ln⁡(x)){\displaystyle \operatorname {LogNap} (x)=M\times (\ln(M)-\ln(x))} 

Очевидно, LogNap(M) = 0, то есть логарифм «полного синуса» есть нуль — этого и добивался Непер своим определением. LogNap(0) = ∞.

Основное свойство логарифма Непера: если величины образуют геометрическую прогрессию, то их логарифмы образуют прогрессию арифметическую. Однако правила логарифмирования для неперовой функции отличались от правил для современного логарифма[16].

Например, LogNap(ab) = LogNap(a) + LogNap(b) − LogNap(1).

Все значения таблицы Непера, как оказалось, содержали вычислительную ошибку после шестого знака. Однако это не помешало новой методике вычислений получить широчайшую популярность, составлением и уточнением логарифмических таблиц занялись многие европейские математики, включая Кеплера. Книга Непера переиздавалась 5 раз и была переведена на многие языки мира[17].

В 1615 году Непера посетил оксфордский профессор математики Генри Бригс. Непер уже был болен, поэтому не смог усовершенствовать свои таблицы, однако дал Бригсу рекомендации видоизменить определение логарифма, приблизив его к современному. Бригс опубликовал свои таблицы в год смерти Непера (1617). Они уже включали десятичные, а не натуральные, логарифмы, и не только синусов, но и самих чисел (от 1 до 1000, с 14 знаками). Логарифм единицы теперь, как положено, был равен нулю. Но и в таблицах Бригса обнаружились ошибки. Первое безошибочное издание на основе таблиц Георга Веги появилось только в 1857 году в Берлине (таблицы Бремикера)[17].

В 1620-е годы Эдмунд Уингейт и Уильям Отред изобрели первую логарифмическую линейку, до появления карманных калькуляторов — незаменимый инструмент инженера[18].

Современное определение логарифмирования — как операции, обратной возведению в степень — впервые появилось у Валлиса и Иоганна Бернулли, а окончательно было узаконено Эйлером в XVIII веке. Эйлеру принадлежит и заслуга распространения логарифмической функции на комплексную область[17].

Немалую популярность получил придуманный Непером оригинальный прибор для быстрого умножения — палочки Непера. Важным вкладом в сферическую тригонометрию стали открытые им «формулы аналогии Непера»[19]. В указанном выше сочинении 1614 года Непер сформулировал метод упрощённого получения всех основных соотношений в прямоугольном сферическом треугольнике, математически обоснованный в 1765 году с помощью звёздчатого пятиугольника Ламбертом и ныне известный в сферической тригонометрии как мнемоническое правило Непера[20]. Непер изобрёл также гидравлический винтовой насос оригинальной конструкции для выкачивания воды из угольных шахт, который запатентовал в 1597 году[21].

Помимо математики, Непер занимался астрономией, астрологией и богословием. Его толкование Апокалипсиса: «Простое объяснение всех откровений св. Иоанна» (A plaine discovery of the whole revelation of S. John etc.) вышло в Эдинбурге, в 1593 году (последнее издание при жизни автора — Лондон, 1611). Оно написано в математической форме, то есть с разделением содержания на теоремы и доказательства. В частности, 26-я теорема утверждала, что папа есть Антихрист, 36-я — что упоминаемая в Апокалипсисе саранча означает турок и арабов. Конец света, как доказал автор, должен иметь место между 1688 и 1700 годами. Книга имела несравненно больший успех, чем все научные произведения автора. Появилось несколько её переводов в Германии, а французский, изданный в протестантской тогда Ла-Рошели, выдержал два издания (в 1662-м и 1665-м годах). В Англии после смерти Непера вышло ещё несколько изданий этой работы[13][22].

ru-wiki.org

Джон Непер - это... Что такое Джон Непер?

Джон Непер

Джон Не́пер (англ. John Napier; 1550—1617) — шотландский барон, математик, один из изобретателей логарифмов, первый публикатор логарифмических таблиц.

Биография

В ранней молодости, тотчас же по окончании курса в Сент-Эндрюсском университете, куда он поступил в 1563 году, Непер совершил путешествие по Германии, Франции и Италии, из которого вернулся на родину в 1571 году. Поселившись в своем родном замке и женившись в том же году, он затем уже никогда не оставлял Шотландии.

Всё его время было посвящено занятиям богословскими предметами и математикой. По его собственным словам, истолкование пророчеств всегда составляло главный предмет его занятий, математика же служила для него только отдыхом.

Тем не менее Непер вошёл в историю как изобретатель замечательного вычислительного инструмента — таблицы логарифмов. Это открытие вызвало гигантское облегчение труда вычислителя. Кроме того, оно привело к появлению новой трансцендентной функции и показало пример решения дифференциального уравнения.

Лаплас говорил, что Непер своим изобретением «продлил жизнь астрономов», упростив их вычисления.

В честь Джона Непера названы:

Открытие логарифмов

Потребность в сложных расчётах в XVI веке быстро росла. Значительная часть трудностей была связана с умножением и делением многозначных чисел. В ходе тригонометрических расчётов, Неперу пришла в голову идея: заменить трудоёмкое умножение на простое сложение, сопоставив с помощью специальных таблиц геометрическую и арифметическую прогрессии, при этом геометрическая будет исходной. Тогда и деление автоматически заменяется на неизмеримо более простое и надёжное вычитание.

В предисловии к книге «Рабдология» Непер писал:

Я всегда старался, насколько позволяли мои силы и способности, освободить людей от трудности и скуки вычислений, докучливость которых обыкновенно отпугивает очень многих от изучения математики.

Можно с большой вероятностью предполагать, что Непер был знаком с книгой «Arithmetica integra» Михаэля Штифеля, в которой нашла своё выражение идея логарифма: сопоставить умножению в одной шкале (базовой) сложение в другой шкале (логарифмической). Штифель, впрочем, не приложил серьёзных усилий для реализации своей идеи.

В 1614 году Непер опубликовал в Эдинбурге сочинение под названием «Описание удивительной таблицы логарифмов», на латинском языке (56 страниц текста и 90 страниц таблиц). Там было краткое описание логарифмов и их свойств, а также 8-значные таблицы логарифмов синусов, косинусов и тангенсов, с шагом 1'.

Сочинение разделено на 2 книги, из которых первая посвящена логарифмам, а вторая — плоской и сферической тригонометрии, причём вторая часть одновременно служит практическим пособием по первой. Более развёрнутое описание содержалось в другом труде, изданном посмертно его сыном; там же Непер пояснил, как он составлял свои таблицы.

Понятия функции тогда ещё не было, и Непер определил логарифм кинематически, сопоставив равномерное и логарифмически-замедленное движение. В современной записи модель Непера можно изобразить дифференциальным уравнением: dx/x = -dy/M, где M — масштабный множитель, введённый для того, чтобы значение получилось целым числом с нужным количеством знаков (десятичные дроби тогда ещё не нашли широкого применения). Непер взял M = 10000000.

Строго говоря, Непер табулировал не ту функцию, которая сейчас называется логарифмом. Если обозначить его функцию LogNap(x), то она связана с натуральным логарифмом (ln) следующим образом:

Очевидно, LogNap(M) = 0, то есть логарифм «полного синуса» есть нуль — этого и добивался Непер своим определением. LogNap(0) = ∞.

Основное свойство логарифма Непера: если величины образуют геометрическую прогрессию, то их логарифмы образуют прогрессию арифметическую. Однако правила логарифмирования для неперовой функции отличались от правил для современного логарифма.

Например, LogNap(ab) = LogNap(a) + LogNap(b) — LogNap(1).

К сожалению, все значения таблицы Непера содержали вычислительную ошибку после шестого знака. Однако это не помешало новой методике вычислений получить широчайшую популярность, и составлением логарифмических таблиц занялись многие европейские математики, включая Кеплера.

В 1615 году Непера посетил оксфордский профессор математики Генри Бригс. Непер уже был болен, поэтому не смог усовершенствовать свои таблицы, однако дал Бригсу рекомендации видоизменить определение логарифма, приблизив его к современному. Бригс опубликовал свои таблицы в год смерти Непера (1617). Они уже включали десятичные, а не натуральные, логарифмы, и не только синусов, но и самих чисел (от 1 до 1000, с 14 знаками). Логарифм единицы теперь, как положено, был равен нулю.

Но и в таблицах Бригса обнаружились ошибки. Первое безошибочное издание на основе таблиц Вега появилось только в 1857 году в Берлине (таблицы Бремивера).

В 1620-е годы Эдмунд Уингейт и Уильям Отред изобрели первую логарифмическую линейку, до появления карманных калькуляторов — незаменимый инструмент инженера.

Современное определение логарифмирования — как операции, обратной возведению в степень — впервые появилось у Валлиса и Иоганна Бернулли, а окончательно было узаконено Эйлером в XVIII веке. Эйлеру принадлежит и заслуга распространения логарифмической функции на комплексную область.

Другие увлечения

Немалую популярность получил придуманный Непером оригинальный прибор для быстрого умножения (палочки Непера).

Непер занимался также астрономией, астрологией и богословием. Его толкование Апокалипсиса: «A plaine discovery of the whole revelation of S. John etc.» вышло в Эдинбурге, в 1593 г. (последнее издание при жизни автора — Лондон, 1611). Оно написано в математической форме, то есть с разделением содержания на теоремы и доказательства. В частности, 26-я теорема утверждала, что папа есть Антихрист, 36-я — что упоминаемая в Апокалипсисе саранча означает турок и арабов. Конец света, как доказал автор, должен иметь место между 1688 и 1700 годами.

Книга имела несравненно больший успех, чем все научные произведения автора. Появилось несколько её переводов в Германии, а французский, изданный в Ла-Рошели, выдержал два издания (в 1662-м и 1665-м годах). В Англии после смерти Непера вышло ещё несколько изданий этой работы.

Литература

  • Абельсон И. Б. Рождение логарифмов. М.-Л.: 1948.
  • Гиршвальд Л. Я. История открытия логарифмов. М.: Наука, 1981.
  • Гутер Р. С., Полунов Ю. Л. Джон Непер, 1550—1617. М.: Наука, 1980.
  • История математики под редакцией А. П. Юшкевича в трёх томах, М.: Наука, 1970 Том 2: Математика XVII столетия.
  • Macdonald W. R. The construction of the wonderful canon of logarithms by John Napier etc. Эдинбург, 1888.

Ссылки

  • Джон Дж. О’Коннор и Эдмунд Ф. Робертсон. Непер, Джон в архиве MacTutor

Wikimedia Foundation. 2010.

dic.academic.ru

Непер, Джон — Википедия

У этого термина существуют и другие значения, см. Непер.

Джон Не́пер (англ. John Napier ['neɪpɪə][4]; 1550—1617) — шотландский математик, один из изобретателей логарифмов, первый публикатор логарифмических таблиц, астроном. 8-й лэрд Мерчистона.

Биография

Подробности жизни учёного известны главным образом из книги «Биография Джона Непера из Мерчистона, его родословная, жизнь и время, с историей изобретения логарифмов», написанной его дальним потомком Марком Непером (1798—1879)[5].

6-й лэрд Александр Непер, дед учёного, погиб в трагической для шотландцев битве при Пинки (1547 год), и замок перешёл к его старшему сыну, 14-летнему Арчибальду (1534—1608). Спустя два года Арчибальд Непер женился на Дженет Босуэлл, Их сын Джон Непер появился на свет в 1550 году в родовом замке Мерчистон, который его предки воздвигли в XV веке. Замок (строго говоря, башня) защищал юго-западные окрестности Эдинбурга. После Джона в семье родились ещё двое детей — младший сын Фрэнсис и дочь Дженет. Отец Арчибальд был образованным человеком, хорошо знал латынь, с 1576 года руководил финансами Шотландии (в должности «Мастер Монетного двора»)[6].

Мерчистон, родовой замок Джона Непера

В декабре 1563 года неожиданно умерла мать, Дженет Непер. Отец решил отправить 13-летнего Джона в Сент-Эндрюсский университет. Закончив обучение, Непер совершил путешествие по Германии, Франции и (возможно) Италии. Некоторые историки предполагают, что в ходе путешествия Непер продолжал своё обучение, в частности, он мог общаться с такими крупными учёными, как Симон Стевин, Франсуа Виет и Михаэль Штифель[7].

Непер вернулся на родину в 1571 году, поселился в своем родном замке и затем уже никогда не оставлял Шотландии. В 1572 году он женился на Элизабет Стирлинг, у них родились сын Арчибальд и дочь Джоан. В 1579 году Элизабет умерла, и Непер женился вторично на её троюродной сестре Агнес. Во втором браке у него родились десять детей — пять сыновей и пять дочерей[8].

Как раз в этот период (1560 год) в Шотландии после ожесточённой борьбы совершилась протестантская Реформация. Страна переживала религиозный подъём, противостоя одновременно попыткам католической реставрации и давлению соседней англиканской церкви. Непер, искренне верующий пуританин, посвящал всё своё время занятиям богословием, астрологией и связанными с последней математическими расчётами. По его собственным словам, истолкование библейских пророчеств всегда составляло главный предмет его занятий, математика же служила для него только отдыхом[9].

Тем не менее Непер вошёл в историю как изобретатель замечательного вычислительного инструмента — логарифмов. Это открытие вызвало гигантское облегчение труда вычислителя. Кроме того, оно привело к появлению новой трансцендентной функции и показало пример решения дифференциального уравнения. Лаплас говорил, что Непер своим изобретением «продлил жизнь астрономов», упростив и ускорив их вычисления[10].

В 1588 году Джон Непер был избран делегатом шотландского парламента (Генерального Собрания) от эдинбургской пресвитерианской общины[11].

В начале 1617 года Непер тяжело заболел и 4 апреля скончался.

Видео по теме

Память

В честь Джона Непера названы:

Открытие логарифмов

Потребность в сложных расчётах в XVI веке быстро росла. Значительная часть трудностей была связана с умножением и делением многозначных чисел. В ходе тригонометрических расчётов, Неперу пришла в голову идея: заменить трудоёмкое умножение на простое сложение, сопоставив с помощью специальных таблиц геометрическую и арифметическую прогрессии, при этом геометрическая будет исходной. Тогда и деление автоматически заменяется на неизмеримо более простое и надёжное вычитание[12].

Можно с большой вероятностью предполагать, что Непер был знаком с книгой «Arithmetica integra» Михаэля Штифеля, в которой нашла своё выражение идея логарифма: сопоставить умножению в одной шкале (базовой) сложение в другой шкале (логарифмической). Штифель, впрочем, не приложил серьёзных усилий для реализации своей идеи[13].

В 1614 году Непер опубликовал в Эдинбурге сочинение под названием «Описание удивительной таблицы логарифмов» (лат. Mirifici Logarithmorum Canonis Decriptio, 56 страниц текста и 90 страниц таблиц). Там было краткое описание логарифмов и их свойств, а также семизначные таблицы логарифмов синусов, косинусов и тангенсов для углов от 0° до 90°, с шагом 1'. Немного позже и независимо от Непера таблицу логарифмов опубликовал швейцарский математик Йост Бюрги, однако таблицы Непера были практичнее и удобнее в пользовании[13].

В предисловии к этой книге Непер писал[14]:

Убедившись в том, что нет ничего другого… что вызывало бы бо́льшие трудности в математической практике, а также мешало и досаждало бы вычислителям, чем умножение, деление, извлечение квадратных и кубических корней, каковые операции помимо утомительной траты времени являются основным источником многочисленных ошибок, я начал размышлять над тем, каким надёжным и лёгким способом я мог бы устранить эти препятствия. И, обдумывая различные средства, пригодные для достижения этой цели, я, наконец, нашёл замечательные короткие правила, которыми можно будет пользоваться в дальнейшем. Среди всех этих правил нет более полезных, чем те, что… исключают из вычислений числа, которые должны быть перемножены, разделены или превращены в корни, и на их месте ставят другие числа, с помощью которых все вычисления выполняются только сложением, вычитанием или делением на два или три.

Сочинение Непера разделено на 2 книги, из которых первая посвящена логарифмам, а вторая — плоской и сферической тригонометрии, причём вторая часть одновременно служит практическим пособием по первой. Более развёрнутое описание содержалось в другом труде, изданном посмертно его сыном; там же Непер пояснил, как он составлял свои таблицы. Понятия функции тогда ещё не было, и Непер определил логарифм кинематически, сопоставив равномерное и логарифмически-замедленное движение. В современной записи модель Непера можно изобразить дифференциальным уравнением: dx/x = −dy/M, где M — масштабный множитель, введённый для того, чтобы значение получилось целым числом с нужным количеством знаков (десятичные дроби тогда ещё не нашли широкого применения). Непер взял M = 10000000[15].

Титульный лист «Рабдологии», 1617

Строго говоря, Непер табулировал не ту функцию, которая сейчас называется логарифмом. Если обозначить его функцию LogNap(x), то она связана с натуральным логарифмом (ln) следующим образом[16]:

LogNap⁡(x)=M×(ln⁡(M)−ln⁡(x)){\displaystyle \operatorname {LogNap} (x)=M\times (\ln(M)-\ln(x))}

Очевидно, LogNap(M) = 0, то есть логарифм «полного синуса» есть нуль — этого и добивался Непер своим определением. LogNap(0) = ∞.

Основное свойство логарифма Непера: если величины образуют геометрическую прогрессию, то их логарифмы образуют прогрессию арифметическую. Однако правила логарифмирования для неперовой функции отличались от правил для современного логарифма[16].

Например, LogNap(ab) = LogNap(a) + LogNap(b) − LogNap(1).

Все значения таблицы Непера, как оказалось, содержали вычислительную ошибку после шестого знака. Однако это не помешало новой методике вычислений получить широчайшую популярность, составлением и уточнением логарифмических таблиц занялись многие европейские математики, включая Кеплера. Книга Непера переиздавалась 5 раз и была переведена на многие языки мира[17].

В 1615 году Непера посетил оксфордский профессор математики Генри Бригс. Непер уже был болен, поэтому не смог усовершенствовать свои таблицы, однако дал Бригсу рекомендации видоизменить определение логарифма, приблизив его к современному. Бригс опубликовал свои таблицы в год смерти Непера (1617). Они уже включали десятичные, а не натуральные, логарифмы, и не только синусов, но и самих чисел (от 1 до 1000, с 14 знаками). Логарифм единицы теперь, как положено, был равен нулю. Но и в таблицах Бригса обнаружились ошибки. Первое безошибочное издание на основе таблиц Георга Веги появилось только в 1857 году в Берлине (таблицы Бремикера)[17].

В 1620-е годы Эдмунд Уингейт и Уильям Отред изобрели первую логарифмическую линейку, до появления карманных калькуляторов — незаменимый инструмент инженера[18].

Современное определение логарифмирования — как операции, обратной возведению в степень — впервые появилось у Валлиса и Иоганна Бернулли, а окончательно было узаконено Эйлером в XVIII веке. Эйлеру принадлежит и заслуга распространения логарифмической функции на комплексную область[17].

Другие области деятельности

Немалую популярность получил придуманный Непером оригинальный прибор для быстрого умножения — палочки Непера. Важным вкладом в сферическую тригонометрию стали открытые им «формулы аналогии Непера»[19]. В указанном выше сочинении 1614 года Непер сформулировал метод упрощённого получения всех основных соотношений в прямоугольном сферическом треугольнике, математически обоснованный в 1765 году с помощью звёздчатого пятиугольника Ламбертом и ныне известный в сферической тригонометрии как мнемоническое правило Непера[20]. Непер изобрёл также гидравлический винтовой насос оригинальной конструкции для выкачивания воды из угольных шахт, который запатентовал в 1597 году[21].

Помимо математики, Непер занимался астрономией, астрологией и богословием. Его толкование Апокалипсиса: «Простое объяснение всех откровений св. Иоанна» (A plaine discovery of the whole revelation of S. John etc.) вышло в Эдинбурге, в 1593 году (последнее издание при жизни автора — Лондон, 1611). Оно написано в математической форме, то есть с разделением содержания на теоремы и доказательства. В частности, 26-я теорема утверждала, что папа есть Антихрист, 36-я — что упоминаемая в Апокалипсисе саранча означает турок и арабов. Конец света, как доказал автор, должен иметь место между 1688 и 1700 годами. Книга имела несравненно больший успех, чем все научные произведения автора. Появилось несколько её переводов в Германии, а французский, изданный в протестантской тогда Ла-Рошели, выдержал два издания (в 1662-м и 1665-м годах). В Англии после смерти Непера вышло ещё несколько изданий этой работы[13][22].

Труды

  • (1593) Простое объяснение всех откровений св. Иоанна (A Plaine Discovery of the Whole Revelation of St. John). Толкование Апокалипсиса.
  • (1614) Описание удивительной таблицы логарифмов (Mirifici logarithmorum canonis descriptio). В1616 году переведена на английский. Кроме логарифмов, трактат содержит описание тригонометрических открытий Непера, включая мнемоническое правило Непера и формулы аналогии Непера.
  • (1617) Рабдология (Rabdologiæ seu Numerationis per Virgulas libri duo). Этот и следующий труд изданы посмертно сыном Непера, Робертом. В «Рабдологии» описаны несколько изобретений, облегчающих вычисления, в том числе палочки Непера.
  • (1619) Построение удивительной таблицы логарифмов (Mirifici logarithmorum canonis constructio). Подробно разъясняет технологию расчёта логарифмических таблиц. Написано ранее, чем Описание 1614 года, но при жизни Непер воздерживался от публикации.
  • (1839) Искусство логистики (De arte logistica). Издано посмертно дальним потомком Непера, Марком. Под логистикой Непер понимал искусство вычислений.

Примечания

  1. 1 2 data.bnf.fr: платформа открытых данных — 2011.
  2. 1 2 Архив по истории математики Мактьютор
  3. ↑ SNAC
  4. ↑ Napier на сайте Dictionary.com
  5. ↑ Гутер Р. С., Полунов Ю. Л., 1980, с. 6.
  6. ↑ Гутер Р. С., Полунов Ю. Л., 1980, с. 18, 26.
  7. ↑ Гутер Р. С., Полунов Ю. Л., 1980, с. 35.
  8. ↑ Гутер Р. С., Полунов Ю. Л., 1980, с. 44.
  9. ↑ Гутер Р. С., Полунов Ю. Л., 1980, с. 56—62.
  10. Швецов К. И., Бевз Г. П. Справочник по элементарной математике. Арифметика, алгебра. Киев: Наукова Думка, 1966. §40. Исторические сведения о логарифмах и логарифмической линейке.
  11. ↑ Гутер Р. С., Полунов Ю. Л., 1980, с. 45.
  12. ↑ История математики, том II, 1970, с. 54—55.
  13. 1 2 3 История математики, том II, 1970, с. 56.
  14. ↑ Гутер Р. С., Полунов Ю. Л., 1980, с. 77.
  15. ↑ История математики, том II, 1970, с. 57—59.
  16. 1 2 История математики, том II, 1970, с. 59—60.
  17. 1 2 3 История математики, том II, 1970, с. 61—62.
  18. ↑ История математики, том II, 1970, с. 66.
  19. ↑ История математики, том II, 1970, с. 57.
  20. Лаптев Б. Л. Ламберт — геометр // Историко-математические исследования. — М.: Наука, 1980. — № 25. — С. 248-252.
  21. ↑ Гутер Р. С., Полунов Ю. Л., 1980, с. 64—65.
  22. ↑ Гутер Р. С., Полунов Ю. Л., 1980, с. 48—54.

Литература

Ссылки

wiki2.red

Непер, Джон — Википедия

У этого термина существуют и другие значения, см. Непер.

Джон Не́пер (англ. John Napier ['neɪpɪə][4]; 1550—1617) — шотландский математик, один из изобретателей логарифмов, первый публикатор логарифмических таблиц, астроном. 8-й лэрд Мерчистона.

Биография

Подробности жизни учёного известны главным образом из книги «Биография Джона Непера из Мерчистона, его родословная, жизнь и время, с историей изобретения логарифмов», написанной его потомком Марком Непером (1798—1879)[5].

6-й лэрд Александр Непер, дед учёного, погиб в битве при Пинки (1547 год), и замок перешёл к его старшему сыну, 14-летнему Арчибальду (1534—1608). Спустя два года Арчибальд Непер женился на Дженет Босуэлл (Janet Bothwell). Их сын Джон Непер появился на свет в 1550 году в родовом замке Мерчистон, который его предки воздвигли в XV веке. Замок (строго говоря, башня) защищал юго-западные окрестности Эдинбурга. После Джона в семье родились ещё двое детей: младший сын Фрэнсис и дочь Дженет. Отец Арчибальд был образованным человеком, хорошо знал латынь, с 1576 года руководил финансами Шотландии (в должности «мастер Монетного двора»)[6].

Мерчистон, родовой замок Джона Непера

В декабре 1563 года неожиданно умерла мать, Дженет Непер. Отец решил отправить 13-летнего Джона в Сент-Эндрюсский университет. В этот период Непер совершил путешествие по Германии, Франции и, возможно, Италии. Историки предполагают, что в ходе путешествия Непер продолжал своё обучение, в частности, он мог общаться с такими крупными учёными, как Симон Стевин, Франсуа Виет и Михаэль Штифель[7].

Непер вернулся на родину в 1571 году, поселился в своем родном замке и затем уже никогда не оставлял Шотландии. В 1572 году он женился на Элизабет Стирлинг, у них родились сын Арчибальд и дочь Джоан. В 1579 году Элизабет умерла, и Непер женился вторично на её троюродной сестре Агнес. Во втором браке у него родились десять детей: пять сыновей и пять дочерей[8].

Как раз в этот период (1560 год) в Шотландии после ожесточённой борьбы совершилась протестантская Реформация. Страна переживала религиозный подъём, противостоя одновременно попыткам католической реставрации и давлению соседней англиканской церкви. Непер, искренне верующий пуританин, посвящал всё своё время занятиям богословием, астрологией и связанными с последней математическими расчётами. По его собственным словам, истолкование библейских пророчеств всегда составляло главный предмет его занятий, математика же служила для него только отдыхом[9].

Тем не менее Непер вошёл в историю как изобретатель замечательного вычислительного инструмента — логарифмов. Это открытие вызвало гигантское облегчение труда вычислителя. Кроме того, оно привело к появлению новой трансцендентной функции и показало пример решения дифференциального уравнения. Лаплас говорил, что Непер своим изобретением «продлил жизнь астрономов», упростив и ускорив их вычисления[10].

В 1588 году Джон Непер был избран делегатом шотландского парламента (Генерального Собрания) от эдинбургской пресвитерианской общины[11].

В начале 1617 года Непер тяжело заболел и 4 апреля скончался.

Память

В честь Джона Непера названы:

Открытие логарифмов

Потребность в сложных расчётах в XVI веке быстро росла. Значительная часть трудностей была связана с умножением и делением многозначных чисел. В ходе тригонометрических расчётов, Неперу пришла в голову идея: заменить трудоёмкое умножение на простое сложение, сопоставив с помощью специальных таблиц геометрическую и арифметическую прогрессии, при этом геометрическая будет исходной. Тогда и деление автоматически заменяется на неизмеримо более простое и надёжное вычитание[12].

Можно с большой вероятностью предполагать, что Непер был знаком с книгой «Arithmetica integra» Михаэля Штифеля, в которой нашла своё выражение идея логарифма: сопоставить умножению в одной шкале (базовой) сложение в другой шкале (логарифмической). Штифель, впрочем, не приложил серьёзных усилий для реализации своей идеи[13].

В 1614 году Непер опубликовал в Эдинбурге сочинение под названием «Описание удивительной таблицы логарифмов» (лат. Mirifici Logarithmorum Canonis Decriptio, 56 страниц текста и 90 страниц таблиц). Там было краткое описание логарифмов и их свойств, а также семизначные таблицы логарифмов синусов, косинусов и тангенсов для углов от 0° до 90°, с шагом 1'. Немного позже и независимо от Непера таблицу логарифмов опубликовал швейцарский математик Йост Бюрги, однако таблицы Непера были практичнее и удобнее в пользовании[13].

В предисловии к этой книге Непер писал[14]:

Убедившись в том, что нет ничего другого… что вызывало бы бо́льшие трудности в математической практике, а также мешало и досаждало бы вычислителям, чем умножение, деление, извлечение квадратных и кубических корней, каковые операции помимо утомительной траты времени являются основным источником многочисленных ошибок, я начал размышлять над тем, каким надёжным и лёгким способом я мог бы устранить эти препятствия. И, обдумывая различные средства, пригодные для достижения этой цели, я, наконец, нашёл замечательные короткие правила, которыми можно будет пользоваться в дальнейшем. Среди всех этих правил нет более полезных, чем те, что… исключают из вычислений числа, которые должны быть перемножены, разделены или превращены в корни, и на их месте ставят другие числа, с помощью которых все вычисления выполняются только сложением, вычитанием или делением на два или три.

Сочинение Непера разделено на 2 книги, из которых первая посвящена логарифмам, а вторая — плоской и сферической тригонометрии, причём вторая часть одновременно служит практическим пособием по первой. Более развёрнутое описание содержалось в другом труде, изданном посмертно его сыном; там же Непер пояснил, как он составлял свои таблицы. Понятия функции тогда ещё не было, и Непер определил логарифм кинематически, сопоставив равномерное и логарифмически-замедленное движение. В современной записи модель Непера можно изобразить дифференциальным уравнением: dx/x = −dy/M, где M — масштабный множитель, введённый для того, чтобы значение получилось целым числом с нужным количеством знаков (десятичные дроби тогда ещё не нашли широкого применения). Непер взял M = 10000000[15].

Титульный лист «Рабдологии», 1617

Строго говоря, Непер табулировал не ту функцию, которая сейчас называется логарифмом. Если обозначить его функцию LogNap(x), то она связана с натуральным логарифмом (ln) следующим образом[16]:

LogNap⁡(x)=M×(ln⁡(M)−ln⁡(x)){\displaystyle \operatorname {LogNap} (x)=M\times (\ln(M)-\ln(x))}

Очевидно, LogNap(M) = 0, то есть логарифм «полного синуса» есть нуль — этого и добивался Непер своим определением. LogNap(0) = ∞.

Основное свойство логарифма Непера: если величины образуют геометрическую прогрессию, то их логарифмы образуют прогрессию арифметическую. Однако правила логарифмирования для неперовой функции отличались от правил для современного логарифма[16].

Например, LogNap(ab) = LogNap(a) + LogNap(b) − LogNap(1).

Все значения таблицы Непера, как оказалось, содержали вычислительную ошибку после шестого знака. Однако это не помешало новой методике вычислений получить широчайшую популярность, составлением и уточнением логарифмических таблиц занялись многие европейские математики, включая Кеплера. Книга Непера переиздавалась 5 раз и была переведена на многие языки мира[17].

В 1615 году Непера посетил оксфордский профессор математики Генри Бригс. Непер уже был болен, поэтому не смог усовершенствовать свои таблицы, однако дал Бригсу рекомендации видоизменить определение логарифма, приблизив его к современному. Бригс опубликовал свои таблицы в год смерти Непера (1617). Они уже включали десятичные, а не натуральные, логарифмы, и не только синусов, но и самих чисел (от 1 до 1000, с 14 знаками). Логарифм единицы теперь, как положено, был равен нулю. Но и в таблицах Бригса обнаружились ошибки. Первое безошибочное издание на основе таблиц Георга Веги появилось только в 1857 году в Берлине (таблицы Бремикера)[17].

В 1620-е годы Эдмунд Уингейт и Уильям Отред изобрели первую логарифмическую линейку, до появления карманных калькуляторов — незаменимый инструмент инженера[18].

Современное определение логарифмирования — как операции, обратной возведению в степень — впервые появилось у Валлиса и Иоганна Бернулли, а окончательно было узаконено Эйлером в XVIII веке. Эйлеру принадлежит и заслуга распространения логарифмической функции на комплексную область[17].

Другие области деятельности

Немалую популярность получил придуманный Непером оригинальный прибор для быстрого умножения — палочки Непера. Важным вкладом в сферическую тригонометрию стали открытые им «формулы аналогии Непера»[19]. В указанном выше сочинении 1614 года Непер сформулировал метод упрощённого получения всех основных соотношений в прямоугольном сферическом треугольнике, математически обоснованный в 1765 году с помощью звёздчатого пятиугольника Ламбертом и ныне известный в сферической тригонометрии как мнемоническое правило Непера[20]. Непер изобрёл также гидравлический винтовой насос оригинальной конструкции для выкачивания воды из угольных шахт, который запатентовал в 1597 году[21].

Помимо математики, Непер занимался астрономией, астрологией и богословием. Его толкование Апокалипсиса: «Простое объяснение всех откровений св. Иоанна» (A plaine discovery of the whole revelation of S. John etc.) вышло в Эдинбурге, в 1593 году (последнее издание при жизни автора — Лондон, 1611). Оно написано в математической форме, то есть с разделением содержания на теоремы и доказательства. В частности, 26-я теорема утверждала, что папа есть Антихрист, 36-я — что упоминаемая в Апокалипсисе саранча означает турок и арабов. Конец света, как доказал автор, должен иметь место между 1688 и 1700 годами. Книга имела несравненно больший успех, чем все научные произведения автора. Появилось несколько её переводов в Германии, а французский, изданный в протестантской тогда Ла-Рошели, выдержал два издания (в 1662-м и 1665-м годах). В Англии после смерти Непера вышло ещё несколько изданий этой работы[13][22].

Труды

  • (1593) Простое объяснение всех откровений св. Иоанна (A Plaine Discovery of the Whole Revelation of St. John). Толкование Апокалипсиса.
  • (1614) Описание удивительной таблицы логарифмов (Mirifici logarithmorum canonis descriptio). В1616 году переведена на английский. Кроме логарифмов, трактат содержит описание тригонометрических открытий Непера, включая мнемоническое правило Непера и формулы аналогии Непера.
  • (1617) Рабдология (Rabdologiæ seu Numerationis per Virgulas libri duo). Этот и следующий труд изданы посмертно сыном Непера, Робертом. В «Рабдологии» описаны несколько изобретений, облегчающих вычисления, в том числе палочки Непера.
  • (1619) Построение удивительной таблицы логарифмов (Mirifici logarithmorum canonis constructio). Подробно разъясняет технологию расчёта логарифмических таблиц. Написано ранее, чем Описание 1614 года, но при жизни Непер воздерживался от публикации.
  • (1839) Искусство логистики (De arte logistica). Издано посмертно дальним потомком Непера, Марком. Под логистикой Непер понимал искусство вычислений.

Примечания

  1. 1 2 идентификатор BNF: платформа открытых данных — 2011.
  2. 1 2 Архив по истории математики Мактьютор
  3. ↑ SNAC — 2010.
  4. ↑ Napier на сайте Dictionary.com
  5. ↑ Гутер Р. С., Полунов Ю. Л., 1980, с. 6.
  6. ↑ Гутер Р. С., Полунов Ю. Л., 1980, с. 18, 26.
  7. ↑ Гутер Р. С., Полунов Ю. Л., 1980, с. 35.
  8. ↑ Гутер Р. С., Полунов Ю. Л., 1980, с. 44.
  9. ↑ Гутер Р. С., Полунов Ю. Л., 1980, с. 56—62.
  10. Швецов К. И., Бевз Г. П. Справочник по элементарной математике. Арифметика, алгебра. Киев: Наукова Думка, 1966. §40. Исторические сведения о логарифмах и логарифмической линейке.
  11. ↑ Гутер Р. С., Полунов Ю. Л., 1980, с. 45.
  12. ↑ История математики, том II, 1970, с. 54—55.
  13. 1 2 3 История математики, том II, 1970, с. 56.
  14. ↑ Гутер Р. С., Полунов Ю. Л., 1980, с. 77.
  15. ↑ История математики, том II, 1970, с. 57—59.
  16. 1 2 История математики, том II, 1970, с. 59—60.
  17. 1 2 3 История математики, том II, 1970, с. 61—62.
  18. ↑ История математики, том II, 1970, с. 66.
  19. ↑ История математики, том II, 1970, с. 57.
  20. Лаптев Б. Л. Ламберт — геометр // Историко-математические исследования. — М.: Наука, 1980. — № 25. — С. 248-252.
  21. ↑ Гутер Р. С., Полунов Ю. Л., 1980, с. 64—65.
  22. ↑ Гутер Р. С., Полунов Ю. Л., 1980, с. 48—54.

Литература

Ссылки

ru.wikipediat.org

Отправить ответ

avatar
  Подписаться  
Уведомление о