Содержание

Вклад Ньютона в науку  | Kratkoe.com

Исаак Ньютон вклад в науку английского математика, механика, астронома и физика, создателя классической механики, члена и президента Лондонского королевского общества, основоположника современной физики изложен в этой статье.

Исаак Ньютон вклад в физику

Ньютон считается основоположником современной физики. И совсем не зря. Им было сформулировано основные законы механики. Также он создал единую физическую программу, которая на базе механики описала все физические явления.

Кроме того, ученый «подарил» миру закон всемирного тяготения, дал объяснения тому, как планеты движутся вокруг Солнца и как Луна движется вокруг Земли. Он был первым, кто изучил и пояснил такие явления как приливы в океанах. 

Ньютон по праву считается основоположником акустики, механики сплошных сред и

физической оптики. Что касается оптики, науке о природе света, то здесь он особенно отличился. Проводя эксперимент, Исаак Ньютон пропускал пучок света сквозь треугольную стеклянную призму и тем самым открыл дисперсию. Дисперсия – это явление, которое подразумевает под собой разложение в спектр белого света.

Также Ньютон является изобретателем телескопа – рефлектора с вогнутым зеркалом. И корпускулярной теории, которая гласит о том, что свет состоит из мелкого потока корпускул – частиц.

Вклад Ньютона в математику 

Ньютону принадлежит разработка дифференциальных  и интегральных исчислений. Ученый описал ряд формул, используя которые можно делать к графикам функций касательные в абсолютно разных точках.  Еще одно математическое достижение Исаака Ньютона – это методы, которые измеряют скорость процесса изменения параметров механических систем. Он описал принцип вычисления площадей и объемов разных тел. Все свои главные мысли Ньютон изложил в труде «Математические начала натуральной философии».

Исаак Ньютон вклад в астрономию

Ньютон занимался исследованием важнейшей проблемой —  конечности или бесконечности Вселенной. Он пришел к выводу, что она ограниченная в пространстве и все тела в ней со временем соединятся в одно тело.

Он разделил движение планет вокруг Солнца на 2 составляющие — движение и падение по орбите. Каждая из планет совершает эллипсоидальное движение по замкнутому кругу. Однако как происходит  орбитальное движение, было непонятно.  Даже сила тяготения не могла пояснить это явление. Тогда Ньютон предположил, что существует некая сила, божественная, которая придала орбитального движения планетам.

Надеемся, что из этой статьи Вы узнали, какой вклад в науку совершил Ньютон. 

kratkoe.com

Исаак Ньютон — великий ученый

Не знаю, как меня воспринимает мир, но сам себе я кажусь только мальчиком, играющим на морском берегу, который развлекается тем, что время от времени отыскивает камешек более пёстрый, чем другие, или красивую ракушку, в то время как великий океан истины расстилается передо мной неисследованным.

И. Ньютон

В Лондоне в Вестминстерском аббатстве покоится прах великого математика и физика, астронома и механика Исаака Ньютона. Надпись на могиле ученого гласит: «Здесь покоится сэр Исаак Ньютон, дворянин, который почти божественным разумом первый доказал с факелом математики движение планет, пути комет и приливы океанов.


Исаак Ньютон (Isaac Newton)

Он исследовал различие световых лучей и появляющиеся при этом различные свойства цветов, чего ранее никто не подозревал. Прилежный, мудрый и верный истолкователь природы, древности и Св. писания, он утверждал своей философией величие Всемогущего Бога, а нравом выражал евангельскую простоту.

Пусть смертные радуются, что существовало такое украшение рода человеческого».

По словам А. Энштейна Ньютон «… оказал своими трудами глубокое и сильное влияние на всё мировоззрение в целом».

Действительно, роль Исаака Ньютона в развитии математики и физики настолько велика, что восхищение перед его гением только увеличивается.

Величайший английский учёный, заложивший основы современного естествознания, создатель классической физики, член Лондонского королевского общества родился 25 декабря 1642 года в местечке Вульсторп, вблизи городка Грэнтэм, что в 200 километрах к северу от Лондона. Ньютон рассказывал о своем рождение так: «По словам матери, я родился таким маленьким, что меня можно было бы выкупать в большой пивной кружке». Однако мальчик вырос хорошо развитым и здоровым. Впоследствии факт рождение в канун Рождества Христова Ньютон расценивал как знак свыше.

По окончании школы в 1661 Ньютон поступил в Тринити-колледж (Колледж святой Троицы) Кембриджского университета. К этому времени уже сложился целеустремленный и могучий характер Ньютона. Научная дотошность, стремление проникнуть в самую суть предмета, нетерпимость к обману и лжи, равнодушие к славе стали отличительными чертами характера великого ученого.

«Если я видел дальше других, то потому, что стоял на плечах гигантов» — говорил Ньютон. Главной научной опорой и вдохновителями творчества Ньютона в наибольшей степени были такие великие физики, как Галилей, Декарт и Кеплер. Доведя до конца их труды, Ньютон объединил их в универсальную систему мира. Также влияние на становление гения Ньютона оказали работы Евклида, Ферма, Гюйгенса, Валлиса и его учитель Барроу.


Рефлектор Ньютона

Открытия и достижения Ньютона открыли новую эпоху в физике и математике. С именем Ньютона связывают появление в математике аналитических методов, в физике — построение адекватных математических моделей природных процессов и их всестороннее исследование с помощью нового математического аппарата.

Будучи студентом Кембриджского университета Ньютон сделал свои первые математические открытия. Среди них: классификация алгебраических кривых 3-го порядка (кривые 2-го порядка исследовал Ферма) и биномиальное разложение произвольной степени. Последнее из перечисленных открытий послужило отправной точкой в создании знаменитой теории бесконечных рядов, которая впоследствии станет эффективным и мощным инструментом математического анализа.

Ньютон доказал, что разложение в ряд является общим и главным методом анализа функции. Мастерски используя этот метод, Ньютон с легкостью решал уравнения, в том числе и дифференциальные, исследовал поведение функций, сумел получить разложение для всех стандартных функций.

Независимо от Готфрида Лейбница Ньютон разработал дифференциальное и интегральное исчисление.

Кроме того, Ньютон глубоко исследовал разностные методы.

Наиболее полное изложение принципов анализа Ньютон было опубликовано в работе «О квадратуре кривых» 1704 года как приложении к монографии «Оптика». Это первый научный труд Ньютона, который стал доступен всем. В нем Ньютон указал производные высших порядков, значения интегралов разнообразных рациональных и иррациональных функций, примеры решения дифференциальных уравнений 1-го порядка.

Следуя уговорам своих коллег, Ньютон публикует в 1707 году книгу «Универсальная арифметика». В ней великий математик приводит разнообразные численные методы. Его знаменитый метод позволял находить корни уравнений по упрощенной форме и с гораздо большей точностью (опубликован в «Алгебре» Валлиса, 1685).


Могила Ньютона в Вестминстерском аббатстве

В 1711 году Ньютон, спустя 40 лет после написания, опубликовал науный труд под названием «Анализ с помощью уравнений с бесконечным числом членов». Здесь Ньютон исследовал алгебраические и «механические» кривые (циклоид, квадратрис) и частные производные.

В сочинении «Метод разностей» Ньютон определил интерполяционную формулу для проведения через (n + 1) точки с равноотстоящими или неравноотстоящими абсциссами многочлена n-го порядка.

В 1736 году уже после смерти великого ученого издается научный труд «Метод флюксий и бесконечных рядов», в котором приводятся многочисленные примеры поиска экстремумов, касательных и нормалей, вычисление радиусов и центров кривизны в декартовых и полярных координатах, отыскание точек перегиба и прочее.

В заслугу Ньютона также следует отнести не только разработку методов анализа, но и обоснование его принципов. Именно Ньютон предложил общую теорию предельных переходов, под названием «метод первых и последних отношений». Эта теории подробно изложена в 11 леммах книги I «Начал».

Больших успехов Ньютон достиг в механике. Наиболее важным достижением Ньютона в аксиоматической механике является решение двух фундаментальных задач:

  • Создание для механики аксиоматической основы, благодаря которой наука становится в ряд строгих математических теорий.
  • Создание динамики, которая связывает поведение тела с характеристиками внешних воздействий на него (сил).

Особенно ценно открытие Ньютона, связанное с опровержением античных представлений о том, что земные и небесные тела движутся под воздействием разных законов. В разработанной Ньютоном модели мира Вселенная подчинена трем единым законам:

  • Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.
  • Изменение количества движения пропорционально приложенной силе и происходит по направлению той прямой, по которой эта сила действует.
  • Действию всегда есть равное и противоположное противодействие, иначе, взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны.

Более того, Ньютон утверждал в своих «Началах», что пространство и время являются абсолютными понятиями, едиными для всей Вселенной.


Страница «Начал» Ньютона с аксиомами механики

Именно Ньютон дает четкие определения многим физическим понятиям, в том числе: количество движения и сила. Вводит в физику понятие массы как меры инерции и гравитационных свойств. До него физики использовали понятие вес.

Вы наверняка помните, как Ньютон открыл знаменитый «закон тяготения». Надо сказать, что идея всеобщей силы тяготения была отнюдь не новой, однако первым, кто смог ясно и математически точно доказать связь закона тяготения и движения планет. Работы Ньютона в этой области положили начало новой науке — динамике.

Следует отметить тот факт, что Исааку Ньютону принадлежит заслуга открытия причины приливов: притяжение Луны. Более того, Нььютон сумел рассчитать точную массу Луны.

Интересно узнать, что в течение многолетних наблюдений, Ньютон определил, что Земля сплюснута у полюсов, из-за чего земная ось под воздействием притяжения Луны и Солнца медленно (период 26000 лет) смещается. Таким образом, было найдено научное объяснение одной из древнейших проблем «предварения равноденствий».

В оптике Ньютон изобрел первый в мире зеркальный телескоп (рефлектор). Более того, он открыл дисперсию света, доказал, что белый свет раскладывается на цвета радуги после преломления лучей при прохождении через призму. Именно Ньютон заложил основы правильной теории цветов.

Эти и другие открытия Ньютона в области математики и физике заставляют преклонить голову перед гением ученого. На статуе, воздвигнутой Ньютону в 1755 г. в его альма-матер — Тринити-колледже, высечены стихи из Лукреция:

Разумом он превосходил род человеческий (Qui genus humanum ingenio superavit).

Поделиться ссылкой

sitekid.ru

Исаак Ньютон — Традиция

Сэр Исаа́к Нью́тон[1] (англ. Sir Isaac Newton, 25 декабря 1642 — 20 марта 1727 по юлианскому календарю, использовавшемуся в Англии в то время; или 4 января 1643 — 31 марта 1727 по григорианскому календарю) — великий английский физик, математик и астроном. Автор фундаментального труда «Математические начала натуральной философии» (лат. Philosophiae Naturalis Principia Mathematica), в котором он описал закон всемирного тяготения и так называемые Законы Ньютона, заложившие основы классической механики. Разработал дифференциальное и интегральное исчисление, теорию цветности и многие другие математические и физические теории.

Исаак Ньютон, сын мелкого, но зажиточного фермера, родился в деревне Вулсторп (графство Линкольншир), в год смерти Галилея и в канун гражданской войны. Отец Ньютона не дожил до рождения сына. Мальчик родился болезненным, до срока, но всё же выжил и прожил 84 года. Факт рождения под Рождество Ньютон считал особым знаком судьбы.

Тринити-колледж, часовая башня

Покровителем мальчика стал его дядя по матери, Вильям Эйскоу. В детстве Ньютон, по отзывам современников, был замкнут и обособлен, любил читать и мастерить технические игрушки: часы, мельницу и т. п. По окончании школы (1661) он поступил в Тринити-колледж (Колледж святой Троицы) Кембриджского университета. Уже тогда сложился его могучий характер — научная дотошность, стремление дойти до сути, нетерпимость к обману и угнетению, равнодушие к публичной славе.

Научной опорой и вдохновителями творчества Ньютона в наибольшей степени были физики: Галилей, Декарт и Кеплер. Ньютон завершил их труды, объединив в универсальную систему мира. Меньшее, но существенное влияние оказали другие математики и физики: Евклид, Ферма, Гюйгенс, Валлис и его непосредственный учитель Барроу.

Похоже на то, что значительную часть своих математических открытий Ньютон сделал ещё студентом, в «чумные годы» 1664—1666. В 23 года он уже свободно владел методами дифференциального и интегрального исчислений, включая разложение функций в ряды и то, что впоследствии было названо формулой Ньютона-Лейбница. Тогда же, по его утверждению [2], он открыл закон всемирного тяготения, точнее, убедился, что этот закон следует из третьего закона Кеплера. Кроме того, Ньютон в эти годы доказал, что белый цвет есть смесь цветов, вывел формулу «бинома Ньютона» для произвольного рационального показателя (включая отрицательные), и др.

Все эти эпохальные открытия были опубликованы на 20-40 лет позже, чем были сделаны. Ньютон не гнался за славой. Стремление открыть истину было у него главной целью.

1667: эпидемия чумы отступает, и Ньютон возвращается в Кембридж. Избран членом Тринити-колледжа, а в 1668 году становится магистром.

Исаак Барроу. Статуя в Тринити-колледже.

В 1669 году Ньютон избирается профессором математики, преемником Барроу. Барроу пересылает в Лондон сочинение Ньютона «Анализ с помощью уравнений с бесконечным числом членов», содержавшее сжатое изложение некоторых наиболее важных его открытий в анализе. «Анализ» получил некоторую известность в Англии и за её пределами. Ньютон готовит полный вариант этой работы, но найти издателя так и не удаётся. Она была опубликована лишь в 1711 году.

Продолжаются эксперименты по оптике и теории цвета. Ньютон исследует сферическую и хроматическую аберрации. Чтобы свести их к минимуму, он строит смешанный телескоп-рефлектор (линза и вогнутое сферическое зеркало, которое полирует сам). Всерьёз увлекается алхимией, проводит массу химических опытов.

1672: демонстрация рефлектора в Лондоне вызывает всеобщие восторженные отзывы. Ньютон становится знаменит и избирается членом Королевского общества (британской Академии наук). Позже усовершенствованные рефлекторы такой конструкции стали основными инструментами астрономов, с их помощью были открыты иные галактики, красное смещение и др.

Разгорается полемика по поводу природы света с Гуком, Гюйгенсом и другими. Ньютон даёт зарок на будущее: не ввязываться в научные споры. В письмах он жалуется, что поставлен перед выбором: либо не публиковать свои открытия, либо тратить всё время и все силы на отражение недружелюбной дилетантской критики. Судя по всему, он выбрал первый вариант.

1680: Ньютон получает письмо Гука с формулировкой закона всемирного тяготения, послужившее, по признанию первого, поводом его работ по определению планетных движений (правда, потом отложенных на некоторое время), составивших предмет «Начал». Впоследствии Ньютон по каким-то причинам, быть может, подозревая Гука в незаконном заимствовании каких-то более ранних результатов самого Ньютона, не желает признавать здесь никаких заслуг Гука, но потом соглашается это сделать, хотя и довольно неохотно и не полностью [3].

1684—1686: после долгих уговоров Ньютон соглашается опубликовать свои главные достижения. Работа над «Математическими началами натуральной философии» (весь трёхтомник издан в 1687 году). Приходят всемирная слава и ожесточённая критика картезианцев: закон всемирного тяготения вводит дальнодействие, несовместимое с принципами Декарта.

В 1689 году Ньютон был в первый раз избран в парламент от Кембриджского университета и заседал там немногим более года. Второе избрание состоялось в 1701—1702 годах.

1696: Королевским указом Ньютон назначен смотрителем Монетного двора (с 1699 года — директор). Он энергично проводит денежную реформу, восстанавливая доверие к основательно запущенной его предшественниками монетной системе Великобритании.

1699: начало открытого приоритетного спора с Лейбницем, в который были вовлечены даже царствующие особы. Эта нелепая распря двух гениев дорого обошлась науке — английская математическая школа вскоре увяла на целый век, а европейская — проигнорировала многие выдающиеся идеи Ньютона, переоткрыв их много позднее. На континенте Ньютона обвиняли в краже результатов Гука, Лейбница и астронома Флемстида, а также в ереси. Конфликт не погасила даже смерть Лейбница (1716).

В 1703 году Ньютон был избран президентом Королевского общества и управлял им до конца жизни — более двадцати лет.

Могила Ньютона в Вестминстерском аббатстве

1705: королева Анна возводит Ньютона в рыцарское достоинство. Отныне он сэр Исаак Ньютон. Впервые в английской истории звание рыцаря присвоено за научные заслуги.

Последние годы жизни Ньютон посвятил написанию «Хронологии древних царств», которой занимался около 40 лет, и подготовкой третьего издания «Начал».

В 1725 году здоровье Ньютона начало заметно ухудшаться (каменная болезнь), и он переселился в Кенсингтон неподалёку от Лондона, где и скончался ночью, во сне, 20 (31) марта 1727 года. Похоронен в Вестминстерском аббатстве.

Надпись на могиле Ньютона гласит:

Здесь покоится сэр Исаак Ньютон, дворянин, который почти божественным разумом первый доказал с факелом математики движение планет, пути комет и приливы океанов.


Он исследовал различие световых лучей и появляющиеся при этом различные свойства цветов, чего ранее никто не подозревал. Прилежный, мудрый и верный истолкователь природы, древности и Св. писания, он утверждал своей философией величие Всемогущего Бога, а нравом выражал евангельскую простоту.
Пусть смертные радуются, что существовало такое украшение рода человеческого.

Статуя Ньютона в Тринити-колледже

На статуе, воздвигнутой Ньютону в 1755 г. в Тринити-колледже, высечены стихи из Лукреция:

Qui genus humanum ingenio superavit (Разумом он превосходил род человеческий)

Сам Ньютон оценивал свои достижения более скромно:

Не знаю, как меня воспринимает мир, но сам себе я кажусь только мальчиком, играющим на морском берегу, который развлекается тем, что время от времени отыскивает камешек более пёстрый, чем другие, или красивую ракушку, в то время как великий океан истины расстилается передо мной неисследованным.

Энгельс о Ньютоне: «индуктивный осел Ньютон является плагиатором и вредителем»

«Диалектика природы» 1873 г. стр.3

http://filosof.historic.ru/books/item/f00/s01/z0001011/st000.shtml

По словам А. Эйнштейна, «Ньютон был первым, кто попытался сформулировать элементарные законы, которые определяют временной ход широкого класса процессов в природе с высокой степенью полноты и точности» и «… оказал своими трудами глубокое и сильное влияние на всё мировоззрение в целом».

В честь Ньютона названы:

Научная деятельность[править]

С работами Ньютона связана новая эпоха в физике и математике. В математике появляются мощные аналитические методы. В физике основным методом исследования природы становится построение адекватных математических моделей природных процессов и интенсивное исследование этих моделей с систематическим привлечением всей мощи нового математического аппарата. Последующие века доказали исключительную плодотворность такого подхода.

Математика[править]

Первые математические открытия Ньютон сделал ещё в студенческие годы: классификация алгебраических кривых 3-го порядка (кривые 2-го порядка исследовал Ферма) и биномиальное разложение произвольной (не обязательно целой) степени, с которого начинается ньютоновская теория бесконечных рядов — нового и мощнейшего инструмента анализа. Разложение в ряд Ньютон считал основным и общим методом анализа функций, и в этом деле достиг вершин мастерства. Он использовал ряды для вычисления таблиц, решения уравнений (в том числе дифференциальных), исследования поведения функций. Ньютон сумел получить разложение для всех стандартных на тот момент функций.

Ньютон разработал дифференциальное и интегральное исчисление одновременно с Г. Лейбницем (немного раньше) и независимо от него.

До Ньютона действия с бесконечно малыми не были увязаны в единую теорию и носили характер разрозненных остроумных приёмов (см. Метод неделимых). Создание математического анализа сводит решение соответствующих задач, в значительной степени, до технического уровня. Появился комплекс понятий, операций и символов, ставший отправной базой дальнейшего развития математики. Следующий, XVIII век, стал веком бурного и чрезвычайно успешного развития аналитических методов.

По-видимому, Ньютон пришёл к идее анализа через разностные методы, которыми много и глубоко занимался. Правда, в своих «Началах» Ньютон почти не использовал бесконечно малых, придерживаясь античных (геометрических) приёмов доказательства, но в других трудах применял их свободно.

Отправной точкой для дифференциального и интегрального исчисления были работы Кавальери и особенно Ферма, который уже умел (для алгебраических кривых) проводить касательные, находить экстремумы, точки перегиба и кривизну кривой, вычислять площадь её сегмента. Из других предшественников сам Ньютон называл Валлиса, Барроу и шотландского учёного Джеймса Грегори. Понятия функции ещё не было, все кривые он трактовал кинематически как траектории движущейся точки.

Уже будучи студентом, Ньютон понял, что дифференцирование и интегрирование — взаимно обратные операции. Эта основная теорема анализа уже более или менее ясно вырисовывалась в работах Торричелли, Грегори и Барроу, однако лишь Ньютон понял, что на этой основе можно получить не только отдельные открытия, но мощное системное исчисление, подобное алгебре, с чёткими правилами и гигантскими возможностями.

Ньютон почти 30 лет не заботился о публикации своего варианта анализа, хотя в письмах (в частности, к Лейбницу) охотно делится многим из достигнутого. Тем временем вариант Лейбница широко и открыто распространяется по Европе с 1676 года. Лишь в 1693 году появляется первое изложение варианта Ньютона — в виде приложения к «Трактату по алгебре» Валлиса. Приходится признать, что терминология и символика Ньютона по сравнению с лейбницевской довольно неуклюжи: флюксия (производная), флюэнта (первообразная), момент величины (дифференциал) и т. п. Сохранились в математике только ньютоновское обозначение «o» для бесконечно малой dt (впрочем, эту букву в том же смысле использовал ранее Грегори), да ещё точка над буквой как символ производной по времени.

Достаточно полное изложение принципов анализа Ньютон опубликовал только в работе «О квадратуре кривых» (1704), приложении к его монографии «Оптика». Почти весь изложенный материал был готов ещё в 1670—1680-е годы, но лишь теперь Грегори и Галлей уговорили Ньютона издать работу, которая, с опозданием на 40 лет, стала первым печатным трудом Ньютона по анализу. Здесь у Ньютона появляются производные высших порядков, найдены значения интегралов разнообразных рациональных и иррациональных функций, приведены примеры решения дифференциальных уравнений 1-го порядка.

В 1707 году выходит книга «Универсальная арифметика». В ней приведены разнообразные численные методы. Ньютон всегда уделял большое внимание приближённому решению уравнений. Знаменитый метод Ньютона позволял находить корни уравнений с немыслимой ранее скоростью и точностью (опубликован в «Алгебре» Валлиса, 1685). Современный вид итерационному методу Ньютона придал Джозеф Рафсон (1690).

В 1711 году наконец напечатан, спустя 40 лет, «Анализ с помощью уравнений с бесконечным числом членов». В этом труде Ньютон с одинаковой лёгкостью исследует как алгебраические, так и «механические» кривые (циклоиду, квадратрису). Появляются частные производные, но почему-то нет правила дифференцирования дроби и сложной функции, хотя Ньютону они были известны; впрочем, Лейбниц на тот момент их уже опубликовал.

В этом же году выходит «Метод разностей», где Ньютон предложил интерполяционную формулу для проведении через (n + 1) данные точки с равноотстоящими или неравноотстоящими абсциссами многочлена n-го порядка. Это разностный аналог формулы Тейлора.

В 1736 году посмертно издаётся итоговый труд «Метод флюксий и бесконечных рядов», существенно продвинутый по сравнению с «Анализом с помощью уравнений». Приводятся многочисленные примеры отыскания экстремумов, касательных и нормалей, вычисления радиусов и центров кривизны в декартовых и полярных координатах, отыскания точек перегиба и т. п. В этом же сочинении произведены квадратуры и спрямления разнообразных кривых.

Надо отметить, что Ньютон не только достаточно полно разработал анализ, но и сделал попытку строго обосновать его принципы. Если Лейбниц склонялся к идее актуальных бесконечно малых, то Ньютон предложил (в «Началах») общую теорию предельных переходов, которую несколько витиевато назвал «метод первых и последних отношений». Используется именно современный термин «предел» (limes), хотя внятное описание сущности этого термина отсутствует, подразумевая интуитивное понимание.

Теория пределов изложена в 11 леммах книги I «Начал»; одна лемма есть также в книге II. Арифметика пределов отсутствует, нет доказательства единственности предела, не выявлена его связь с бесконечно малыми. Однако Ньютон справедливо указывает на бо́льшую строгость такого подхода по сравнению с «грубым» методом неделимых.

Тем не менее в книге II, введя моменты (дифференциалы), Ньютон вновь запутывает дело, фактически рассматривая их как актуальные бесконечно малые.

Примечательно, что теорией чисел Ньютон совершенно не интересовался. По всей видимости, физика ему была гораздо ближе математики.

Механика[править]

Страница «Начал» Ньютона с аксиомами механики

Заслугой Ньютона является решение двух фундаментальных задач.

  • Создание для механики аксиоматической основы, которая фактически перевела эту науку в разряд строгих математических теорий.
  • Создание динамики, связывающей поведение тела с характеристиками внешних воздействий на него (сил).

Кроме того, Ньютон окончательно похоронил укоренившееся с античных времён представление, что законы движения земных и небесных тел совершенно различны. В его модели мира вся Вселенная подчинена единым законам.

Аксиоматика Ньютона состояла из трёх законов, которые сам он сформулировал в следующем виде.

  1. Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.
  2. Изменение количества движения пропорционально приложенной силе и происходит по направлению той прямой, по которой эта сила действует.
  3. Действию всегда есть равное и противоположное противодействие, иначе, взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны.

Первый закон (закон инерции), в менее чёткой форме, опубликовал ещё Галилей. Надо отметить, что Галилей допускал свободное движение не только по прямой, но и по окружности (видимо, из астрономических соображений). Галилей также сформулировал важнейший принцип относительности, который Ньютон не включил в свою аксиоматику, потому что для механических процессов этот принцип является прямым следствием уравнений динамики. Кроме того, Ньютон считал пространство и время абсолютными понятиями, едиными для всей Вселенной, и явно указал на это в своих «Началах».

Ньютон также дал строгие определения таких физических понятий, как количество движения (не вполне ясно использованное у Декарта) и сила. Он ввёл в физику понятие массы как меры инерции и, одновременно, гравитационных свойств (ранее физики пользовались понятием вес).

Завершили математизацию механики Эйлер и Лагранж.

Теория тяготения[править]

Закон тяготения Ньютона

Сама идея всеобщей силы тяготения неоднократно высказывалась и до Ньютона. Ранее о ней размышляли Эпикур, Кеплер, Декарт, Гюйгенс, Гук и другие. Кеплер полагал, что тяготение обратно пропорционально расстоянию до Солнца и распространяется только в плоскости эклиптики; Декарт считал его результатом вихрей в эфире. Были, впрочем, догадки с правильной формулой (Буллиальд, Рен, Гук), и даже кинематически обоснованные (с помощью соотнесения формулы центробежной силы Гюйгенса и третьего закона Кеплера для круговых орбит) [4]. Но до Ньютона никто не сумел ясно и математически доказательно связать закон тяготения (силу, обратно пропорциональную квадрату расстояния) и законы движения планет (законы Кеплера). Только с трудов Ньютона начинается наука динамика.

Важно отметить, что Ньютон опубликовал не просто предполагаемую формулу закона всемирного тяготения, но фактически предложил целостную математическую модель в контексте хорошо разработанного, полного, явно сформулированного и систематически изложенного подхода к механике:

В совокупности эта триада достаточна для полного исследования самых сложных движений небесных тел, тем самым создавая основы небесной механики. До Эйнштейна никаких принципиальных поправок к указанной модели не понадобилось, хотя математический аппарат оказалось необходимым значительно развить.

Ньютоновская теория тяготения вызвала многолетние дебаты и критику концепции дальнодействия.

Важным аргументом в пользу ньютоновской модели послужил строгий вывод на её основе эмпирических законов Кеплера. Следующим шагом стала теория движения комет и Луны, изложенная в «Началах». Позже с помощью ньютоновского тяготения были с высокой точностью объяснены все наблюдаемые движения небесных тел; в этом большая заслуга Эйлера, Клеро и Лапласа, которые разработали для этого теорию возмущений. Фундамент этой теории был заложен ещё Ньютоном, который провёл анализ движения Луны, используя свой обычный метод разложения в ряд; на этом пути он открыл причины известных тогда аномалий (неравенств) в движении Луны.

Первые наблюдаемые поправки к теории Ньютона в астрономии (объяснённые ОТО) были обнаружены лишь более чем через 200 лет (смещение перигелия Меркурия). Впрочем, и они очень малы в пределах Солнечной системы.

Ньютон также открыл причину приливов: притяжение Луны (даже Галилей считал приливы центробежным эффектом). Более того, обработав многолетние данные о высоте приливов, он с хорошей точностью вычислил массу Луны.

Ещё одним следствием тяготения оказалась прецессия земной оси. Ньютон выяснил, что из-за сплюснутости Земли у полюсов земная ось совершает под действием притяжения Луны и Солнца постоянное медленное смещение с периодом 26000 лет. Тем самым древняя проблема «предварения равноденствий» (впервые отмеченная Гиппархом) нашла научное объяснение.

Оптика и теория света[править]

Первый зеркальный телескоп И.Ньютона

Ньютону принадлежат фундаментальные открытия в оптике. Он построил первый зеркальный телескоп (рефлектор), в котором, в отличие от чисто линзовых телескопов, отсутствовала хроматическая аберрация. Он также открыл дисперсию света, показал, что белый свет раскладывается на цвета радуги вследствие различного преломления лучей разных цветов при прохождении через призму, и заложил основы правильной теории цветов.

В этот период было множество спекулятивных теорий света и цветности; в основном боролись точка зрения Аристотеля («разные цвета есть смешение света и тьмы в разных пропорциях») и Декарта («разные цвета создаются при вращении световых частиц с разной скоростью»). Гук в своей «Микрографии» (1665) предлагал вариант аристотелевских взглядов. Многие полагали, что цвет есть атрибут не света, а освещённого предмета. Всеобщий разлад усугубил каскад открытий XVII века: дифракция (1665, Гримальди), интерференция (1665, Гук), двойное лучепреломление (1670, Эразм Бартолин (Rasmus Bartholin), изучено Гюйгенсом), оценка скорости света (1675, Рёмер). Теории света, совместимой со всеми этими фактами, не существовало.

Дисперсия света
(опыт Ньютона)

В своём выступлении перед Королевским обществом Ньютон опроверг как Аристотеля, так и Декарта, и убедительно доказал, что белый свет не первичен, а состоит из цветных компонентов с разными углами преломления. Эти-то составляющие и первичны — никакими ухищрениями Ньютон не смог изменить их цвет. Тем самым субъективное ощущение цвета получало прочную объективную базу — показатель преломления.

Ньютон создал математическую теорию открытых Гуком интерференционных колец, которые с тех пор получили название «кольца Ньютона».

Титульный лист «Оптики» Ньютона

В 1689 г. Ньютон прекратил исследования в области оптики — по распространённой легенде, поклялся ничего не печатать в этой области при жизни Гука, который постоянно донимал Ньютона болезненно воспринимаемой последним критикой. Во всяком случае, в 1704 году, на следующий год после смерти Гука, выходит в свет монография «Оптика». При жизни автора «Оптика», как и «Начала», выдержала три издания и множество переводов.

Книга первая монографии содержала принципы геометрической оптики, учение о дисперсии света и составе белого цвета с различными приложениями.

Книга вторая: интерференция света в тонких пластинках.

Книга третья: дифракция и поляризация света. Поляризацию при двойном лучепреломлении Ньютон объяснил ближе к истине, чем Гюйгенс (сторонник волновой природы света), хотя объяснение самого явления неудачное, в духе эмиссионной теории света.

Ньютона часто считают сторонником корпускулярной теории света; на самом деле он, по своему обыкновению, «гипотез не измышлял»[5] и охотно допускал, что свет может быть связан и с волнами в эфире. В своей монографии Ньютон детально описывал математическую модель световых явлений, оставляя в стороне вопрос о физическом носителе света.

Другие работы по физике[править]

Ньютону принадлежит первый вывод скорости звука в газе, основанный на законе Бойля-Мариотта.

Он предсказал сплюснутость Земли у полюсов, примерно 1:230. При этом Ньютон использовал для описания Земли модель однородной жидкости, применил закон всемирного тяготения и учёл центробежную силу. Одновременно аналогичные расчёты выполнил Гюйгенс, который не верил в дальнодействующую силу тяготения[6] и подошёл к проблеме чисто кинематически. Соответственно Гюйгенс предсказал более чем вдвое меньшее сжатие, чем Ньютон, 1:576. Более того, Кассини и другие картезианцы доказывали, что Земля не сжата, а выпукла у полюсов наподобие лимона. Впоследствии, хотя и не сразу (первые измерения были неточны), прямые измерения (Клеро, 1743) подтвердили правоту Ньютона; реальное сжатие равно 1:298. Причина отличия этого значения от предложенного Ньютоном в сторону Гюйгенсовского состоит в том, что модель однородной жидкости всё же не вполне точна (плотность заметно возрастает с глубиной). Более точная теория, явно учитывающая зависимость плотности от глубины, была разработана только в XIX веке.

Другие сферы деятельности[править]

Параллельно с изысканиями, закладывавшими фундамент нынешней научной (физической и математической) традиции, Ньютон много времени отдавал алхимии, а также богословию. Никаких трудов по алхимии он не издавал, и единственным известным результатом этого многолетнего увлечения стало серьёзное отравление Ньютона в 1691 году.

Парадоксально, что Ньютон, много лет трудившийся в Колледже святой Троицы, сам, видимо, в Троицу не верил. Исследователи его богословских работ, такие как Л. Мор, считают, что религиозные взгляды Ньютона были близки к арианству[7]. См. статью Ньютона «Историческое прослеживание двух заметных искажений Священного Писания».

Ньютон предложил свой вариант библейской хронологии, оставив после себя значительное количество рукописей по данным вопросам. Кроме того, он написал комментарий на Апокалипсис. Теологические рукописи Ньютона ныне хранятся в Иерусалиме, в Национальной Библиотеке.

  1. ↑ Исторически ударение в фамилии Ньютона чаще делалось на втором слоге, хотя ударение на первом ближе к английскому оригиналу. Современные словари и руководства не имеют единого мнения по этому поводу. Словарь Русское словесное ударение М. В. Зарва (2001) требует ударения на первом слоге, Справочник по правописанию, произношению, литературному редактированию Розенталя (1998) допускает вариативное ударение, но уточняет: «традиционно — Ньюто́н». Орфографический словарь В. В. Лопатина тоже допускает вариативность.
  2. ↑ «В бумагах, написанных более 15 лет тому назад (точно привести дату я не могу, но во всяком случае это было перед началом моей переписки с Ольденбургом), я выразил обратную квадратичную пропорциональность тяготения планет к Солнцу в зависимости от расстояния и вычислил правильное отношение земной тяжести и conatus recedendi (стремление) Луны к центру Земли, хотя и не совсем точно» (Из письме к Галлею, 1686 год).
    С. И. Вавилов. Исаак Ньютон. 2-е дополненное издание. М.-Л.: Изд. АН СССР, 1945 г., глава 9.
  3. ↑ «Если связать в одно все предположения и мысли Гука о движении планет и тяготении, высказанные им в течение почти 20 лет, то мы встретим почти все главные выводы «Начал» Ньютона, только высказанные в неуверенной и мало доказательной форме. Не решая задачи, Гук нашел ее ответ. Вместе с тем перед нами вовсе не случайно брошенная мысль, но несомненно плод долголетней работы. У Гука была гениальная догадка физика-экспериментатора, прозревающего в лабиринте фактов истинные соотношения и законы «природы. С подобной редкостной интуицией экспериментатора мы встречаемся в истории науки еще у Фарадея, но Гук и Фарадей не были математиками. Их дело было довершено Ньютоном и Максвеллом. Бесцельная борьба с Ньютоном за приоритет набросила тень на славное имя Гука, но истории пора, спустя почти три века, отдать должное каждому. Гук не мог идти прямой, безукоризненной дорогой „Математических начал“ Ньютона, но своими окольными тропинками, следов которых нам теперь уже не найти, он пришел туда же.»
    (С. И. Вавилов. Исаак Ньютон. 2-е дополненное издание. М.-Л.: Изд. АН СССР, 1945 г., глава 9).
    Возможно, это суждение Вавилова недостаточно справедливо к Гуку, так как упомянутое письмо Гука Ньютону содержит не только «догадку», но и вполне обоснованный вывод закона тяготения из третьего закона Кеплера, произведенный для случая круговых орбит.
  4. ↑ Вот, например, отрывок из письма Гука 6 января 1680 года Ньютону: «Я предполагаю, что притяжение обратно пропорционально квадрату расстояния до центра, соответственно предположению Кеплера о зависимости скорости от расстояния.» (цитируется по В. И. Арнольд, «Гюйгенс и Барроу, Ньютон и Гук», М., Наука, 1989 г., с. 16).
  5. ↑ «Гипотез не измышляю»
  6. ↑ См. предисловие к книге: Тодхантер И. История математических теорий притяжения и фигуры Земли от Ньютона до Лапласа. М.: 2002.
  7. ↑ С. И. Вавилов. Исаак Ньютон. 2-е дополненное издание. М.-Л.: Изд. АН СССР, 1945 г., глава 15.

Основные опубликованные сочинения Ньютона[править]

  • Method of Fluxions (1671, «Метод флюксий», опубликован посмертно, в 1736 году)
  • De Motu Corporum in Gyrum (1684)
  • Philosophiae Naturalis Principia Mathematica (1687, «Математические начала натуральной философии»)
  • Opticks (1704, «Оптика»)
  • Arithmetica Universalis (1707, «Универсальная арифметика»)
  • Short Chronicle, The System of the World, Optical Lectures, The Chronology of Ancient Kingdoms, Amended и De mundi systemate опубликованы посмертно в 1728 году.
  • An Historical Account of Two Notable Corruptions of Scripture (1754)

Сочинения

  • Ньютон И. Математические работы. Пер. и комм. Д. Д. Мордухай-Болтовского. М.-Л.: ОНТИ, 1937.
  • Ньютон И. Всеобщая арифметика или Книга об арифметическом синтезе и анализе. М.: Изд. АН СССР, 1948.
  • Ньютон И. Математические начала натуральной философии. Пер. и прим. А. Н. Крылова. М.: Наука, 1989.
  • Ньютон И. Лекции по оптике. М.: Изд. АН СССР, 1946.
  • Ньютон И. Оптика или трактат об отражениях, преломлениях, изгибаниях и цветах света. М.: Гостехиздат, 1954.
  • Ньютон И. Замечания на книгу пророка Даниила и Апокалипсис св. Иоанна. Пг.: Новое время, 1915.
  • Ньютон И. Исправленная хронология древних царств. М.: РИМИС, 2007.

О нём

  • Арнольд В. И. Гюйгенс и Барроу, Ньютон и Гук.. М.: Наука, 1989.
  • Белл Э. Т. Творцы математики. М.: Просвещение, 1979.
  • Вавилов С. И. Исаак Ньютон. 2-е доп. изд. М.-Л.: Изд. АН СССР, 1945.
  • История математики под редакцией А. П. Юшкевича в трёх томах, М.: Наука, 1970. Том 2. Математика XVII столетия.
  • Карцев В. Ньютон. М.: Молодая гвардия, 1987.
  • Катасонов В. Н. Метафизическая математика XVII в. М.: Наука, 1993.
  • Кирсанов В. С. Научная революция XVII века. М.: Наука, 1987.
  • Кузнецов Б. Г. Ньютон. М.: Мысль, 1982.
  • Московский университет — памяти Исаака Ньютона. М., 1946.
  • Спасский Б. И. История физики. Изд. 2-е. М.: Высшая школа, 1977. Часть 1. Часть 2.
  • Хеллман Х. Великие противостояния в науке. Десять самых захватывающих диспутов. M.: Диалектика, 2007. — Глава 3. Ньютон против Лейбница: Битва титанов.
  • Юшкевич А. П. О математических рукописях Ньютона. Историко-математические исследования, 22, 1977, с. 127—192.
  • Юшкевич А. П. Концепции исчисления бесконечно малых Ньютона и Лейбница. Историко-математические исследования, 23, 1978, с. 11-31.
  • Arthur R. T. W. Newton’s fluxions and equably flowing time. Studies in history and philosophy of science, 26, 1995, p. 323—351.
  • Bertoloni M. D. Equivalence and priority: Newton versus Leibniz. Oxford: Clarendon Press, 1993.
  • Cohen I. B. Newton’s principles of philosophy: inquires into Newton’s scientific work and its general environment. Cambridge (Mass) UP, 1956.
  • Cohen I. B. Introduction to Newton’s «Principia». Cambridge (Mass) UP, 1971.
  • Lai T. Did Newton renounce infinitesimals? Historia Mathematica, 2, 1975, p. 127—136.
  • Selles M. A. Infinitesimals in the foundations of Newton’s mechanics. Historia Mathematica, 33, 2006, p. 210—223.
  • Weinstock R. Newton’s Principia and inverse-square orbits: the flaw reexamined. Historia Mathematica, 19, 1992, p. 60-70.
  • Westfall R. S. Never at rest: A biog. of Isaac Newton. Cambridge UP, 1981.
  • Whiteside D. T. Patterns of mathematical thought in the later seventeenth century. Archive for History of Exact Sciences, 1, 1963, p. 179—388.
  • White M. Isaac Newton: The last sorcerer. Perseus, 1999, 928 с.

Художественные произведения

При написании этой статьи использовались материалы страницы «Ньютон, Исаак» Русской Википедии.

traditio.wiki

Ньютон И. — это… Что такое Ньютон И.?

Сэр Исаа́к Нью́тон [1] (англ. Sir Isaac Newton, 25 декабря 1642 — 20 марта 1727 по юлианскому календарю, использовавшемуся в Англии в то время; или 4 января 1643 — 31 марта 1727 по григорианскому календарю) — великий английский физик, математик и астроном. Автор фундаментального труда «Математические начала натуральной философии» (лат. Philosophiae Naturalis Principia Mathematica), в котором он описал закон всемирного тяготения и так называемые Законы Ньютона, заложившие основы классической механики. Разработал дифференциальное и интегральное исчисление, теорию цветности и многие другие математические и физические теории.

Биография

Исаак Ньютон, сын мелкого, но зажиточного фермера, родился в деревне Вулсторп (графство Линкольншир), в год смерти Галилея и в канун гражданской войны. Отец Ньютона не дожил до рождения сына. Мальчик родился болезненным, до срока, но всё же выжил. Факт рождения под Рождество Ньютон считал особым знаком судьбы. Несмотря на тяжёлые роды, Ньютон прожил 84 года.

Тринити-колледж, часовая башня

Покровителем мальчика стал его дядя по матери, Вильям Эйскоу. В детстве Ньютон, по отзывам современников, был замкнут и обособлен, любил читать и мастерить технические игрушки: часы, мельницу и т. п. По окончании школы (1661) он поступил в Тринити-колледж (Колледж святой Троицы) Кембриджского университета. Уже тогда сложился его могучий характер — научная дотошность, стремление дойти до сути, нетерпимость к обману и угнетению, равнодушие к публичной славе.

Научной опорой и вдохновителями творчества Ньютона в наибольшей степени были физики: Галилей, Декарт и Кеплер. Ньютон завершил их труды, объединив в универсальную систему мира. Меньшее, но существенное влияние оказали другие математики и физики: Евклид, Ферма, Гюйгенс, Валлис и его непосредственный учитель Барроу.

Похоже на то, что значительную часть своих математических открытий Ньютон сделал ещё студентом, в «чумные годы» 1664—1666. В 23 года он уже свободно владел методами дифференциального и интегрального исчислений, включая разложение функций в ряды и то, что впоследствии было названо формулой Ньютона-Лейбница. Тогда же, по его утверждению [2], он открыл закон всемирного тяготения, точнее, убедился, что этот закон следует из третьего закона Кеплера. Кроме того, Ньютон в эти годы доказал, что белый цвет есть смесь цветов, вывел формулу «бинома Ньютона» для произвольного рационального показателя (включая отрицательные), и др.

Все эти эпохальные открытия были опубликованы на 20-40 лет позже, чем были сделаны. Ньютон не гнался за славой. Стремление открыть истину было у него главной целью.

1667: эпидемия чумы отступает, и Ньютон возвращается в Кембридж. Избран членом Тринити-колледжа, а в 1668 году становится магистром.

Исаак Барроу. Статуя в Тринити-колледже.

В 1669 году Ньютон избирается профессором математики, преемником Барроу. Барроу пересылает в Лондон сочинение Ньютона «Анализ с помощью уравнений с бесконечным числом членов», содержавшее сжатое изложение некоторых наиболее важных его открытий в анализе. «Анализ» получил некоторую известность в Англии и за её пределами. Ньютон готовит полный вариант этой работы, но найти издателя так и не удаётся. Она была опубликована лишь в 1711 году.

Продолжаются эксперименты по оптике и теории цвета. Ньютон исследует сферическую и хроматическую аберрации. Чтобы свести их к минимуму, он строит смешанный телескоп-рефлектор (линза и вогнутое сферическое зеркало, которое полирует сам). Всерьёз увлекается алхимией, проводит массу химических опытов.

1672: демонстрация рефлектора в Лондоне вызывает всеобщие восторженные отзывы. Ньютон становится знаменит и избирается членом Королевского общества (британской Академии наук). Позже усовершенствованные рефлекторы такой конструкции стали основными инструментами астрономов, с их помощью были открыты иные галактики, красное смещение и др.

Разгорается полемика по поводу природы света с Гуком, Гюйгенсом и другими. Ньютон даёт зарок на будущее: не ввязываться в научные споры. В письмах он жалуется, что поставлен перед выбором: либо не публиковать свои открытия, либо тратить всё время и все силы на отражение недружелюбной дилетантской критики. Судя по всему, он выбрал первый вариант.

1680: Ньютон получает письмо Гука с формулировкой закона всемирного тяготения, послужившее, по признанию первого, поводом его работ по определению планетных движений (правда, потом отложенных на некоторое время), составивших предмет «Начал». Впоследствии Ньютон по каким-то причинам, быть может, подозревая Гука в незаконном заимствовании каких-то более ранних результатов самого Ньютона, не желает признавать здесь никаких заслуг Гука, но потом соглашается это сделать, хотя и довольно неохотно и не полностью [3].

1684—1686: после долгих уговоров Ньютон соглашается опубликовать свои главные достижения. Работа над «Математическими началами натуральной философии» (весь трёхтомник издан в 1687 году). Приходят всемирная слава и ожесточённая критика картезианцев: закон всемирного тяготения вводит дальнодействие, несовместимое с принципами Декарта.

В 1689 году Ньютон был в первый раз избран в парламент от Кембриджского университета и заседал там немногим более года. Второе избрание состоялось в 1701—1702 годах.

1696: Королевским указом Ньютон назначен смотрителем Монетного двора (с 1699 года — директор). Он энергично проводит денежную реформу, восстанавливая доверие к основательно запущенной его предшественниками монетной системе Великобритании.

1699: начало открытого приоритетного спора с Лейбницем, в который были вовлечены даже царствующие особы. Эта нелепая распря двух гениев дорого обошлась науке — английская математическая школа вскоре увяла на целый век, а европейская — проигнорировала многие выдающиеся идеи Ньютона, переоткрыв их много позднее. На континенте Ньютона обвиняли в краже результатов Гука, Лейбница и астронома Флемстида, а также в ереси. Конфликт не погасила даже смерть Лейбница (1716).

В 1703 году Ньютон был избран президентом Королевского общества и управлял им до конца жизни — более двадцати лет.

Могила Ньютона в Вестминстерском аббатстве

1705: королева Анна возводит Ньютона в рыцарское достоинство. Отныне он сэр Исаак Ньютон. Впервые в английской истории звание рыцаря присвоено за научные заслуги.

Последние годы жизни Ньютон посвятил написанию «Хронологии древних царств», которой занимался около 40 лет, и подготовкой третьего издания «Начал».

В 1725 году здоровье Ньютона начало заметно ухудшаться (каменная болезнь), и он переселился в Кенсингтон неподалёку от Лондона, где и скончался ночью, во сне, 20 (31) марта 1727 года. Похоронен в Вестминстерском аббатстве.

Оценки

Надпись на могиле Ньютона гласит:

Здесь покоится сэр Исаак Ньютон, дворянин, который почти божественным разумом первый доказал с факелом математики движение планет, пути комет и приливы океанов.
Он исследовал различие световых лучей и появляющиеся при этом различные свойства цветов, чего ранее никто не подозревал. Прилежный, мудрый и верный истолкователь природы, древности и Св. писания, он утверждал своей философией величие Всемогущего Бога, а нравом выражал евангельскую простоту.
Пусть смертные радуются, что существовало такое украшение рода человеческого.

Статуя Ньютона в Тринити-колледже

На статуе, воздвигнутой Ньютону в 1755 г. в Тринити-колледже, высечены стихи из Лукреция:

Qui genus humanum ingenio superavit (Разумом он превосходил род человеческий)

Сам Ньютон оценивал свои достижения более скромно:

Не знаю, как меня воспринимает мир, но сам себе я кажусь только мальчиком, играющим на морском берегу, который развлекается тем, что время от времени отыскивает камешек более пёстрый, чем другие, или красивую ракушку, в то время как великий океан истины расстилается передо мной неисследованным.

По словам А. Эйнштейна, «Ньютон был первым, кто попытался сформулировать элементарные законы, которые определяют временной ход широкого класса процессов в природе с высокой степенью полноты и точности» и «… оказал своими трудами глубокое и сильное влияние на всё мировоззрение в целом».

В честь Ньютона названы:

Научная деятельность

С работами Ньютона связана новая эпоха в физике и математике. В математике появляются мощные аналитические методы. В физике основным методом исследования природы становится построение адекватных математических моделей природных процессов и интенсивное исследование этих моделей с систематическим привлечением всей мощи нового математического аппарата. Последующие века доказали исключительную плодотворность такого подхода.

Математика

Первые математические открытия Ньютон сделал ещё в студенческие годы: классификация алгебраических кривых 3-го порядка (кривые 2-го порядка исследовал Ферма) и биномиальное разложение произвольной (не обязательно целой) степени, с которого начинается ньютоновская теория бесконечных рядов — нового и мощнейшего инструмента анализа. Разложение в ряд Ньютон считал основным и общим методом анализа функций, и в этом деле достиг вершин мастерства. Он использовал ряды для вычисления таблиц, решения уравнений (в том числе дифференциальных), исследования поведения функций. Ньютон сумел получить разложение для всех стандартных на тот момент функций.

Ньютон разработал дифференциальное и интегральное исчисление одновременно с Г. Лейбницем (немного раньше) и независимо от него.

До Ньютона действия с бесконечно малыми не были увязаны в единую теорию и носили характер разрозненных остроумных приёмов (см. Метод неделимых). Создание математического анализа сводит решение соответствующих задач, в значительной степени, до технического уровня. Появился комплекс понятий, операций и символов, ставший отправной базой дальнейшего развития математики. Следующий, XVIII век, стал веком бурного и чрезвычайно успешного развития аналитических методов.

По-видимому, Ньютон пришёл к идее анализа через разностные методы, которыми много и глубоко занимался. Правда, в своих «Началах» Ньютон почти не использовал бесконечно малых, придерживаясь античных (геометрических) приёмов доказательства, но в других трудах применял их свободно.

Отправной точкой для дифференциального и интегрального исчисления были работы Кавальери и особенно Ферма, который уже умел (для алгебраических кривых) проводить касательные, находить экстремумы, точки перегиба и кривизну кривой, вычислять площадь её сегмента. Из других предшественников сам Ньютон называл Валлиса, Барроу и шотландского учёного Джеймса Грегори. Понятия функции ещё не было, все кривые он трактовал кинематически как траектории движущейся точки.

Уже будучи студентом, Ньютон понял, что дифференцирование и интегрирование — взаимно обратные операции. Эта основная теорема анализа уже более или менее ясно вырисовывалась в работах Торричелли, Грегори и Барроу, однако лишь Ньютон понял, что на этой основе можно получить не только отдельные открытия, но мощное системное исчисление, подобное алгебре, с чёткими правилами и гигантскими возможностями.

Ньютон почти 30 лет не заботился о публикации своего варианта анализа, хотя в письмах (в частности, к Лейбницу) охотно делится многим из достигнутого. Тем временем вариант Лейбница широко и открыто распространяется по Европе с 1676 года. Лишь в 1693 году появляется первое изложение варианта Ньютона — в виде приложения к «Трактату по алгебре» Валлиса. Приходится признать, что терминология и символика Ньютона по сравнению с лейбницевской довольно неуклюжи: флюксия (производная), флюэнта (первообразная), момент величины (дифференциал) и т. п. Сохранились в математике только ньютоновское обозначение «o» для бесконечно малой dt (впрочем, эту букву в том же смысле использовал ранее Грегори), да ещё точка над буквой как символ производной по времени.

Достаточно полное изложение принципов анализа Ньютон опубликовал только в работе «О квадратуре кривых» (1704), приложении к его монографии «Оптика». Почти весь изложенный материал был готов ещё в 1670—1680-е годы, но лишь теперь Грегори и Галлей уговорили Ньютона издать работу, которая, с опозданием на 40 лет, стала первым печатным трудом Ньютона по анализу. Здесь у Ньютона появляются производные высших порядков, найдены значения интегралов разнообразных рациональных и иррациональных функций, приведены примеры решения дифференциальных уравнений 1-го порядка.

В 1707 году выходит книга «Универсальная арифметика». В ней приведены разнообразные численные методы. Ньютон всегда уделял большое внимание приближённому решению уравнений. Знаменитый метод Ньютона позволял находить корни уравнений с немыслимой ранее скоростью и точностью (опубликован в «Алгебре» Валлиса, 1685). Современный вид итерационному методу Ньютона придал Джозеф Рафсон (1690).

В 1711 году наконец напечатан, спустя 40 лет, «Анализ с помощью уравнений с бесконечным числом членов». В этом труде Ньютон с одинаковой лёгкостью исследует как алгебраические, так и «механические» кривые (циклоиду, квадратрису). Появляются частные производные, но почему-то нет правила дифференцирования дроби и сложной функции, хотя Ньютону они были известны; впрочем, Лейбниц на тот момент их уже опубликовал.

В этом же году выходит «Метод разностей», где Ньютон предложил интерполяционную формулу для проведении через (n + 1) данные точки с равноотстоящими или неравноотстоящими абсциссами многочлена n-го порядка. Это разностный аналог формулы Тейлора.

В 1736 году посмертно издаётся итоговый труд «Метод флюксий и бесконечных рядов», существенно продвинутый по сравнению с «Анализом с помощью уравнений». Приводятся многочисленные примеры отыскания экстремумов, касательных и нормалей, вычисления радиусов и центров кривизны в декартовых и полярных координатах, отыскания точек перегиба и т. п. В этом же сочинении произведены квадратуры и спрямления разнообразных кривых.

Надо отметить, что Ньютон не только достаточно полно разработал анализ, но и сделал попытку строго обосновать его принципы. Если Лейбниц склонялся к идее актуальных бесконечно малых, то Ньютон предложил (в «Началах») общую теорию предельных переходов, которую несколько витиевато назвал «метод первых и последних отношений». Используется именно современный термин «предел» (limes), хотя внятное описание сущности этого термина отсутствует, подразумевая интуитивное понимание.

Теория пределов изложена в 11 леммах книги I «Начал»; одна лемма есть также в книге II. Арифметика пределов отсутствует, нет доказательства единственности предела, не выявлена его связь с бесконечно малыми. Однако Ньютон справедливо указывает на бо́льшую строгость такого подхода по сравнению с «грубым» методом неделимых.

Тем не менее в книге II, введя моменты (дифференциалы), Ньютон вновь запутывает дело, фактически рассматривая их как актуальные бесконечно малые.

Примечательно, что теорией чисел Ньютон совершенно не интересовался. По всей видимости, физика ему была гораздо ближе математики.

Механика

Страница «Начал» Ньютона с аксиомами механики

Заслугой Ньютона является решение двух фундаментальных задач.

  • Создание для механики аксиоматической основы, которая фактически перевела эту науку в разряд строгих математических теорий.
  • Создание динамики, связывающей поведение тела с характеристиками внешних воздействий на него (сил).

Кроме того, Ньютон окончательно похоронил укоренившееся с античных времён представление, что законы движения земных и небесных тел совершенно различны. В его модели мира вся Вселенная подчинена единым законам.

Аксиоматика Ньютона состояла из трёх законов, которые сам он сформулировал в следующем виде.

  1. Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.
  2. Изменение количества движения пропорционально приложенной силе и происходит по направлению той прямой, по которой эта сила действует.
  3. Действию всегда есть равное и противоположное противодействие, иначе, взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны.

Первый закон (закон инерции), в менее чёткой форме, опубликовал ещё Галилей. Надо отметить, что Галилей допускал свободное движение не только по прямой, но и по окружности (видимо, из астрономических соображений). Галилей также сформулировал важнейший принцип относительности, который Ньютон не включил в свою аксиоматику, потому что для механических процессов этот принцип является прямым следствием уравнений динамики. Кроме того, Ньютон считал пространство и время абсолютными понятиями, едиными для всей Вселенной, и явно указал на это в своих «Началах».

Ньютон также дал строгие определения таких физических понятий, как количество движения (не вполне ясно использованное у Декарта) и сила. Он ввёл в физику понятие массы как меры инерции и, одновременно, гравитационных свойств (ранее физики пользовались понятием вес).

Завершили математизацию механики Эйлер и Лагранж.

Теория тяготения

Закон тяготения Ньютона

Сама идея всеобщей силы тяготения неоднократно высказывалась и до Ньютона. Ранее о ней размышляли Эпикур, Гассенди, Кеплер, Борелли, Декарт, Гюйгенс и другие. Кеплер полагал, что тяготение обратно пропорционально расстоянию до Солнца и распространяется только в плоскости эклиптики; Декарт считал его результатом вихрей в эфире. Были, впрочем, догадки с правильной формулой (Буллиальд, Рен, Гук), и даже кинематически обоснованные (с помощью соотнесения формулы центробежной силы Гюйгенса и третьего закона Кеплера для круговых орбит). [4]. Но до Ньютона никто не сумел ясно и математически доказательно связать закон тяготения (силу, обратно пропорциональную квадрату расстояния) и законы движения планет (законы Кеплера). Только с трудов Ньютона начинается наука динамика.

Важно отметить, что Ньютон опубликовал не просто предполагаемую формулу закона всемирного тяготения, но фактически предложил целостную математическую модель в контексте хорошо разработанного, полного, явно сформулированного и систематически изложенного подхода к механике:

В совокупности эта триада достаточна для полного исследования самых сложных движений небесных тел, тем самым создавая основы небесной механики. До Эйнштейна никаких принципиальных поправок к указанной модели не понадобилось, хотя математический аппарат оказалось необходимым значительно развить.

Ньютоновская теория тяготения вызвала многолетние дебаты и критику концепции дальнодействия.

Важным аргументом в пользу ньютоновской модели послужил строгий вывод на её основе эмпирических законов Кеплера. Следующим шагом стала теория движения комет и Луны, изложенная в «Началах». Позже с помощью ньютоновского тяготения были с высокой точностью объяснены все наблюдаемые движения небесных тел; в этом большая заслуга Эйлера, Клеро и Лапласа, которые разработали для этого теорию возмущений. Фундамент этой теории был заложен ещё Ньютоном, который провёл анализ движения Луны, используя свой обычный метод разложения в ряд; на этом пути он открыл причины известных тогда аномалий (неравенств) в движении Луны.

Первые наблюдаемые поправки к теории Ньютона в астрономии (объяснённые ОТО) были обнаружены лишь более чем через 200 лет (смещение перигелия Меркурия). Впрочем, и они очень малы в пределах Солнечной системы.

Ньютон также открыл причину приливов: притяжение Луны (даже Галилей считал приливы центробежным эффектом). Более того, обработав многолетние данные о высоте приливов, он с хорошей точностью вычислил массу Луны.

Ещё одним следствием тяготения оказалась прецессия земной оси. Ньютон выяснил, что из-за сплюснутости Земли у полюсов земная ось совершает под действием притяжения Луны и Солнца постоянное медленное смещение с периодом 26000 лет. Тем самым древняя проблема «предварения равноденствий» (впервые отмеченная Гиппархом) нашла научное объяснение.

Оптика и теория света

Ньютону принадлежат фундаментальные открытия в оптике. Он построил первый зеркальный телескоп (рефлектор), в котором, в отличие от чисто линзовых телескопов, отсутствовала хроматическая аберрация. Он также открыл дисперсию света, показал, что белый свет раскладывается на цвета радуги вследствие различного преломления лучей разных цветов при прохождении через призму, и заложил основы правильной теории цветов.

В этот период было множество спекулятивных теорий света и цветности; в основном боролись точка зрения Аристотеля («разные цвета есть смешение света и тьмы в разных пропорциях») и Декарта («разные цвета создаются при вращении световых частиц с разной скоростью»). Гук в своей «Микрографии» (1665) предлагал вариант аристотелевских взглядов. Многие полагали, что цвет есть атрибут не света, а освещённого предмета. Всеобщий разлад усугубил каскад открытий XVII века: дифракция (1665, Гримальди), интерференция (1665, Гук), двойное лучепреломление (1670, Эразм Бартолин (Rasmus Bartholin), изучено Гюйгенсом), оценка скорости света (1675, Рёмер). Теории света, совместимой со всеми этими фактами, не существовало.

Дисперсия света
(опыт Ньютона)

В своём выступлении перед Королевским обществом Ньютон опроверг как Аристотеля, так и Декарта, и убедительно доказал, что белый свет не первичен, а состоит из цветных компонентов с разными углами преломления. Эти-то составляющие и первичны — никакими ухищрениями Ньютон не смог изменить их цвет. Тем самым субъективное ощущение цвета получало прочную объективную базу — показатель преломления.

Ньютон создал математическую теорию открытых Гуком интерференционных колец, которые с тех пор получили название «кольца Ньютона».

Титульный лист «Оптики» Ньютона

В 1689 г. Ньютон прекратил исследования в области оптики — по распространённой легенде, поклялся ничего не печатать в этой области при жизни Гука, который постоянно донимал Ньютона болезненно воспринимаемой последним критикой. Во всяком случае, в 1704 году, на следующий год после смерти Гука, выходит в свет монография «Оптика». При жизни автора «Оптика», как и «Начала», выдержала три издания и множество переводов.

Книга первая монографии содержала принципы геометрической оптики, учение о дисперсии света и составе белого цвета с различными приложениями.

Книга вторая: интерференция света в тонких пластинках.

Книга третья: дифракция и поляризация света. Поляризацию при двойном лучепреломлении Ньютон объяснил ближе к истине, чем Гюйгенс (сторонник волновой природы света), хотя объяснение самого явления неудачное, в духе эмиссионной теории света.

Ньютона часто считают сторонником корпускулярной теории света; на самом деле он, по своему обыкновению, «гипотез не измышлял»[5] и охотно допускал, что свет может быть связан и с волнами в эфире. В своей монографии Ньютон детально описывал математическую модель световых явлений, оставляя в стороне вопрос о физическом носителе света.

Другие работы по физике

Ньютону принадлежит первый вывод скорости звука в газе, основанный на законе Бойля-Мариотта.

Он предсказал сплюснутость Земли у полюсов, примерно 1:230. При этом Ньютон использовал для описания Земли модель однородной жидкости, применил закон всемирного тяготения и учёл центробежную силу. Одновременно аналогичные расчёты выполнил Гюйгенс, который не верил в дальнодействующую силу тяготения[6] и подошёл к проблеме чисто кинематически. Соответственно Гюйгенс предсказал более чем вдвое меньшее сжатие, чем Ньютон, 1:576. Более того, Кассини и другие картезианцы доказывали, что Земля не сжата, а выпукла у полюсов наподобие лимона. Впоследствии, хотя и не сразу (первые измерения были неточны), прямые измерения (Клеро, 1743) подтвердили правоту Ньютона; реальное сжатие равно 1:298. Причина отличия этого значения от предложенного Ньютоном в сторону Гюйгенсовского состоит в том, что модель однородной жидкости всё же не вполне точна (плотность заметно возрастает с глубиной). Более точная теория, явно учитывающая зависимость плотности от глубины, была разработана только в XIX веке.

Другие сферы деятельности

Уточнённая хронология древних царств

Параллельно с изысканиями, закладывавшими фундамент нынешней научной (физической и математической) традиции, Ньютон много времени отдавал алхимии, а также богословию. Никаких трудов по алхимии он не издавал, и единственным известным результатом этого многолетнего увлечения стало серьёзное отравление Ньютона в 1691 году.

Парадоксально, что Ньютон, много лет трудившийся в Колледже святой Троицы, сам, видимо, в Троицу не верил. Исследователи его богословских работ, такие как Л. Мор, считают, что религиозные взгляды Ньютона были близки к арианству[7]. См. статью Ньютона «Историческое прослеживание двух заметных искажений Священного Писания».

Ньютон предложил свой вариант библейской хронологии, оставив после себя значительное количество рукописей по данным вопросам. Иудейский Храм в Иерусалиме Ньютон считал совершенной моделью мироздания, отразив это в трудах по архитектуре Храма и иудейских синагог. Кроме того, Ньютон написал комментарий на Апокалипсис. Теологические рукописи Ньютона ныне хранятся в Иерусалиме, в Национальной Библиотеке.

Примечания

  1. Исторически ударение в фамилии Ньютона чаще делалось на втором слоге, хотя ударение на первом ближе к английскому оригиналу. Современные словари и руководства не имеют единого мнения по этому поводу. Словарь Русское словесное ударение М. В. Зарва (2001) требует ударения на первом слоге, Справочник по правописанию, произношению, литературному редактированию Розенталя (1998) допускает вариативное ударение, но уточняет: «традиционно — Ньюто́н». Орфографический словарь В. В. Лопатина тоже допускает вариативность.
  2. «В бумагах, написанных более 15 лет тому назад (точно привести дату я не могу, но во всяком случае это было перед началом моей переписки с Ольденбургом), я выразил обратную квадратичную пропорциональность тяготения планет к Солнцу в зависимости от расстояния и вычислил правильное отношение земной тяжести и conatus recedendi (стремление) Луны к центру Земли, хотя и не совсем точно» (Из письме к Галлею, 1686 год).
    С. И. Вавилов. Исаак Ньютон. 2-е дополненное издание. М.-Л.: Изд. АН СССР, 1945 г., глава 9.
  3. «Если связать в одно все предположения и мысли Гука о движении планет и тяготении, высказанные им в течение почти 20 лет, то мы встретим почти все главные выводы «Начал» Ньютона, только высказанные в неуверенной и мало доказательной форме. Не решая задачи, Гук нашел ее ответ. Вместе с тем перед нами вовсе не случайно брошенная мысль, но несомненно плод долголетней работы. У Гука была гениальная догадка физика-экспериментатора, прозревающего в лабиринте фактов истинные соотношения и законы «природы. С подобной редкостной интуицией экспериментатора мы встречаемся в истории науки еще у Фарадея, но Гук и Фарадей не были математиками. Их дело было довершено Ньютоном и Максвеллом. Бесцельная борьба с Ньютоном за приоритет набросила тень на славное имя Гука, но истории пора, спустя почти три века, отдать должное каждому. Гук не мог идти прямой, безукоризненной дорогой „Математических начал“ Ньютона, но своими окольными тропинками, следов которых нам теперь уже не найти, он пришел туда же.»
    (С. И. Вавилов. Исаак Ньютон. 2-е дополненное издание. М.-Л.: Изд. АН СССР, 1945 г., глава 9).
    Возможно, это суждение Вавилова недостаточно справедливо к Гуку, так как упомянутое письмо Гука Ньютону содержит не только «догадку», но и вполне обоснованный вывод закона тяготения из третьего закона Кеплера, произведенный для случая круговых орбит.
  4. Вот, например, отрывок из письма Гука 6 января 1680 года Ньютону: «Я предполагаю, что притяжение обратно пропорционально квадрату расстояния до центра, соответственно предположению Кеплера о зависимости скорости от расстояния.» (цитируется по В. И. Арнольд, «Гюйгенс и Барроу, Ньютон и Гук», Указ. соч., с. 16)
  5. «Гипотез не измышляю»
  6. См. предисловие к книге: Тодхантер И. История математических теорий притяжения и фигуры Земли от Ньютона до Лапласа. М.: 2002.
  7. С. И. Вавилов. Исаак Ньютон. 2-е дополненное издание. М.-Л.: Изд. АН СССР, 1945 г., глава 15.

Основные опубликованные сочинения Ньютона

  • Method of Fluxions (1671, «Метод флюксий», опубликован посмертно, в 1736 году)
  • De Motu Corporum in Gyrum (1684)
  • Philosophiae Naturalis Principia Mathematica (1687, «Математические начала натуральной философии»)
  • Opticks (1704, «Оптика»)
  • Arithmetica Universalis (1707, «Универсальная арифметика»)
  • Short Chronicle, The System of the World, Optical Lectures, The Chronology of Ancient Kingdoms, Amended и De mundi systemate опубликованы посмертно в 1728 году.
  • An Historical Account of Two Notable Corruptions of Scripture (1754)

Литература

Сочинения

  • Ньютон И. Математические работы. Пер. и комм. Д. Д. Мордухай-Болтовского. М.-Л.: ОНТИ, 1937.
  • Ньютон И. Всеобщая арифметика или Книга об арифметическом синтезе и анализе. М.: Изд. АН СССР, 1948.
  • Ньютон И. Математические начала натуральной философии. Пер. и прим. А. Н. Крылова. М.: Наука, 1989.
  • Ньютон И. Лекции по оптике. М.: Изд. АН СССР, 1946.
  • Ньютон И. Оптика или трактат об отражениях, преломлениях, изгибаниях и цветах света. М.: Гостехиздат, 1954.
  • Ньютон И. Замечания на книгу пророка Даниила и Апокалипсис св. Иоанна. Пг.: Новое время, 1915.
  • Ньютон И. Исправленная хронология древних царств. М.: РИМИС, 2007.

О нём

  • Арнольд В. И. Гюйгенс и Барроу, Ньютон и Гук.. М.: Наука, 1989.
  • Белл Э. Т. Творцы математики. М.: Просвещение, 1979.
  • Вавилов С. И. Исаак Ньютон. 2-е доп. изд. М.-Л.: Изд. АН СССР, 1945.
  • История математики под редакцией А. П. Юшкевича в трёх томах, М.: Наука, 1970. Том 2. Математика XVII столетия.
  • Карцев В. Ньютон. М.: Молодая гвардия, 1987.
  • Катасонов В. Н. Метафизическая математика XVII в. М.: Наука, 1993.
  • Кирсанов В. С. Научная революция XVII века. М.: Наука, 1987.
  • Кузнецов Б. Г. Ньютон. М.: Мысль, 1982.
  • Московский университет — памяти Исаака Ньютона. М., 1946.
  • Спасский Б. И. История физики. Изд. 2-е. М.: Высшая школа, 1977. Часть 1. Часть 2.
  • Хеллман Х. Великие противостояния в науке. Десять самых захватывающих диспутов. M.: Диалектика, 2007. — Глава 3. Ньютон против Лейбница: Битва титанов.
  • Юшкевич А. П. О математических рукописях Ньютона. Историко-математические исследования, 22, 1977, с. 127—192.
  • Юшкевич А. П. Концепции исчисления бесконечно малых Ньютона и Лейбница. Историко-математические исследования, 23, 1978, с. 11-31.
  • Arthur R. T. W. Newton’s fluxions and equably flowing time. Studies in history and philosophy of science, 26, 1995, p. 323—351.
  • Bertoloni M. D. Equivalence and priority: Newton versus Leibniz. Oxford: Clarendon Press, 1993.
  • Cohen I. B. Newton’s principles of philosophy: inquires into Newton’s scientific work and its general environment. Cambridge (Mass) UP, 1956.
  • Cohen I. B. Introduction to Newton’s «Principia». Cambridge (Mass) UP, 1971.
  • Lai T. Did Newton renounce infinitesimals? Historia Mathematica, 2, 1975, p. 127—136.
  • Selles M. A. Infinitesimals in the foundations of Newton’s mechanics. Historia Mathematica, 33, 2006, p. 210—223.
  • Weinstock R. Newton’s Principia and inverse-square orbits: the flaw reexamined. Historia Mathematica, 19, 1992, p. 60-70.
  • Westfall R. S. Never at rest: A biog. of Isaac Newton. Cambridge UP, 1981.
  • Whiteside D. T. Patterns of mathematical thought in the later seventeenth century. Archive for History of Exact Sciences, 1, 1963, p. 179—388.
  • White M. Isaac Newton: The last sorcerer. Perseus, 1999, 928 с.

Художественные произведения

Ссылки

См. также

Wikimedia Foundation. 2010.

dic.academic.ru

Исаак Ньютон

Сэр Исаак Ньютон (англ. Sir Isaac Newton, 25 декабря 1642 — 20 марта 1727 по юлианскому календарю, использовавшемуся в Англии в то время; или 4 января 1643 — 31 марта 1727 по григорианскому календарю) — великий английский физик, математик и астроном. Автор фундаментального труда «Математические начала натуральной философии» (лат. Philosophiae Naturalis Principia Mathematica), в котором он описал закон всемирного тяготения и так называемые Законы Ньютона, заложившие основы классической механики. Разработал дифференциальное и интегральное исчисление, теорию цветности и многие другие математические и физические теории.

Разработал (независимо от Г. Лейбница) дифференциальное и интегральное исчисления. Открыл дисперсию света, хроматическую аберрацию, исследовал интерференцию и дифракцию, развивал корпускулярную теорию света, высказал гипотезу, сочетавшую корпускулярные и волновые представления. Построил зеркальный телескоп. Сформулировал основные законы классической механики. Открыл закон всемирного тяготения, дал теорию движения небесных тел, создав основы небесной механики. Пространство и время считал абсолютными. Работы Ньютона намного опередили общий научный уровень его времени, были малопонятны современникам. Был директором Монетного двора, наладил монетное дело в Англии. Известный алхимик, Ньютон занимался хронологией древних царств. Теологические труды посвятил толкованию библейских пророчеств (большей частью не опубликованы).

Ньютон родился 4 января 1643 года в деревне Вулсторп, (графство Линкольншир, Англия) в семье мелкого фермера, умершего за три месяца до рождения сына. Младенец был недоношенным; бытует легенда, что он был так мал, что его поместили в овчинную рукавицу, лежавшую на лавке, из которой он однажды выпал и сильно ударился головкой об пол. Когда ребенку исполнилось три года, его мать вторично вышла замуж и уехала, оставив его на попечении бабушки. Ньютон рос болезненным и необщительным, склонным к мечтательности. Его привлекала поэзия и живопись, он, вдали от сверстников, мастерил бумажных змеев, изобретал ветряную мельницу, водяные часы, педальную повозку. Трудным было для Ньютона начало школьной жизни. Учился он плохо, был слабым мальчиком, и однажды одноклассники избили его до потери сознания. Переносить такое для самолюбивого Ньютона было невыносимо, и оставалось одно: выделиться успехами в учебе. Упорной работой он добился того, что занял первое место в классе.

Интерес к технике заставил Ньютона задуматься над явлениями природы; он углубленно занимался и математикой. Об этом позже написал Жан Батист Бие: «Один из его дядей, найдя его однажды под изгородью с книгой в руках, погруженного в глубокое размышление, взял у него книгу и нашел, что он был занят решением математической задачи. Пораженный таким серьезным и деятельным направление столь молодого человека, он уговорил его мать не противиться далее желанию сына и послать его для продолжения занятий».

После серьезной подготовки Ньютон в 1660 г. поступил в Кембридж в качестве Subsizzfr’a (так назывались неимущие студенты, которые обязаны прислуживать членам колледжа, что не могло не тяготить Ньютона). Начал изучать астрологию в последний год обучения в колледже.

Ньютон серьезно относился к астрологии и ревностно защищал ее от нападок со стороны своих коллег. Занятия астрологией и стремление доказать ее значимость подтолкнуло его на исследования в области движения небесных тел и их влияния на нашу планету.

За шесть лет Ньютоном были пройдены все степени колледжа и подготовлены все его дальнейшие великие открытия. В 1665 г. Ньютон стал магистром искусств. В этом же году, когда в Англии свирепствовала эпидемия чумы, он решил временно поселиться в Вулсторпе. Именно там он начал активно заниматься оптикой. Лейтмотивом всех исследований было стремление понять физическую природу света. Ньютон считал, что свет — это поток особых частиц (корпускул), вылетающих из источника и движущихся прямолинейно, пока они не встретят препятствия. Корпускулярная модель объясняла не только прямолинейность распространения света, но и закон отражения (упругое отражение), и закон преломления.

В это время уже, в основном, завершилась работа, которой суждено было стать основным великим итогом трудов Ньютона — создание единой, основанной на сформулированных им законах механики физической картины Мира.

Поставив задачу изучения различных сил, Ньютон сам же дал первый блистательный пример ее решения, сформулировав закон всемирного тяготения. Закон всемирного тяготения позволил Ньютону дать количественное объяснение движения планет вокруг Солнца, природы морских приливов. Это не могло не произвести огромного впечатления на умы исследователей. Программа единого механического описания всех явлений природы — и «земных», и «небесных» на долгие годы утвердилась в физике.

В 1668 году Ньютон вернулся в Кембридж и вскоре он получил Лукасовскую кафедру математики. Эту кафедру до него занимал его учитель И. Барроу, который уступил кафедру своему любимому ученику, чтобы материально обеспечить его. К тому времени Ньютон уже был автором бинома и создателем (одновременно с Лейбницем, но независимо от него) метода дифференциального и интегрального исчисления.

Не ограничиваясь одними лишь теоретическими исследованиями, он в эти же годы сконструировал телескоп-рефлектор (отражательный). Второй из изготовленных телескопов (улучшенный) послужил поводом для представления Ньютона в члены Лондонского королевского общества. Когда Ньютон отказался от членства из-за невозможности уплаты членских взносов, было сочтено возможным, учитывая его научные заслуги, сделать для него исключение, освободив его от их уплаты. Его теория света и цветов, изложенная в 1675 году, вызвала такие нападки, что Ньютон решил не публиковать ничего по оптике, пока жив Гук, наиболее ожесточенный его оппонент. С 1688 года до 1694 года Ньютон был членом парламента.

К тому времени, в 1687 г. вышли «Математические начала натуральной философии» — основа механики всех физических явлений, от движения небесных тел до распространения звука. Несколько веков спустя эта программа определила развитие физики, и ее значение не исчерпано и поныне. Постоянное гнетущее ощущение материальной необеспеченности, огромное нервное и умственное напряжение было, несомненно, одной из причин болезни Ньютона. Непосредственным толчком к болезни явился пожар, в котором погибли все подготавливавшиеся им рукописи. Поэтому для него имела большое значение должность смотрителя Монетного двора с сохранением профессуры в Кембридже. Ревностно приступив к работе и быстро добившись заметных успехов, Ньютон был в 1699 назначен директором. Совмещать это с преподаванием было невозможно, и Ньютон перебрался в Лондон.

В конце 1703 г. его избрали президентом Королевского общества. К тому времени Ньютон достиг вершины славы. В 1705 г. его возводят в рыцарское достоинство, но, располагая большой квартирой, имея шесть слуг и богатый выезд, он остается по-прежнему одиноким.

Пора активного творчества позади, и Ньютон ограничивается подготовкой издания «Оптики», переиздания труда «Математические начала натуральной философии» и толкованием Священного Писания (ему принадлежит толкование Апокалипсиса, сочинение о пророке Данииле).

Ньютон умер 31 марта 1727 года в Лондоне и похоронен в Вестминстерском аббатстве. Надпись на его могиле заканчивается словами: «Пусть смертные радуются, что в их среде жило такое украшение человеческого рода».

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

calcsbox.com

Исаак Ньютон. Isaac Newton — биография. Английский Физик Математик Астроном

Английский физик. Математик. Механик. Астроном. Один из создателей классической физики. Автор фундаментального труда «Математические начала натуральной философии», в котором изложил закон всемирного тяготения и три закона механики, ставшие основой классической механики. Разработал дифференциальное и интегральное исчисления, теорию цвета, заложил основы современной физической оптики. Создал другие математические и физические теории.


Исаак Ньютон родился 4 января 1642 года в городе Вулсторп, Англия. Мальчик появился на свет в небольшой деревушке в семье мелкого фермера, умершего за три месяца до рождения сына. Мальчик родился преждевременно, оказался болезненным, поэтому его долго не решались крестить. И все же он выжил, крещен, и назван Исааком в память об отце. Факт рождения под Рождество Ньютон считал особым знаком судьбы. Несмотря на слабое здоровье в младенчестве, прожил восемьдесят четыре года.

     Когда ребенку исполнилось три года, его мать вторично вышла замуж и уехала, оставив его на попечении бабушки. Ньютон рос необщительным, склонным к мечтательности. Его привлекала поэзия и живопись. Вдали от сверстников мастерил бумажных змеев, изобретал ветряную мельницу, водяные часы, педальную повозку.

     Интерес к технике заставил Ньютона задуматься над явлениями природы, углубленно заниматься математикой. После серьезной подготовки Исаак Ньютон в 1660 поступил в Кембридж в качестве Subsizzfr’a, так назывались неимущие студенты, которые обязаны прислуживать членам колледжа, что не могло не тяготить Ньютона.

     За шесть лет Исааком Ньютоном пройдены все степени колледжа и подготовлены все его дальнейшие великие открытия. В 1665 году Ньютон стал магистром искусств. В том же году, когда в Англии свирепствовала эпидемия чумы, решил временно поселиться в Вулсторпе.

     Именно там ученый начал активно заниматься оптикой, поиски способов устранения хроматической аберрации в линзовых телескопах привели Ньютона к исследованиям того, что теперь называется дисперсией, то есть зависимости показателя преломления от частоты. Многие из проведенных им экспериментов, а их насчитывается более тысячи, стали классическими и повторяются по сей день в школах и институтах.

     Лейтмотивом всех исследований стало стремление понять физическую природу света. Сначала Ньютон склонялся к мысли о том, что свет является волной во всепроникающем эфире, но позже отказался от этой идеи, решив, что сопротивление со стороны эфира должно было бы заметным образом тормозить движение небесных тел. Эти доводы привели Ньютона к представлению, что свет представляет собой поток особых частиц, корпускул, вылетающих из источника и движущихся прямолинейно, пока не встретят препятствия.

     Корпускулярная модель объясняла не только прямолинейность распространения света, но и закон отражения. Это предположение заключалось в том, что световые корпускулы, подлетая, к поверхности воды, например, должны притягиваться ею и потому испытывать ускорение. По этой теории скорость света в воде должна быть больше, чем в воздухе, что вступило в противоречие с более поздними экспериментальными данными.

     На формирование корпускулярных представлений о свете явным образом повлияло, что в это время уже, в основном, завершилась работа, которой суждено стать основным великим итогом трудов Ньютона: создание единой, основанной на сформулированных им законах механики физической картины Мира.

     В основе этой картины лежало представление о материальных точках, физически бесконечно малых частицах материи и о законах, управляющих их движением. Именно четкая формулировка этих законов и придала механике Ньютона законченность. Первый из этих законов являлся, фактически, определением инерциальных систем отсчета: именно в таких системах не испытывающие никаких воздействий материальные точки движутся равномерно и прямолинейно.

     Второй закон механики играет центральную роль. Он гласит, что изменение количества, движения произведения массы на скорость за единицу времени равно силе, действующей на материальную точку. Масса каждой из этих точек является неизменной величиной. Вообще все эти точки «не истираются», по выражению Ньютона, каждая из них вечна, то есть не может ни возникать, ни уничтожаться. Материальные точки взаимодействуют, и количественной мерой воздействия на каждую из них и является сила. Задача выяснения того, каковы эти силы, является корневой проблемой механики.

     Наконец, третий закон, закон «равенства действия и противодействия» объяснял, почему полный импульс любого тела, не испытывающего внешних воздействий, остается неизменным, как бы ни взаимодействовали между собой его составные части.

     Поставив задачу изучения различных сил, Исаак Ньютон сам же дал первый блистательный пример ее решения, сформулировав закон всемирного тяготения: сила гравитационного притяжения между телами, размеры которых значительно меньше расстояния между ними, прямо пропорциональна их массам, обратно пропорциональна квадрату расстояния между ними и направлена вдоль соединяющей их прямой. Закон всемирного тяготения позволил Ньютону дать количественное объяснение движению планет вокруг Солнца и Луны вокруг Земли, понять природу морских приливов.

     Это не могло не произвести огромного впечатления на умы исследователей. Программа единого механического описания всех явлений природы: и «земных», и «небесных» на долгие годы утвердилась в физике. Более того, многим физикам в течение двух столетий сам вопрос о границах применимости законов Ньютона представлялся неоправданным.

     В 1668 Исаак Ньютон вернулся в Кембридж и вскоре получил Лукасовскую кафедру математики. Эту кафедру до него занимал его учитель Исаака Барроу, который уступил кафедру своему любимому ученику, чтобы материально обеспечить его. К тому времени Ньютон уже являлся автором бинома и создателем метода флюксий, того, что ныне называется дифференциальным и интегральным исчислением.

     Вообще, этот период стал плодотворнейшим в творчестве Ньютона: за семь лет, с 1660 по 1667 сформировались его основные идеи, включая идею закона всемирного тяготения. Не ограничиваясь одними лишь теоретическими исследованиями, Исаак Ньютон в эти же годы сконструировал, и начал создавать телескоп-рефлектор.

     Эта работа привела к открытию того, что позже получило название интерференционных «линий равной толщины». Ньютон, поняв, что здесь проявляется «гашение света светом», не вписывавшееся в корпускулярную модель, пытался преодолеть возникавшие здесь трудности, введя предположение, что корпускулы в свете движутся волнами, «приливами».

     Второй из изготовленных телескопов послужил поводом для представления Ньютона в члены Лондонского королевского общества. Когда ученый отказался от членства, сославшись на отсутствие средств на уплату членских взносов, сочтено возможным, учитывая его научные заслуги, сделать для него исключение, освободив его от их уплаты.

     Будучи по натуре весьма осторожным человеком, Исаак Ньютон, помимо его воли оказывался порой втянутым в мучительные для него дискуссии и конфликты. Так, его теория света и цветов, изложенная в 1675 году, вызвала такие нападки, что Ньютон решил не публиковать ничего по оптике, пока жив Гук, наиболее ожесточенный его оппонент.

     Пришлось Ньютону принять участие и в политических событиях. С 1688 до 1694 года ученый являлся членом парламента. К тому времени вышел в свет его основной труд «Математические начала натуральной философии», основа механики всех физических явлений, от движения небесных тел до распространения звука. На несколько веков вперед эта программа определила развитие физики, и ее значение не исчерпано и поныне.

     Постоянное огромное нервное и умственное напряжение привело к тому, что в 1692 Ньютон заболел умственным расстройством. Непосредственным толчком к этому явился пожар, в котором погибли все подготавливавшиеся им рукописи.

     Постоянное гнетущее ощущение материальной необеспеченности стало, несомненно, одной из причин болезни Ньютона. Поэтому для него имела большое значение должность смотрителя Монетного двора с сохранением профессуры в Кембридже. Ревностно приступив к работе и быстро добившись заметных успехов в 1699 году назначен директором. Совмещать это с преподаванием оставалось невозможно, и Ньютон перебрался в Лондон.

     В конце 1703 года Исаака Ньютона избрали президентом Королевского общества. К тому времени Ньютон достиг вершины славы. В 1705 году его возводят в рыцарское достоинство, но, располагая большой квартирой, имея шесть слуг и богатый выезд, ученый остается по-прежнему одиноким. Пора активного творчества позади, и Ньютон ограничивается подготовкой издания «Оптики», переиздания «Начал» и толкованием «Священного Писания». Ему принадлежит толкование Апокалипсиса, сочинение о пророке Данииле.

     Исаак Ньютон скончался 31 марта 1727 года в своем доме в Лондоне. Похоронен в Вестминстерском аббатстве. Надпись на его могиле заканчивается словам: «Пусть смертные радуются, что в их среде жило такое украшение человеческого рода». Ежегодно в день рождения великого англичанина научное сообщество отмечает День Ньютона.

Труды Исаака Ньютона

«Новая теория света и цветов», 1672 (сообщение Королевскому обществу)
«Движение тел по орбите» (лат. De Motu Corporum in Gyrum), 1684
«Математические начала натуральной философии» (лат. Philosophiae Naturalis Principia Mathematica), 1687
«Оптика или трактат об отражениях, преломлениях, изгибаниях и цветах света» (англ. Opticks or a treatise of the reflections, refractions, inflections and colours of light), 1704
«О квадратуре кривых» (лат. Tractatus de quadratura curvarum), приложение к «Оптике»
«Перечисление линий третьего порядка» (лат. Enumeratio linearum tertii ordinis), приложение к «Оптике»
«Универсальная арифметика» (лат. Arithmetica Universalis), 1707
«Анализ с помощью уравнений с бесконечным числом членов» (лат. De analysi per aequationes numero terminorum infinitas), 1711
«Метод разностей», 1711

Опубликованы посмертно

«Лекции по оптике» (англ. Optical Lectures), 1728
«Система мира» (лат. De mundi systemate), 1728
«Краткая хроника» (англ. A Short Chronicle from the First Memory of Things in Europe, to the Conquest of Persia by Alexander the Great), 1728 (это конспект «Хронологии древних царств», французский перевод чернового варианта был опубликован ещё раньше, в 1725 году)
«Хронология древних царств» (англ. The Chronology of Ancient Kingdoms), 1728
«Замечания на книгу пророка Даниила и Апокалипсис св. Иоанна» (англ. Observations Upon the Prophecies of Daniel and the Apocalypse of St. John), 1733, написано около 1690 года
«Метод флюксий» (лат. Methodus fluxionum, англ. Method of Fluxions), 1736, написан в 1671 году
«Историческое прослеживание двух заметных искажений Священного Писания» (англ. An Historical Account of Two Notable Corruptions of Scripture), 1754, написано в 1690 году

Канонические издания

Классическое полное издание трудов Ньютона в 5 томах на языке оригинала:

Isaaci Newtoni. Opera quae existant omnia. — Commentariis illustravit Samuel Horsley. — Londini, 1779-1785.

Избранная переписка в 7 томах:

Turnbull, H. W. (Ed.),. The Correspondence of Sir Isaac Newton. — Cambridge: Cambr. Univ. Press, 1959-1977.

Переводы на русский язык

Ньютон И. Всеобщая арифметика или Книга об арифметическом синтезе и анализе. — М.: Изд. АН СССР, 1948. — 442 с. — (Классики науки).
Ньютон И. Замечания на книгу пророка Даниила и Апокалипсис св. Иоанна. — Петроград: Новое время, 1915.
Ньютон И. Исправленная хронология древних царств. — М.: РИМИС, 2007. — 656 с.
Ньютон И. Лекции по оптике. — М.: Изд. АН СССР, 1946. — 298 с.
Ньютон И. Математические начала натуральной философии / Перевод с латинского и примечания А.Н. Крылова. — М.: Наука, 1989. — 688 с.
Ньютон И. Математические работы. — М.-Л.: ОНТИ, 1937.
Ньютон И. Оптика или трактат об отражениях, преломлениях, изгибаниях и цветах света. — М.: Гостехиздат, 1954.
Данилов Ю. А. Ньютон и Бентли // Вопросы истории естествознания и техники. — М., 1993. — № 1. Это перевод четырёх писем Ньютона из сборника его переписки: «The Correspondence of Isaac Newton», Cambridge, 1961. Vol. 3 (1688-1694).

ruspekh.ru

Законы Ньютона

Физика > Ньютон и его законы

 

Законы Ньютона: первый второй и третий законы движения Ньютона в физике, описание, формулы и графики, влияние на ускорение, силу и массу, примеры, формулировка.

Есть три закона движения, разъясняющих связь между силами, массой и ускорением.

Задача обучения

  • Применить три закона движения Ньютона, чтобы объединить силу, массу и ускорение.

Основные пункты

  • Ускорение объекта пропорционально приложенной силе.
  • Сила приводит объект в движение.
  • Чем больше масса, тем больше нужно приложить силы для смещения.

Термин

  • Сила – любое воздействие, вносящее в объект изменения, касающиеся движения, направления или геометрической конструкции.

Законы движения Ньютона описывают связь между силами, влияющими на тело или движение. К примеру, если ваш мотоцикл не заводится, то чтобы подтолкнуть его, необходимо вложить силу в руки. Законы движения объясняют, какая будет скорость движения при вложенной силе. Есть три закона.

Первый закон Ньютона: если на объект не влияет сила, то его скорость постоянна. Объект будет пребывать в состоянии покоя или же двигаться по прямой со стабильной скоростью.

Ситуации, в которых показаны действия силы

Второй закон Ньютона: ускорение тела параллельно и прямо пропорционально чистой силе F, действующей на объект, и находится в направлении чистой силы и обратно пропорциональная массе:

F = ma

Третий закон Ньютона: когда первый объект прикладывает силу (F1) ко второму, то тот одновременно влияет на первый. Формула выглядит как F2 = -F1. То есть, F1 и F2 равны по величине и противоположны по направлению. При толчке мотоцикла он также влияет на вас с одинаковой силой. Тогда почему вы не движетесь назад? Не забывайте про силу в ногах, толкающий вас вперед.

На схеме отображены практические примеры для иллюстрации концепции силы:

  • давление: при помощи ролика можно легко поднять или опустить массивное тело.
  • гравитационная сила: массивное тело притягивается земной гравитацией.
  • магнитная сила: два магнита отталкиваются, если приблизить одинаковые полюса.

v-kosmose.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *