Содержание

44. Питание микроорганизмов. Типы питания. Источники энергии и углерода. Автотрофность. Гетеротрофность. Виды автотрофов.

Пища должна содержать такие вещества, которые удовлетворяли бы потребность микроорганизма в химических элементах, необходимых для синтеза веществ и структур клетки.

В зависимости от того, какие химические элементы поступают из веществ питательной среды, последние называют их источниками (источник углерода, фосфора и т. д.).

Кислород и водород все микроорганизмы получают из воды.

Потребности различных микроорганизмов в отношении источников углерода и азота весьма разнообразны.

В зависимости от используемого в конструктивном обмене источника углерода, из которого построены все живые существа, микроорганизмы делят на две группы: автотрофы и гетеротрофы.

*Автотрофы – питающиеся самостоятельно (от греч. «autos» – сам, «trophe» – пища) в качестве единственного источника углерода для синтеза органических веществ тела используют углекислоту.

*Гетеротрофы – питающиеся другими (от греч. «heteros» – другой) не могут использовать в качестве источника углерода только углекислый газ; они нуждаются в готовых органических соединениях.

Автотрофы для превращения не имеющей энергетической ценности углекислоты в органические вещества нуждаются в постороннем источнике энергии.

Одни автотрофы в этих целях используют световую энергию, – этот процесс называется фотосинтезом.

Другие используют химическую энергию, высвобождающуюся при окислении простых неорганических соединений, – этот процесс называется хемосинтезом.

Хемоавтотрофы в качестве источника углерода для синтеза органических веществ используют углекислоту, а в качестве источника энергии – реакции окисления неорганических соединений. Бактерии, окисляющие водород с образованием воды – водородные бактерии, аммиак до нитратов – нитрифицирующие бактерии, сероводород до серной кислоты – бесцветные серобактерии, окисляющие закисное железо в окисное – железобактерии.

В настоящее время хемоавтотрофов подразделяют на следующие группы, получившие свои названия соответственно природе окисляемых субстратов: 1. Нитрифицирующие бактерии. 2. Водородные бактерии. 3. Серобактерии и тионовые бактерии. 4. Железобактерии.

Источник энергии

Донор

электронов

Источник углерода

Органические вещества

Углекислый газ

Свет

Органические вещества

Фотоорганотрофы (пурпурные несерные бактерии)

Фотоорганоавтотрофы (окисление неусваиваемых веществ, некоторые зеленые серные бактерии)

Неорганические вещества

Фотолитогетеротрофы (некоторые зеленые бактерии, гелиобактерии)

Фотолитоавтотрофы (водоросли, цианобактерии)

Источник энергии

Донор электронов

Источник углерода

Органические вещества

Углекислый газ

Энергия химических связей

Органические вещества

Хемооргано-гетеротрофы

(микробы-деструкторы)

Хемоорганоавтотрофы (трудноусваиваемые вещества)

Неоргани-ческие вещества

Хемолитогетеротрофы (некоторые сульфатредукторы)

Хемолитоавтотрофы (сероокисляющие, водородные бактерии, нитрификаторы, железобактерии

studfiles.net

Автотрофы в биологии — определение и примеры автотрофных организмов

Все живые существа по типу питания можно разделить на два вида: автотрофы и гетеротрофы.

Каждый организм нуждается в питании для поддержания своей жизнедеятельности. Именно автотрофы составляют основу пищевой пирамиды, обеспечивая питательными веществами гетеротрофов.

Тем не менее подобное деление в биологии весьма условно – между ними не всегда существует четкая грань. Некоторые организмы способны питаться и тем, и другим способом. Их называют миксотрофами.

Кто такие автотрофы



Автотрофы — это организмы, синтезирующие органические вещества из неорганических соединений. Все вещества, необходимые для развития и жизнедеятельности, они способны получить из окружающей среды.

Важнейший элемент, входящий в состав клеток любой формы жизни – углерод и его соединения. Для организмов, использующих автотрофный тип питания, его источником является углекислый газ.

Характеристика автотрофов


Для протекания процессов метаболизма живому существу необходима энергия, получаемая извне. Этот источник должен быть доступен, поскольку в связи со своим строением, большинство автотрофов практически неподвижны.

Таким образом, источником энергии для них является солнечный свет или эффект химических реакций. По такому признаку все автотрофы делятся на фототрофов и хемотрофов.

Фототрофам для создания органических соединений необходим свет. Благодаря присутствию в клетках хлоропластов, данный вид автотрофов способен фотосинтезировать. В этом процессе кванты света в ходе сложного химического взаимодействия превращаются в питательные вещества.

Хемотрофы получают энергию другим способом – из реакций окисления некоторых химических соединений.

Какие организмы относятся к автотрофам



Энергия света и углекислого газа обеспечивает жизнь подавляющего количества автотрофов – растений, к которым также относятся и мхи.

Водоросли, представляющие собой наиболее древний и простой тип растений, многообразны, а многих из них можно разглядеть только в микроскоп. Даже одноклеточные водоросли, такие как хлорелла, способны к фотосинтезу.

Содержание хлорофилла в клетках – прерогатива не только растений. Некоторые бактерии также содержат этот пигмент и способны синтезировать питательные вещества из световой энергии.

Цианобактерии – одни из древнейших микроорганизмов, питающихся подобным образом и выделяющих кислород. Возможно благодаря им атмосфера молодой Земли наполнилась кислородом миллиарды лет назад.

Микроскопические водоросли и зеленые бактерии способны вступать в симбиоз с грибами. В результате такого взаимодействия образуется симбиотический организм – лишайник.

Каждый участник симбиоза вносит свой вклад – водоросли и цианобактерии добывают питательные вещества с помощью фотосинтеза, а гриб поглощает готовые элементы.

Совмещение различных типов питания встречается не только у лишайников. Некоторые растения помимо автотрофного питания усваивают полезные вещества из тел других организмов – насекомых, мелких животных.

Такие растения называются плотоядными и используют различные виды ловушек для поимки жертвы.

Венерина мухоловка

Например, росянка использует клейкие волоски на кончиках листьев, листья венериной мухоловки захлопываются, а ловушка непентеса выглядит как кувшин с крышкой.

Некоторые одноклеточные водоросли также являются миксотрофами. К примеру, клеточная поверхность хламидомонады способна поглощать жидкость со всеми микроорганизмами, что там находятся.

Бактериям эвглены зеленой, чья модель поведения зависит от освещенности, может быть присуща автотрофность или гетеротрофность.

Хемотрофный тип питания распространен гораздо меньше. Энергию, которая выделяется как результат реакции окисления, способны поглощать простейшие микроорганизмы. Их уникальность заключается в независимости от энергии Солнца.

Эти микроорганизмы могут приспосабливаться к экстремальным условиям обитания – на дне океана, куда не проникает свет, в телах живых существ, в горячих гейзерах.

Автотрофы и гетеротрофы – сходства и отличия

В связи с различиями в способах питания, организмы серьезно отличаются между собой внешне и на клеточном уровне. Они занимают разные места в пищевой цепочке, используют отличные друг от друга вещества для поддержания своей жизни.

Таблица 1

Сравнительная характеристика автотрофов и гетеротрофов

ПризнакАвтотрофыГетеротрофы
Место в пищевой цепиПродуцент – производит питательные вещества самостоятельно.Консумент – потребляет готовые вещества.

Редуцент – перерабатывает органические элементы до неорганических.

Источник энергии для реакций метаболизмаСолнечная энергия.

Энергия, которая выделяется в результате химической реакции.

Органические вещества
Запас углеводовКрахмалГликоген
Наличие клеточной стенки – оболочки клетки, выполняющей функции защиты.ЕстьНет
Реакция на внешние раздражителиОтсутствуетПрисутствует
Системы органовВегетативные и репродуктивныеСоматические и репродуктивные

Тем не менее, являясь тесно связанными между собой представителями жизни на планете Земля, автотрофы и гетеротрофы имеют также схожие черты – потребность в питании, воде, кислороде, солнечном свете.

Роль автотрофных и гетеротрофных организмов в биосфере

Кормильцы живой природы – подходящее определение для автотрофов. Именно они создают органику из неорганических элементов и тем самым обеспечивают пищей гетеротрофов – человека, животных, грибы, бактерий.

Некоторые микроскопические организмы являются активными хищниками: амеба обыкновенная способна захватывать добычу своими ложноножками.

Обособленно стоят вирусы, чья жизнедеятельность возможна только в живой клетке. Вне ее вирус не проявляет никаких признаков деятельности, что придает ему сходство с паразитическими формами жизни.

Природа существует, основываясь на принципе равновесия — существование всех форм жизни тесно связано между собой.

Автотрофы питают гетеротрофов, создавая питательные элементы. Консументы, в результате своей жизнедеятельности, способствуют размножению первых, перенося споры и семена, опыляя цветы растений.

Завершают цепочку редуценты, разлагающие мертвую органику на неорганические элементы. Этим занимаются грибы, в том числе и микроскопические – пеницилл, дрожжи, некоторые бактерии. Именно они возвращают питательные вещества обратно в биосферу.

Так происходит круговорот веществ и элементов в природе, где каждый организм выполняет свою функцию в пищевой пирамиде.

1001student.ru

По способу питания бактерии могут быть автотрофами и гетеротрофами

Каждый живой организм, даже одноклеточный, которым является бактерия, нуждается в питательных веществах. Царство микробов огромно, его представителей отличают между собой по многим признакам. В частности, по способу питания бактерии делятся на автотрофные и гетеротрофные организмы.

Микроорганизмы автотрофного и гетеротрофного способов питания – два огромных звена в круговороте веществ на Земле. Первые создают начальные органические элементы для жизнеобеспечения следующего яруса живых организмов.

Вторые формируют биомассу для питания животных и растений, сопровождают их в течение жизни, затем уничтожают мертвые тела вплоть до неорганических веществ, создавая пищу для автотрофов. Цикл начинается снова.

Принципиальные отличия питания двух групп микробов

Разделение бактерий на две группы стало возможным после изучения их обменных процессов. Оказалось, что одни обладают большей самостоятельностью, чем другие.

  1. Автотрофам свойственно питание неорганическими веществами простейшей структуры (водород, азот, углерод и другие). Из них бактерия самостоятельно создает сложные органические конструкции для жизнедеятельности.
  2. Гетеротрофы нуждаются в готовых органических элементах для своего питания.

Оба вида организмов могут поглощать необходимые им вещества только в виде растворов, поэтому важнейший элемент бактериального питания – вода. Еще она является поставщиком кислорода и водорода для реакций окисления/восстановления.

Автотрофные микроорганизмы

По способам питания автотрофные бактерии относятся к двум подгруппам в зависимости от своего энергообеспечения:

  • фотосинтезирующие бациллы, использующие для обменных процессов энергию светового излучения;
  • хемосинтезирующие организмы, которые для достижения этих целей прибегают к окислительно-восстановительным реакциям.

Автотрофы относятся преимущественно к почвенным микроорганизмам. Они обогащают почву органикой, что делает ее более плодородной. Активно «трудятся» в приземном слое, превращая опавшую листву, пожухлую траву в питательный гумус.

Фактически автотрофы создают органические вещества, которые используются в питании гетеротрофными организмами. А неорганические остатки колоний автотрофных железобактерий через тысячи лет могут стать месторождениями одноименных руд.

Человеческий организм для бактерий данного типа питания не представляет интереса в качестве среды обитания. Тела людей состоят из сложных органических соединений. Для автотрофных микробов они «несъедобны». По-другому относятся к человеческому организму как питательной среде бациллы гетеротрофного способа питания.

Гетеротрофные бактерии

Эти представители микромира существуют за счет других живых организмов, употребляя в пищу составляющие их органические вещества. Есть три исхода «встречи» бактерии-гетеротрофа и хозяина:

  • микроб убивает животное или растение;
  • иммунная защита хозяина уничтожает бациллу;
  • возникает неактивное бактерионосительство или взаимовыгодное сосуществование.

Один и тот же микроорганизм в разных условиях может быть участником любой из трех ситуаций. Первоначальное его попадание в сильный молодой организм закончится смертью микроба или бактерионосительством. Как только организм хозяина ослабеет, бацилла активируется и убьет его.

По признакам взаимоотношений бактерий-гетеротрофов с живыми организмами их условно относят к трем большим группам.

  • Патогенные микробы, которые, паразитируя в организме жертвы, вызывают у нее инфекционные заболевания.
  • Сапрофитная флора – тихий паразит. Эти микробы могут жить в организме хозяина, не причиняя ему неприятностей. Они питаются омертвевшими клетками, остатками веществ, которые прошли через систему пищеварения хозяина.
  • Симбиотические микроорганизмы взамен потребляемых ресурсов организма хозяина вырабатывают для него полезные вещества. Например, клубеньковые бактерии растений или витаминопродуцирующие микроорганизмы кишечника человека. Иногда эта взаимозависимость настолько сильна, что в случае гибели микрофлоры умирает ее бывший носитель.

Значение бактерий разного способа питания для природы и человека

Автотрофные бактерии имеют узкую «специализацию», но от этого их значение для природы не становится меньше, чем гетеротрофов. Автотрофы создают основу для всего органического многообразия на нашей планете. Многие из них становятся «создателями» минеральных месторождений.

У гетеротрофных микробов функций больше.

  1. Естественный отбор, который они осуществляют, уничтожая слабые, больные и старые организмы.
  2. Помощь в жизнеобеспечении (клубеньковые бактерии у растений, вырабатывающие витамины – у животных).
  3. Санитарная роль состоит в гнилостном разложении останков живых существ.

Роль бактерий-гетеротрофов в естественном отборе ясна и прозрачна. Природа стремится к совершенству, поэтому слабые организмы уничтожаются, давая место для появления более сильных особей. Устраняются и генетически несовершенные субъекты, возникающие в процессе эволюции.

Оставшимся оказывается помощь для их развития. Показательны два примера из растительной и животной жизни.

  • Клубеньковые бактерии служат обогащению почвы азотом из воздуха. Они имеют специальные элементы (мезосомы), которые фиксируют азот из окружающей среды. Живут клубеньковые бактерии в корнях растений семейства бобовых.

Попадают они туда через микротрещины, потом выделяют вещества, которые стимулируют размножение клеток корня. На нем возникают клубеньковые утолщения. В них клубеньковые бактерии накапливают азот для обмена с растением на углеводы.

Этот феномен синергизма клубеньковых растений и микроорганизмов люди используют в сельском хозяйстве. Бедные азотом почвы засеивают бобовыми растениями, клубеньковые бактерии которых обогащают их азотом.

По осени их запахивают в землю. Так необходимый азот попадает из погибших растений и клубеньковых микроорганизмов в почву для последующего употребления другими культурами, которыми засеют это поле.

  • Кишечник животных изнутри выстлан гетеротрофными бактериями, которые вырабатывают витамины группы B и K. Таким образом, недостаток их в пище животных и человека восполняют бактерии-симбионты гетеротрофного способа питания.

Помимо этого, гетеротрофы используются для квашения овощей, бродильных процессов. Одним из таких является молочнокислое брожение. В результате получается большое разнообразие молочнокислых продуктов, необходимых для питания человека.

Многие люди имеют аллергию на цельное молоко домашних животных. Употребление молочнокислых продуктов такой реакции не вызывает, потому что белок в них денатурирован. А он ответственен за развитие аллергических реакций.

Заключительная роль гетеротрофов в жизни каждого существа – гнилостное разложение его органических остатков. Процессы гниения необходимы природе так же, как и возникновение жизни. Микроорганизмы, осуществляющие гнилостные разрушения органики, в этот период очень опасны.

Во время гниения даже сапрофиты и симбионты могут переродиться в хищников. Гнилостные массы имеют в своем составе высокие концентрации высокопатогенных микроорганизмов. Но без такой «грязной» работы бактерий немыслимо продолжение жизни.

 

probakterii.ru

Гетеротрофы

По способу получения органических веществ для питания живые организмы делятся на две большие группы – автотрофы и гетеротрофы. Гетеротрофы (др.-греч. ἕτερος – «иной», «различный» и τροφή – «пища») – организмы, которые не способны синтезировать органические вещества из неорганических путём фотосинтеза или хемосинтеза. Для синтеза необходимых для своей жизнедеятельности органических веществ им требуются экзогенные органические вещества, то есть произведённые другими организмами. В процессе пищеварения пищеварительные ферменты расщепляют полимеры органических веществ на мономеры. В сообществах гетеротрофы – это консументы различных порядков и редуценты. Гетеротрофами являются почти все животные и некоторые растения. По способу получения пищи делятся на две противопоставляемые группы: голозойных (животные) и голофитных или осмотрофных (бактерии, многие протисты, грибы, растения).

К гетеротрофным организмам относят организмы, для которых источником углерода служит окисление сложных органических соединений – углеводородов жиров, белков:

  • к фотоавтотрофам – организмы, осуществляющие фотохимические реакции;
  • к хемоавтотрофам – организмы, для которых источником энергии являются реакции окисления неорганических веществ.

Строго гетеротрофные организмы – это животные и человек, использующие органическиесоединения для покрытия энергетического расхода построения и возобновления тканей тела и регуляции жизненных функций. Такие гетеротрофные организмы различают по потребности в тех или иных органических соединениях (что зависит от степени их участия в обмене веществ организмов), а также по возможности синтезирования этих соединении самими организмами.

Выживание гетеротрофов прямо или косвенно зависит от активности автотрофов. Вес животные, грибы и большинство бактерий являются гетеротрофами. Практически все они получают энергию, потребляя пищу; именно вопросам, связанным с питанием гетеротрофов, будет посвящена данная глава. Существуют, однако, некоторые бактерии, способные использовать энергию света для синтеза собственных органических соединений из другого органического сырья. Таких бактерий называют фотогетеротрофами. Гетеротрофы получают пишу самыми разнообразными способами.

Однако пути превращения пиши в удобную для усвоения форму у многих организмов сходны и состоят из следующих процессов:

  1. переваривание – расщепление крупных и сложных молекулярных комплексов, составляющих пишу, до более простых и растворимых форм;
  2. всасывание – поглощение растворимых молекул, полученных в результате переваривания, тканями организма;
  3. ассимиляция – использование поглощенных молекул для тех или иных целей.

Для удобства можно выделить следующие типы гетеротрофного питания: голозонное, сапротрофное, мутуализм и паразитизм, хотя иногда довольно трудно провести четкую границу между перечисленными формами.

Термин голозойное применим в основном к диким животным, со специализированным нише варительным трактом, или каналом. Большинство животных голозойные.

Голозойное питание включает следующие процессы:

  1. Заглатывание обеспечивает захват пищи.
  2. Переваривание – это расщепление крупных органических молекул на более мелкие и легче растворимые в воде. Переваривание можно разделить на два этапа. Механическое переваривание, или механическое разрушение пищи, например зубами. Химическое переваривание – это переваривание при помощи ферментов. Реакции, осуществляющие химическое переваривание, называются гидролитическими. Переваривание может быть как внеклеточным (происходит вне клетки), так и внутриклеточным (происходит внутри клетки).
  3. Всасывание представляет собой перенос растворимых молекул, полученных в результате расшепления питательных веществ, через мембрану в соответствующие ткани. Эти вещества могут попадать либо непосредственно в клетки, либо сначала в кровяное русло, а уже затем переноситься в разные органы.
  4. Усвоение (ассимиляция) – это использование поглощенных молекул для обеспечения энергией или веществами всех тканей и органов.
  5. Выделение (экскреция) – эвакуация из организма непереваренных остатков пищи и выведение конечных продуктов обмена.

Организмы, питающиеся мертвыми или разлагающимися органическими остатками называются сапротрофами. Для обозначения таких организмов иногда используют другие термины, означающие, однако, то же самое – сапрофиты (сапрофитное питание) и сапробионты (сапробионтное питание). Многие грибы и бактерии являются сапротрофами, например грибы Mucor, Rhizppus и дрожжи. Для переваривания сапротрофы выделяют в пищу ферменты, а затем поглощают и усваивают продукты этого внеклеточного переваривания. Сапротрофы питаются мертвыми органическими остатками растений и животных. Таким образом, сапротрофы уничтожают органические остатки путем их разложения. Многие из образующихся простых веществ не используются самими сапротрофами, поэтому они поступают в пищу растениям. Следовательно, активность сапротрофов обеспечивает весьма важные связи между круговоротами биогенных элементов, делая возможным возврат этих элементов живым организмам.

Мутуализм

Мутуализм представляет собой тесные отношения между двумя живыми организмами различных видов, взаимовыгодные для обоих «партнерои». Например, актиния Calliactis прикрепляется к раковине, в которой живет рак-отшельник. Актиния питается остатками пищи рака-отшельника и «путешествует» вместе с ним. В то же время актиния маскирует жилище рака и обеспечивает его защиту при помощи стрекательных клеток, расположенных в щупальцах. По-видимому, актиния не может существовать, не прикрепившись к раковине рака-отшельника, но и тот, если актиния вдруг покинет его, начинает искать другую, которую и перенесет на свою раковину. Травоядные жвачные животные содержат в пищеварительном тракте великое множество бактерий и ресничных инфузорий, переваривающих целлюлозу. Эти микроскопические организмы способны выживать только в анаэробных условиях пищеварительного тракта жвачных животных. Здесь бактерии и инфузории питаются целлюлозой, в большом количестве содержащейся в пище хозяина, превращая ее в более простые соединения, которые жвачные уже способны переварить дальше и усвоить. В качестве важного примера мутуализма можно привести образование корневых клубеньков бактерией Rhizobium. Другими примерами служат микориза и эндосимбиоз.

Паразитизм

Паразитизм представляет собой тесное взаимодействие между двумя живыми организмами различных видов, которое выгодно одному из них (паразиту), но при этом наносит вред другому (хозяину). От хозяина паразит получает не только пищу, но и убежище. Удачливый паразит способен жить с хозяином, не нанося ему большого вреда. Иногда бывает трудно установить степень приносимых пользы или вреда. Паразиты, живущие на наружной поверхности хозяина, называются эктопаразитами (например, клеши, блохи, пиявки). Они не всегда ведут исключительно паразитический образ жизни. Паразиты, обитающие внутри хозяина, получили название эндопаразитов, например Plasmodium (простейшее, вызывающее малярию), свиной цепень Taenia и печеночная двуустка Fascioia. Если организм постоянно ведет паразитический образ жизни, то его называют облигатным паразитом, например Phytophthora, вызывающая раннюю гниль картофеля. К факультативным паразитам относятся грибы, которые, помимо паразитического способа питания, используют и сапротрофный. Примерами таких организмов могут служить гриб Candida, вызывающий молочницу у человека, и Pythium, вызывающий выпревание рассады. В некоторых случаях факультативные паразиты (например, Pythium) убивают слоих хозяев, а затем живут сапротрофно на мертвых остатках.

Автотрофные организмы

Автотрофные организмы способны из неорганических веществ синтезировать органические. Необходимые для синтеза неорганические вещества берутся из воздуха, почвы или воды. Так, например, при синтезе используется углекислый газ, в молекулы которого входят атомы углерода. Углерод входит в состав всех органических веществ.

Для синтеза органических веществ из неорганических необходима энергия. Большинство автотрофных организмов (в том числе растения) используют энергию солнечного света. Синтез органических веществ под действием солнечного света из неорганических называется фотосинтезом. Организмы, способные к фотосинтезу, называются фототрофами.

Для фотосинтеза необходимо вещество хлорофилл, который у большинства растений содержится в специальных клеточных органеллах – хлоропластах.

Однако некоторые организмы (в основном ряд бактерий) получают энергию для синтеза органических веществ из неорганических из энергии химических связей различных веществ. Такие организмы называются хемотрофами, а процесс такого синтеза – хемосинтезом.

Размытые границы

Интересно, что четкой границы между различными категориями организмов нет, ведь все живое постоянно приспосабливается к условиям существования, вырабатывая новые, порой совершенно невероятные механизмы выживания. Существует большая группа миксотрофов, занимающих промежуточное положение между гетеротрофами и автотрофами.

венерина мухоловка

К ним относятся, в частности, насекомоядные растения, например – венерина мухоловка. Это растение образует органику с помощью фотосинтеза, но часть питательных веществ получает из тел насекомых, которых успешно заманивает в особые ловушки.

Растения-гетеротрофы, являющиеся паразитами, научились извлекать пищу из других растений, поэтому полностью или частично утратили способность к фотосинтезу.

Ну а редуцентами в некоторой степени могут считаться все живые существа, ведь в процессе жизнедеятельности все живое выделяет воду, углекислый газ и простейшие органические соединения, то есть участвует в процессе разложения органики. История с гетеротрофами и автотрофами лишний раз показывает, насколько сложно и интересно устроена жизнь на нашей планете и как бережно человек должен относиться к ней.

Определения гетеротрофов в научной литературе

  • Гетеротрофы – организмы, не способные синтезировать сложные органические вещества своих тел из простых неорганических соединений. Они извлекают из внешней среды и потребляют готовую пищу. В качестве источника питания им служит живая и мертвая масса разных видов организмов, продуктов их жизнедеятельности. К гетеротрофам относят животных, грибы, актиномицеты, некоторые виды бактерий и водорослей, бесхлорофилльные высшие растения. Сельскохозяйственные млекопитающие и птицы – гетеротрофы.
  • Гетеротрофы – организмы, использующие для питания органические вещества, произведенные другими живыми организмами, и не способные синтезировать органические вещества из неорганических.
  • Гетеротрофы – разлагают органическое вещество до углекислого газа, воды, минеральных солей и возвращают их в окружающую среду. Этим обеспечивается круговорот веществ, который возник в процессе эволюции как необходимое условие существования жизни. При этом световая энергия солнца трансформируется живыми организмами в другие формы энергии – химическую, механическую, тепловую.
  • Гетеротрофы (от гетеро… и греч. – питание) – организмы, использующие в качестве источника питания органические вещества, произведенные автотрофами. К ним относятся все животные (включая человека), грибы и большинство микроорганизмов. В пищевой цепи экосистем они составляют группу консументов.
  • Гетеротрофы (питающиеся другими) – организмы, потребляющие готовое органическое вещество других организмов и продуктов их жизнедеятельности. Это все животные, грибы и ббльшая часть бактерий.
  • Гетеротрофы (от греческого geteг – другой) – организмы, нуждающиеся для своего питания в органическом веществе, образованном другими организмами. Гетеротрофы способны разлагать все вещества, образуемые автотрофами, и многие из тех, что синтезирует человек.
  • Гетеротрофы потребляют в пищу либо живые, либо отмершие ткани других организмов. Эта органика обеспечивает химической энергией гетеротрофные организмы для осуществления реакций вторичного фотосинтеза.
  • Гетеротрофы (от греч. heteros-другой) – это организмы, использующие для своего питания чужие тела (живые или мертвые), то есть готовые органические вещества. Очевидно, что жизнедеятельность гетеротрофов полностью определяется синтетической активностью автотрофов.

Видео

Источники

animals-mf.ru

Бактерии-гетеротрофы и автотрофы, а также сапрофиты, хемосинтетики и хемотрофы

Питание. Бактерии бывают автотрофами и гетеротрофами. Автотрофы («сами себя питающие») не нуждаются в веществах, произведенных другими организмами. В качестве главного или единственного источника углерода они используют его диоксид (CO2). Включая CO2 и другие неорганические вещества, в частности аммиак (Nh4), нитраты (NO–3) и различные соединения серы, в сложные химические реакции, они синтезируют все необходимые им биохимические продукты.

Гетеротрофы («питающиеся другим») используют в качестве основного источника углерода (некоторым видам нужен и CO2) органические (углеродсодержащие) вещества, синтезированные другими организмами, в частности сахара. Окисляясь, эти соединения поставляют энергию и молекулы, необходимые для роста и жизнедеятельности клеток. В этом смысле гетеротрофные бактерии, к которым относится подавляющее большинство прокариот, сходны с человеком.

Главные источники энергии. Если для образования (синтеза) клеточных компонентов используется в основном световая энергия (фотоны), то процесс называется фотосинтезом, а способные к нему виды – фототрофами. Фототрофные бактерии делятся на фотогетеротрофов и фотоавтотрофов в зависимости от того, какие соединения – органические или неорганические – служат для них главным источником углерода.

Фотоавтотрофные цианобактерии (сине-зеленые водоросли), как и зеленые растения, за счет световой энергии расщепляют молекулы воды (h3O). При этом выделяется свободный кислород (1/2O2) и образуется водород (2H+), который, можно сказать, превращает диоксид углерода (CO2) в углеводы. У зеленых и пурпурных серных бактерий световая энергия используется для расщепления не воды, а других неорганических молекул, например сероводорода (h3S). В результате также образуется водород, восстанавливающий диоксид углерода, но кислород не выделяется. Такой фотосинтез называется аноксигенным.

Фотогетеротрофные бактерии, например пурпурные несерные, используют световую энергию для получения водорода из органических веществ, в частности изопропанола, но его источником у них может служить и газообразный h3.

Если основной источник энергии в клетке – окисление химических веществ, бактерии называются хемогетеротрофами или хемоавтотрофами в зависимости от того, какие молекулы служат главным источником углерода – органические или неорганические. У первых органика дает как энергию, так и углерод. Хемоавтотрофы получают энергию при окислении неорганических веществ, например водорода (до воды: 2h5 + O2 ® 2h3O), железа (Fe2+ ® Fe3+) или серы (2S + 3O2 + 2h3O ® 2SO42– + 4H+), а углерод – из СO2. Эти организмы называют также хемолитотрофами, подчеркивая тем самым, что они «питаются» горными породами.

Дыхание. Клеточное дыхание – процесс высвобождения химической энергии, запасенной в «пищевых» молекулах, для ее дальнейшего использования в жизненно необходимых реакциях. Дыхание может быть аэробным и анаэробным. В первом случае для него необходим кислород. Он нужен для работы т.н. электронотранспортной системы: электроны переходят от одной молекулы к другой (при этом выделяется энергия) и в конечном итоге присоединяются к кислороду вместе с ионами водорода – образуется вода.

Анаэробным организмам кислород не нужен, а для некоторых видов этой группы он даже ядовит. Высвобождающиеся в ходе дыхания электроны присоединяются к другим неорганическим акцепторам, например нитрату, сульфату или карбонату, или (при одной из форм такого дыхания – брожении) к определенной органической молекуле, в частности к глюкозе

БАКТЕРИИ И ПРОМЫШЛЕННОСТЬ

Учитывая разнообразие катализируемых бактериями химических реакций, неудивительно, что они широко используются в производстве, в ряде случаев с глубокой древности. Славу таких микроскопических помощников человека прокариоты делят с грибами, в первую очередь – дрожжами, которые обеспечивают большую часть процессов спиртового брожения, например при изготовлении вина и пива. Сейчас, когда стало возможным вводить в бактерии полезные гены, заставляя их синтезировать ценные вещества, например инсулин, промышленное применение этих живых лабораторий получило новый мощный стимул.

Пищевая промышленность. В настоящее время бактерии применяются этой отраслью в основном для производства сыров, других кисломолочных продуктов и уксуса. Главные химические реакции здесь – образование кислот. Так, при получении уксуса бактерии рода Acetobacter окисляют этиловый спирт, содержащийся в сидре или других жидкостях, до уксусной кислоты. Аналогичные процессы происходят при квашении капусты: анаэробные бактерии сбраживают содержащиеся в листьях этого растения сахара до молочной кислоты, а также уксусной кислоты и различных спиртов.

БОРЬБА С БАКТЕРИЯМИ В ПРОМЫШЛЕННОСТИ

Бактерии приносят не только пользу; борьба с их массовым размножением, например в пищевых продуктах или в водных системах целлюлозно-бумажных предприятий, превратилась в целое направление деятельности.

Пища портится под действием бактерий, грибов и собственных вызывающих автолиз («самопереваривание») ферментов, если не инактивировать их нагреванием или другими способами. Поскольку главная причина порчи все-таки бактерии, разработка систем эффективного хранения продовольствия требует знания пределов выносливости этих микроорганизмов.

Одна из наиболее распространенных технологий – пастеризация молока, убивающая бактерии, которые вызывают, например, туберкулез и бруцеллез. Молоко выдерживают при 61–63° С в течение 30 мин или при 72–73° С всего 15 с. Это не ухудшает вкуса продукта, но инактивирует болезнетворные бактерии. Пастеризовать можно также вино, пиво и фруктовые соки.

Давно известна польза хранения пищевых продуктов на холоде. Низкие температуры не убивают бактерий, но не дают им расти и размножаться. Правда, при замораживании, например, до –25° С численность бактерий через несколько месяцев снижается, однако большое количество этих микроорганизмов все же выживает. При температуре чуть ниже нуля бактерии продолжают размножаться, но очень медленно. Их жизнеспособные культуры можно хранить почти бесконечно долго после лиофилизации (замораживания – высушивания) в среде, содержащей белок, например в сыворотке крови.

К другим известным методам хранения пищевых продуктов относятся высушивание (вяление и копчение), добавка больших количеств соли или сахара, что физиологически эквивалентно обезвоживанию, и маринование, т.е. помещение в концентрированный раствор кислоты. При кислотности среды, соответствующей pH 4 и ниже, жизнедеятельность бактерий обычно сильно тормозится или прекращается.

Бактерии гетеротрофы

Гетеротрофы (от греческих слов heteros — иной, другой и irophe — пища) — живые организмы, существующие за счет потребления готовых органических веществ, создаваемых автотрофами.

Микробы, которые усваивают органические соединения (сахары, аминокислоты), называются гетеротрофами. Микробы-гетеротрофы строят свое тело не из кирпичиков, а из целых блоков. Такое «крупноблочное строительство» требует меньшего числа ферментов. Выделяясь из клетки, часть из этих ферментов разлагает органические вещества внешней среды на более простые составные части; попадая в клетку, части эти и играют роль блоков.

В отличие от автотрофов гетеротрофные организмы неспособны синтезировать питательные вещества из неорганических соединений. Гетеротрофы вынуждены поэтому либо жить за счет автотрофов, либо питаться разлагающимися остатками.

Среди гетеротрофов выделяется группа паратрофов. Эти микробы питаются, так сказать, лишь полуфабрикатами, веществами, которые производят живые организмы.

Бактерии гетеротрофы

Чтобы из такого полуфабриката получить «готовое изделие», нужно уже немного усилий.

Где же микробы берут вещества для питания? Способ питания, а значит, и ферментный набор микробов во многом определяется теми условиями, в которых они живут (а может быть, вернее будет сказать, что ферментные наборы микробов определяют место их обитания).

Микробы вездесущи. Многие из них живут там, где ничто другое не может жить, — в воде горячих минеральных источников, например. Это типичные аутотрофы: для своей жизни они не нуждаются в присутствии других живых существ.

Бесчисленное множество микроорганизмов пользуется продуктами жизнедеятельности растений и животных и даже микробов — аутотрофов, то есть веществами, уже прошедшими частичную переработку. Все микробы брожения и гниения — гетеротрофы. Число их видов, наверное, никогда не будет подсчитано. Они живут на растительных и животных останках и в теле животных, например в кишечнике.

Ну, а паратрофы — постоянные «иждивенцы» других живых существ. Их отношения с «хозяином» (так называют организм, которому они сопутствуют) могут быть различными. Случается, что их присутствие более или менее безразлично для него; иногда они приносят ему пользу, а иногда вред (в этом случае их называют паразитами).

К гетеротрофам относятся все животные и человек, грибы, а также растения и микроорганизмы, не обладающие способностью к фотосинтезу или хемосинтезу. Все необходимые органические вещества гетеротрофы-животные получают в конечном счете из автотрофных организмов. При переваривании органические вещества автотрофов превращаются в низкомолекулярные соединения и в таком виде усваиваются гетеротрофами. Все такие животные обладают голозойным (животным) типом питания (от греческих слов holos — весь, целый и zoon — животное). Голозойные животные делятся на травоядных (точнее — растительноядных) и плотоядных в широком смысле этого слова. Есть, впрочем, и всеядные животные, которые могут питаться и растительными и животными организмами, например медведь, свинья. К всеядным гетеротрофам относится и человек. У других гетеротрофов тип питания сапрофитный. Он характерен для грибов и бактерий. Эти организмы не заглатывают пищу, а получают органические вещества в растворенном виде через клеточные стенки. Примером сапрофитов могут служить дрожжи (из органических веществ им необходим сахар). Без сапрофитов был бы невозможен круговорот веществ в природе, поскольку они осуществляют разложение и минерализацию органических веществ. Особую группу гетеротрофов составляют организмы-паразиты. Граница между гетеротрофами и автотрофами не всегда точна, так как известно, что некоторые бактерии и грибы способны усваивать углекислый газ.

Дрожжи, плесневые грибы и большинство бактерий не могут заглатывать твердую пищу; они поглощают необходимые им органические вещества непосредственно через клеточные стенки. Такой тип гетеротрофного питания называется сапрофитным. Сапрофиты могут расти только в таких местах, где имеются разлагающиеся организмы, животные или растительные, или же скопления продуктов жизнедеятельности растений и животных.

Дрожжи — типичные сапрофитные растения. Они нуждаются лишь в неорганических солях, кислороде и определенном типе сахара. Последний служит источником энергии и исходным продуктом для образования всех других необходимых для жизни веществ — белков, жиров, нуклеиновых кислот, витаминов и т. п. При достаточном доступе кислорода дрожжи получают энергию в результате полного окисления глюкозы до двуокиси углерода и воды через цикл превращения органических кислот с образованием лимонной кислоты. При недостатке кислорода дрожжи сбраживают глюкозу с образованием спирта и двуокиси углерода. Превращение глюкозы в пировиноградную кислоту в ходе гликолиза и дальнейшее превращение пировиноградной кислоты в спирт и двуокись углерода дает всего около половины энергии, получаемой при полном окислении глюкозы; поэтому в отсутствие кислорода дрожжи растут очень медленно.

Дрожжи используются для производства всех спиртных напитков, а также технического этилового спирта, используемого во многих производственных процессах в качестве растворителя или сырья, например, для получения пластмасс и синтетического каучука. Дрожжи весьма устойчивы к токсическому действию спирта и продолжают образовывать его до тех пор, пока его концентрация не достигнет 12%, после чего их жизнедеятельность подавляется. Для получения более крепких спиртных напитков (например, коньяка или виски) вино или сусло подвергают перегонке.

При добавлении к тесту дрожжи сбраживают некоторые сахара, превращая их в спирт и двуокись углерода. Большая часть спирта в процессе хлебопечения испаряется, тогда как пузырьки СO2 заставляют тесто подниматься, благодаря чему хлеб получается пышным и ноздреватым.



Зоология как комплексная наука о животных

Система органического мира

Общая характеристика одноклеточных животных.

А.Надцарствонеклеточных организмов (вирусы).

Б. Надцарство доядерных организмов (procaryota) – настоящее ядро с ядерной мем –браной отсутствует.

Царство Дробянки (Mychota)

Подцарство бактерий (Bacteriobionta)

Подцарство цианеи (Cyanobionta)

В. Надцарство ядерных организмов (eucaryota) – организмы с настоящим ядром, окруженным ядерной мембраной.

Сюда входят 3 царства:

1.Царствоживотных (Animalia)

1. Подцарство простейших (Protozoa)

2. Подцарство многоклеточных животных (Metazoa)

П.Царствогрибов (Mycota)

Ш. Царство растений (Plantae)

Зоология – это наука, изучающая животных, которые в настоящее время обитают на Земле или существовали в прошлые эпохи. Зоология исследует внешнее и внутреннее строение животных, функции отдельных органов и систем органов, поведение, размножение и индивидуальное развитие, а также происхождение, эволюцию и значение животных в природе и для человека.

Органический мир, составляющий биомассу Земли, представлен в основном двумя ветвями: растениями и животными, которые отличаются рядом особенностей. Основное отличие заключается в способе питания.

Растения питаются автотрофно. Они способны усваивать неорганические вещества и на основе сложного химического процесса – фотосинтеза – строят органические вещества.

Для животных характерен гетеротрофный способ питания – готовыми органическими веществами.

Вторым существенным различием является способность животных к передвижению, что обеспечивается наличием у них нервной и мышечной систем, отсутствующих у растительных организмов. У некоторых высших растений(мимоза, росянка и др.) наблюдается движение отдельных частей, а многие низшие одноклеточные растения могут передвигаться в пространстве.

Клетки тела животных обычно не имеют целлюлозных оболочек и не содержат вакуолей клеточного сока, весьма характерных для клеток растений. Но и эти отличия в строении клеток присущи не всем животным и растениям.

Таким образом, провести резкую границу между животными и растениями невозможно. Если высшие сложно организованные животные и растения всегда значительно отличаются друг от друга по ряду признаков, то низшие их формы (особенно одноклеточные), нередко обнаруживают многие черты сходства. Клеточное строение тела тех и других также свидетельствует об общности их происхождения. Развитие растений и животных начинается с одной клетки, клетки построены по единому плану и с одинаковой жизнедеятельностью.

Несмотря на то, что биомасса животных нашей планеты невелика и составляет около 2% всего живого, роль их в биосфере значительна. Это определяется высоким уровнем энергетических процессов у животных, их большой подвижностью и исключительным разнообразием.

Животные всех типов и классов играют существенную роль в биологическом круговороте веществ на нашей планете, в трансформации солнечной энергии в сложных биологических системах, а следовательно, в непрерывном возобновлении жизни на планете и в поддержании постоянства среды жизни человека на Земле.

В упрощенной схеме биологический круговорот веществ выглядит следующим образом:

— зеленые растения, используя солнечную энергию, создают первичную продукцию живого вещества, потребляют углекислоту и выделяют кислород. Это первое звено – продуценты, или производители.

— животные поедают растения, потребляют кислород и выделяют углекислоту.

Гетеротрофы

Это второе звено – консументы или потребители. Различают консументов 1 порядка (фитофаги), П порядка (плотоядные животные, питающиеся фитофагами), Ш порядка (хищники, питающиеся другими животными).

— замыкают пищевые цепи сапрофаги, в основном это бактерии, грибы, которые разлагают, минерализуют органические вещества до простых растворимых соединений, возвращая их в мир неживой природы. Это третье звено – деструкторы или редуценты. Среди сапрофагов имеется и множество почвенных животных, которые переваривают мертвые ткани растений вместе с заселяющими их микробами. Но окончательное разложение и самих животных – сапрофагов, и их экскрементов заканчивают микробы.

Таким образом, животные в результате своей трофической деятельности осуществляют миграцию химических элементов в биогенном круговороте.

12Следующая ⇒

Дата добавления: 2014-01-04; Просмотров: 969; Нарушение авторских прав?;

Читайте также:

Классификация микроорганизмов по способам питания. Сущность автотрофного и гетеротрофного питания. Сапрофиты и паразиты. Привести примеры

12Следующая ⇒

Вариант 2

2.Мир микроорганизмов и его разнообразие.

28.Классификация микроорганизмов по способам питания. Сущность автотрофного и гетеротрофного питания. Сапрофиты и паразиты. Привести примеры.

Особенности развития и питания бактерий-гетеротрофов

Явление антагонизма. Антибиотики и их применение в растениеводстве.

Мир микроорганизмов и его разнообразие.

Микроорганизмы мельчайшие организмы, имеющие различное строение и разнообразные биологические свойства. Изучением строения микроорганизмов, их морфологии и физиологии, жизненных циклов и систематики, наследственности и изменчивости, взаимоотношений микроорганизмов с внешней средой и организмом человека или животного занимается микробиология.

Микроорганизмы, имеющие клеточную организацию, могут относиться к эукариотам или к прокариотам. Первая группа включает Грибы и Простейшие, вторая — Бактерии. К микроорганизмам можно отнести также неклеточные формы жизни — вирусы, вироиды и прионы.

Микроорганизмы широко распространены в природе. Они находятся в почве, воде, воздухе, в организме и на поверхности тела человека и животных, на растениях, различных предметах, в пищевых продуктах. Микроорганизмы играют важную роль в круговороте веществ в природе. С помощью микроорганизмов почвы осуществляются биологический круговорот углерода, азота, фосфора, фиксация молекулярного азота воздуха, благодаря их жизнедеятельности происходят разложение и минерализация животных и растительных остатков, попадающих в почву, процесс ее самоочищения от нечистот и отбросов. Микроорганизмы, обитающие в воде, участвуют в круговороте серы, железа и других элементов, осуществляют разложение органических веществ животного и растительного происхождения, обеспечивают самоочищение воды в водоемах. Микрофлора, заселяющая организм человека и животных, играет важную роль в их жизнедеятельности. Многие микроорганизмы используют для получения биологически активных соединений (в т. ч. антибиотиков, иммуномодуляторов и др.), различных пищевых, например кисломолочных, продуктов. В сельском хозяйстве применяют бактериальные удобрения, с помощью микроорганизмов осуществляют консервирование кормов.

Относительно небольшая часть микроорганизмов является условно-патогенной или патогенной для человека и животных. Некоторые микроорганизмы вызывают поражение с.-х. продуктов, приводят к обеднению почвы азотом, обладают деструктивным действием на объекты окружающей среды, санитарно-технические, производственные и другие сооружения и объекты, вызывают цветение и загрязнение водоемов, накопление ядовитых веществ (сероводорода, нитритов, микробных токсинов).

Микроорганизмы отличаются хорошей приспособляемостью к действию факторов внешней среды. Различные микроорганизмы могут расти при температуре от -6° до +50—75° ( архебактерии — при температуре около 300°, создаваемой под давлением в горячих источниках на дне океана), повышенном уровне ионизирующего излучения, любом значении рН, при 25% концентрации хлорида натрия, в условиях различного содержания кислорода (вплоть до полного его отсутствия)

Классификация микроорганизмов по способам питания. Сущность автотрофного и гетеротрофного питания. Сапрофиты и паразиты. Привести примеры.

В соответствии с принятой сейчас классификацией микроорганизмы по типу питания разделяют на ряд групп в зависимости от источников потребления энергии и углерода. Так, выделяют:

  • фототрофы, пользующиеся энергией солнечного света,
  • хемотрофы, энергетическим материалом для которых служат разнообразные органические и неорганические вещества.

В зависимости от того, в какой форме микроорганизмы получают из окружающей среды углерод, их подразделяют на две группы:

  • автотрофные («сами себя питающие»), использующие в качестве единственного источника углерода диоксид углерода,
  • гетеротрофные («питающиеся за счет других»), получающие углерод в составе довольно сложных восстановленных органических соединений.

Таким образом, по способу получения энергии и углерода микроорганизмы можно подразделить:

  • фотоавтотрофы,
  • фотогетеротрофы,
  • хемоавтотрофы и
  • хемогетеротрофы.
  • Внутри группы в зависимости от природы окисляемого субстрата, называемого донором электронов (Н-донором), в свою очередь, выделяют:
  • органотрофы, потребляющие энергию при разложении органических веществ, и
  • литотрофы (от греч. lithos — камень), получающие энергию за счет окисления неорганических веществ.

Поэтому в зависимости от используемого микроорганизмами источника энергии и донора электронов следует различать:

  • фотоорганотрофы,
  • фотолитотрофы,
  • хемоорганотрофы
  • хемолитотрофы.

Таким образом, выделяют восемь возможных типов питания.

Каждой группе микроорганизмов присущ определенный тип питания.

  • Фототрофиия источник энергии — солнечный свет.
  • Фотолитоавтотрофия — тип питания, характерный для микроорганизмов, использующих энергию света для синтеза веществ клетки из С02 и неорганических соединений (Н20, Н2S, S°), т.е. осуществляющих фотосинтез.

К данной группе относят цианобактерий, пурпурных серных бактерий и зеленых серных бактерий.

Цианобактерий (порядок Суаnobасtеriа1еs), как и зеленые растения, восстанавливают С02 до органического вещества фотохимическим путем, используя водород воды.

  • Фотоорганогетеротрофия — тип питания, характерный для микроорганизмов, которые для получения энергии помимо фотосинтеза могут использовать еще и простые органические соединения.

К этой группе относятся пурпурные несерные бактерии.

Пурпурные серные бактерии (семейство Chromatiaceae) содержат бактериохлорофиллы а и b, обусловливающие способность данных микроорганизмов к фотосинтезу, и различные каротиноидные пигменты.

  • Фотоорганогетеротрофия — тип питания, характерный для микроорганизмов, которые для получения энергии помимо фотосинтеза могут использовать еще и простые органические соединения.

К этой группе относятся пурпурные несерные бактерии.

Пурпурные несерные бактерии (семейство Rhjdospirillaceae) содержат бактериохлорофиллы а и b, а также различные каротиноиды.

Они не способны окислять сероводород (Н2S), накапливать серу и выделять ее в окружающую среду.

  • При хемотрофии энергетический источник — неорганические и органические соединения.
  • Хемолитоавтотрофия — тип питания, характерный для микроорганизмов, получающих энергию при окислении неорганических соединений, таких, как Н2, Nh5+, N02-, Fе2+, Н2S, S°, S0з2 — , S20з2-, СО и др. Сам процесс окисления называют хемосинтезом. Углерод для построения всех компонентов клеток хемолитоавтотрофы получают из диоксида углерода.

По характеру пищи, используемой в процессе жизнедеятельности, все живые организмы делятся на автотрофных и гетеротрофных. Неорганические составные — CO2, h3O и др. служат основной пищей для автотрофных организмов (большинство растений), которые синтезируют из них путём фотосинтеза или хемосинтеза органические вещества: белки, жиры, углеводы, составляющие пищу гетеротрофных организмов (ряд растений, все Грибы, животные и человек). Помимо белков жиров и углеводов гетеротрофным организмам необходимы витамины, нуклеиновые кислоты и микроэлементы.

Автотрофы-организмы, синтезирующие из неорганических соединений органические вещества. Часть организмов (фотоавтотрофы) использует для этого энергию солнца.

К ним относятся высшие растения (исключение составляют растения-паразиты), водоросли (фотоавтотрофные протисты), фотосинтезирующие бактерии. Они получают энергию в ходе фотосинтеза, осуществляющегося в хлоропластах (эукариоты) или на клеточных мембранах (прокариоты).

В ходе фотосинтеза образуется не только глюкоза, но и аминокислоты, используемые для построения белков. Другие организмы используют для этого энергию, высвобождающуюся в ходе химических реакций. Такие организмы называются хемоавтотрофами.

Автотрофы являются продуцентами в сообществах, именно они составлют первый ярус в пищевой пирамиде (первые звенья пищевых цепей)

Гетеротрофы — организмы, которые не способны синтезировать органические вещества из неорганических. Для синтеза необходимых для своей жизнедеятельности органических веществ им требуются органические вещества, произведённые другими организмами. В процессе пищеварения пищеварительные ферменты расщепляют полимеры органических веществ на мономеры. В сообществах гетеротрофы — это консументы различных порядков и редуценты.

Некоторые организмы (например, хищные растения) сочетают в себе признаки как автотрофов, так и гетеротрофов. Такие организмы называются миксотрофами.

У низших организмов выделяют три типа питания продуктами в основном растительного происхождения, т.е. гетеротрофного питания: симбиотический, паразитический и сапрофитный.

При симбиотическом питании один организм питается отходами другого, не причиняя ему вреда. Например, нитрифицирующие бактерии, живущие на бобовых растениях снабжают их азотом. В кишечнике млекопитающих находятся бактерии, помогающие расщеплять питательные вещества, например кишечная палочка E.coli. Благодаря безвредности данной бактерии для человека она широко используется при создании БСС.

При паразитическом питании организм-паразит разрушает системы жизнедеятельности организма-хозяина.

При сапрофитномпитании организмы выделяют ферменты на мертвый или разлагающийся органический материал.

К ним относятся грибы, ряд бактерий и насекомых. Некоторые сапрофиты выделяют ферменты протеазы, способные разлагать белки, растворять оболочки других клеток, в том числе болезнетворных. Поэтому протеазы широко применяют в качестве объектов биотехнологии в моющих средствах, а также в БСС для обнаружения с помощью ферментативных реакций различных специфичных для них белков-субстратов.

12Следующая ⇒

Дата добавления: 2015-11-23; просмотров: 1626 | Нарушение авторских прав

Похожая информация:

Поиск на сайте:

Питание микроорганизмов. Гетеротрофные микроорганизмы. Различная степень гетеротрофности

Гетеротрофность – понятие достаточно широкое, объединяющее разные группы микроорганизмов. Обычно такие микроорганизмы извлекают энергию с помощью хемосинтеза.

Хемоорганотрофы (хемогетеротрофы) в качестве источников энергии и углерода используют органические соединения. Таким типом питания обладают многие бактерии и все грибы.

К гетеротрофным бактериям относят следующие группы:

-Облигатные внутриклеточные паразиты (от греч. parasitos – нахлебник) проявляют наибольшую степень гетеротрофности. Эти организмы приспособлены к жизни только внутри хозяйских клеток. Паразитический образ жизни привел к возникновению некоторых адаптаций, в результате которых редуцировались некоторые метаболические пути этих бактерий.

-Факультативные паразиты способны расти на искусственных питательных средах, хотя их состав обычно достаточно сложен. Кроме того, необходимо создание особых условий для роста таких бактерий. Факультативные паразиты способны вызывать инфекции и использовать органические вещества клеток и тканей других организмов.

-Сапрофитные бактерии (от греч. «sapros» – гнилой, «phyton» – растение) – гетеротрофные организмы, нуждающиеся в готовых органических веществах животного и растительного происхождения. От других организмов у данной группы нет специфической зависимости.

-Копиотрофные (эвтрофные) микроорганизмы (от греч. «copiosus» – изобилие) – особая группа гетеротрофных бактерий, обитающих в водоемах. Такие бактерии нуждаются в больших концентрациях органики в воде.

-Олиготрофные бактерии (от греч. «oligos» – малый) – группа гетеротрофных бактерий, обитающих в водоемах и нуждающихся в незначительных концентрациях органических веществ в воде.

Однако резкую грань между этими подгруппами гетеротрофов не всегда можно установить.

Болезнетворные бактерии где обитают и питание (Автотрофы или Гетеротрофы)ОТВЕТЬТЕ ПЖ!

Отдельные виды микробов-паразитов могут существовать во внешней среде как сапрофиты, и наоборот, некоторые сапрофиты в определенных условиях вызывают заболевания у людей, животных и растений.

Многие сапрофиты всеядны, т. е. способны использовать в качестве источника углерода разнообразные органические соединения; некоторые проявляют выраженную специфичность (избирательность) в отношении источника углерода.

Существуют и такие, которые используют только определенное вещество, их называют субстрат-специфичными микроорганизмами.

Сапрофиты наряду с органическими соединениями используют и CO2, вовлекая его в обмен веществ. Углекислый газ служит дополнительным источником углерода для биосинтеза веществ тела.

Важной в природе физиологической группой, нуждающейся в простых углеродных субстратах, являются метаногенные бактерии. Это древнейшие организмы, относящиеся к царству архей, приспособлены к потреблению СО, h3/СО2, формиат, ацетат, метанол и др.. Из этих простых субстратов с помощью ферментов: коэнзим М, никель-корриноид, метанофуран, метаноптерин, гидрогеназа, метаногены синтезируют метан. Метаногены являются строгими анаэробами, широко распространены в природе и занимают важное место в глобальном круговороте веществ. Бактерии этой физиологической группы имеют в родовом названии приставку Methano-.

Карбоксидобактерии – микроорганизмы, способные использовать в метаболизме оксид углерода. В природном круговороте СО появляется, в основном, за счет антропогенного воздействия, горения лесов и торфа, вулканической деятельности и в атмосфере подвергается фотоокислению до углекислого газа. Карбоксидобактерии аэробны, способные синтезировать СО-дегидрогеназу и использовать СО как донор электронов. Использовать СО способны сульфидогены, метаногены, гомоацетогены, фототрофы.

Метилотрофные микроорганизмы способны расти на одноуглеродных соединениях – веществах, в состав молекулы которых входит один или несколько атомов углерода, но не содержится С–С связей.

Наиболее широко распространены в природе метанотрофы, окисляющие метан, имеющие к нему большое сродство. Реже встречаются потребителя метанола, к которым можно отнести сульфатредукторов, гомоацетатные бактерии, метаногены. К окислению формиата способны энтеробактерии.

Дата добавления: 2015-09-03 | Просмотры: 719 | Нарушение авторских прав

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 |

magictemple.ru

Что такое гетеротрофы и автотрофы в биологии?

В науке используется масса всевозможных классификаций. Вы наверняка знаете, что существует живое и неживое, что все существа делятся на микроорганизмы, растения, животных и грибы, что животные бывают хищниками и травоядными и т.д.


А знаете ли вы, что биологи все живые организмы делят на гетеротрофы и автотрофы? Чем отличаются эти организмы и чем оправдано их присутствие на Земле?

Автотрофы – первые в цепочке

Слово «автотроф» имеет греческое происхождение и состоит из двух корней – «авто»сам, и «трофи»питание. Автотрофами называют организмы, способные потреблять неорганические вещества из окружающей среды и, используя их, синтезировать сложные органические соединения.

Автотрофы расположены на первой ступеньке пищевой цепи. Они являются источником того органического вещества, из которого состоит все живое на Земле. К автотрофам причисляют растения, водоросли и некоторые бактерии. Энергию, необходимую для синтеза органики, автотрофы получают либо от Солнца (процесс фотосинтеза), либо от химических реакций.

Гетеротрофы – едят то, что «приготовлено»

Сразу скажем, что мы, люди, относимся именно к гетеротрофным организмам. Слово «гетеротроф» образовано от двух древнегреческих корней – «гетерос»«другой», и «трофи»«питание». Название можно расшифровать так: гетеротрофы – это существа, которые питаются тем, что приготовили другие.

И в самом деле, гетеротрофные организмы способны усваивать только органические вещества. Они не могут самостоятельно синтезировать органику в своем теле, поэтому едят другие организмы или продукты их жизнедеятельности (распада). Пищеварение гетеротрофов устроено следующим образом: они потребляют органические вещества и расщепляют их с помощью специальных ферментов.

К гетеротрофам относятся бактерии, грибы, практически все животные и небольшая часть растений. Гетеротрофные организмы, в свою очередь, подразделяются на группы. По типу потребляемой пищи они делятся на консументы и редуценты. Этими сложными терминами в биологии обозначают достаточно простые понятия.

Консументы – существа, потребляющие органику, созданную автотрофами, но не способные разлагать ее до состояния неорганических веществ. В эту группу входят животные, поедающие растения (травоядные), других животных (хищники), животные паразиты, некоторые микроорганизмы, а также паразитические и насекомоядные растения.

Редуценты схожи с консументами тем, что для своего существования нуждаются в органике, синтезированной другими организмами (то есть являются гетеротрофами). Кардинальное отличие редуцентов состоит в способности этих существ перерабатывать продукты разложения других организмов и трансформировать их в неорганические соединения.

Это и есть важнейшая роль редуцентов в экологической системе. Ведь если бы останки всех погибших организмов сохранялись бы на поверхности Земли и не разрушались до неорганического состояния, то растения не получали бы питания и жизнь была бы невозможной. К редуцентам относят бактерии и грибы.

Размытые границы

Интересно, что четкой границы между различными категориями организмов нет, ведь все живое постоянно приспосабливается к условиям существования, вырабатывая новые, порой совершенно невероятные механизмы выживания. Существует большая группа миксотрофов, занимающих промежуточное положение между гетеротрофами и автотрофами.

К ним относятся, в частности, насекомоядные растения, например – венерина мухоловка. Это растение образует органику с помощью фотосинтеза, но часть питательных веществ получает из тел насекомых, которых успешно заманивает в особые ловушки.

Растения-гетеротрофы, являющиеся паразитами, научились извлекать пищу из других растений, поэтому полностью или частично утратили способность к фотосинтезу.

Ну а редуцентами в некоторой степени могут считаться все живые существа, ведь в процессе жизнедеятельности все живое выделяет воду, углекислый газ и простейшие органические соединения, то есть участвует в процессе разложения органики.

История с гетеротрофами и автотрофами лишний раз показывает, насколько сложно и интересно устроена жизнь на нашей планете и как бережно человек должен относиться к ней.

www.vseznaika.org

Типы питания организмов: автотрофный и гетеротрофный

Сравнивая процессы жизнедеятельности растений и животных, школьники уже обратили внимание на то, что эти организмы по — разному питаются. Надо расширить их представление о типах питания живых организмов и подробнее обсудить различия автотрофного и гетеротрофного питания.
Автотрофные организмы могут сами для себя синтезировать органические вещества, используя или энергию солнца (фототрофы), или энергию неорганических соединений (хемотрофы). О хемотрофы в курсе биологии для 8 класса речь не идет. Но в понятиях автотрофы и фототрофы школьники могут путаться. Поскольку оба термина включены в школьный курс, то следует объяснить, что понятие автотрофы шире, чем фототрофы. Первое означает, что организм сам синтезирует себе органические вещества (авто — сам), а фототрофами называют те организмы, которые используют для этого синтеза солнечный свет (фото — свет). Гетеротрофы не могут сами синтезировать органику. Они забирают ее у других организмов (это могут быть и фототрофы, и другие гетеротрофы).

Понятие гетеротрофность лучше подать в противопоставлении этого способа питания фототрофные, опираясь на знания школьников об особенностях жизнедеятельности растений. Необходимо обратить внимание на то, что гетеротрофы зависят от тех организмов, которые поставляют им органику, то есть пищу, поэтому гетеротрофы являются консументами (потребителями) и могут существовать только при наличии продуцентов (автотрофов).
Следует отметить, что гетеротрофно питаются животные, грибы, насекомоядные растения и большинство бактерий.

Существует два типа гетеротрофного питания:

— Голозойным. При этом типе питания благодаря сложному комплексу пищеварительных ферментов организм может употреблять в пищу сложные, зачастую твердые, органические соединения.
— Сапротрофных. При этом типе питания организм питается растворами простых органических веществ. Иногда организм выделяет ферменты непосредственно на субстрат, а затем всасывает питательные вещества, образовавшиеся. Уничтожая мертвые растения и животных, сапротрофы играют важную роль в круговороте веществ.

Кроме того, животные, которые питаются голозойным, делятся на микрофагов, поглощающие пищу мелкими частицами, и макрофагов, поглощающих пищу большими кусками.
По образу жизни гетеротрофов можно разделить на такие группы, как свободноживущие (среди них могут быть хищные, травоядные, плотоядные и т.п.), симбиотические и паразитические. Можно обратить внимание на самые распространенные способы захвата пищи животными: с помощью псевдоподий (амебы), с помощью ресничек (инфузории), с помощью щупалец (каракатицы), зишкрябування (садовый улитка), заглатывание, всасывания.

категория: Биология

moykonspekt.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *