Строение животной клетки | Дистанционные уроки

23-Июл-2013 | Нет комментариев | Лолита Окольнова

Как мы уже обсуждали в теме «Строение клетки«, есть органеллы, входящие в состав клеток любых живых организмов, есть органеллы, присущие клеткам только определенных царств (растительным, животным, клеткам грибов и бактерий).

 

 

 

 

 

Основное питательное вещество клетки животных — белок.

 

Основные органеллы клетки животных:

 

  1. Ядро и ядрышко — хранение и передача наследственной информации. Существуют многоядерные клетки животных, например, мышечные клетки; есть и безъядрные, например, эритроциты.
  2. Мембрана клетки — защита, поддержание формы, активный и пассивный транспорт веществ.
  3. Цитоплазма  — внутренняя жидкая среда любой клетки, содержит все органойды, органические и неорганические вещества.
     

    Важнейшая роль цитоплазмы — объединение всех клеточных структур (компонентов) и обеспечение их химического взаимодействия. Она выполняет и другие функции, в частности, поддерживает тургор (внутреннее давление) клетки.

     

  4. Эндоплазматическая сеть (эндоплазматический ретикулум) — это и внутренний «скелет» клетки, и обеспечение транспорта питательных веществ, в случае шероховатой ЭПС — это синтез белка,.
  5. Аппарат Гольджи — «сортирует»  белки, выводит вещества, произведенные ЭПС, образует лизосомы.
  6. Лизосомы — пищеварительные органеллы клетки.
  7. Митохондрия — «энергетическая станция» клетки.
  8. Рибосомы — производство белка.
  9. Центриоли (микротрубочки, клеточный центр) — это органелла, присущая только клетке животных.
    Эта органелла был изучена сравнительно недавно, потому что в световой микроскоп (длина микротрубочки 0,2 — 0,6 мкм) ее можно было увидеть, но изучить строение можно было только с помощью электронного микроскопа.

    Между собой микротрубочки соединены белковыми связями — так они удерживаются вместе.

 
В клетке центриоли располагаются обычно возле ядра, сами трубочки находятся в слегка уплотненном белковом окружении — матриксе. Такая система называется клеточным центром.
 

Основные функции клеточного центра — участие в делении клетки, функции микротрубочек —  формирование цитоскелета клетки… Когда начинается процесс профазы митоза, они формируют веретено деления и помогают хромосомам разъезжаться к разным полюсам клетки — они играют роль своеобразных рельс.

 


 

То, что здесь перечислено — это общее строение животной клетки. В многоклеточных организмах клетки слагаются в ткани и строение и функции этих тканей очень различны — в одних некоторые органеллы могут отсутствовать, в других какая-то из органелл доминирует как по размеру, так и по функциям, но, глядя на клетку в микроскоп, всегда можно точно определить, к какому царству она относится.

 


 

  • в ЕГЭ это вопрос A2 — Клеточная теория. Многообразие клеток
  • A3 — Клетка: химический состав, строение, функции органоидов
  • А27 — Клеточный ровень организации
  • B2

 


 
 
 
 

Еще на эту тему:

Обсуждение: «Строение животной клетки»

(Правила комментирования)

distant-lessons.ru

Животная клетка | Биология

В основе строения животных, как и всех других организмов, лежит клетка. Она представляет собой сложную систему, компоненты которой взаимосвязаны посредством разнообразных биохимических реакций. Точное строение конкретной клетки зависит от тех функций, которые она выполняет в организме.

Клетки растений, животных и грибов (всех эукариот) имеют общий план строения. У них есть клеточная мембрана, ядро с ядрышком, митохондрии, рибосомы, эндоплазматическая сеть и ряд других органелл и иных структур. Однако, несмотря на схожесть, животные клетки имеют свои характерные особенности, отличающие их как от клеток растений, так и грибов.

Животные клетки покрыты только клеточной мембраной. У них нет ни целлюлозной клеточной стенки (как у растений), ни хитиновой (как у грибов). Клеточная стенка жесткая. Поэтому, с одной стороны, она обеспечивает как бы внешний скелет (опору) клетке, но, с другой стороны, не дает возможности клеткам растений и грибов поглощать вещества захватом (фагоцитоз и пиноцитоз). Они их всасывают. Животные же клетки способны к такому способу питания. Клеточная мембрана эластична, что дает возможность в определенной степени менять форму клетки.

Обычно животные клетки мельче, чем клетки растений и грибов.

Цитоплазма — это внутреннее жидкое содержимое клетки. Она вязкая, так как представляет собой раствор веществ. Постоянное движение цитоплазмы обеспечивает перемещение веществ и компонентов клетки. Это способствует протеканию различных химических реакций.

Центральное место в животной клетке занимает одно большое ядро. У ядра есть собственная мембрана (ядерная оболочка), отделяющая его содержимое от содержимого цитоплазмы. В ядерной оболочке есть поры, через которые происходит транспорт веществ и клеточных структур. Внутри ядра находится ядерный сок (его состав несколько отличается от цитоплазмы),

ядрышко и хромосомы. Когда клетка делится, то хромосомы скручиваются и их можно увидеть в световой микроскоп. В неделящейся клетки хромосомы имеют нитевидную форму. Они находятся в «рабочем состоянии». В это время на них происходит синтез различных типов РНК, которые в дальнейшем обеспечивают синтез белков. В хромосомах хранится генетическая информация. Это код, реализация которого определяет жизнедеятельность клетки, также он передается дочерним клеткам при делении родительской.

Митохондрии, эндоплазматическая сеть (ЭПС), комплекс Гольджи также имеют мембранную оболочку. В митохондриях происходит синтез АТФ (аденозинтрифосфорной кислоты). В ее связях запасается большое количество энергии. Когда эта энергия понадобится для жизнедеятельности клетки, АТФ будет постепенно расщепляться с выделением энергии. На ЭПС часто находятся рибосомы, на них происходит синтез белков. По каналам ЭПС происходит отток белков, жиров и углеводов в

комплекс Гольджи, где эти вещества накапливаются и потом отщепляются в виде капелек, окруженных мембраной, по мере надобности.

У рибосом нет мембран. Рибосомы — одни из самых древних компонентов клетки, так как они есть у бактерий. В отличие от эукариот, в клетках бактерий нет настоящих мембранных структур.

В животной клетке есть лизосомы, которые содержат вещества, расщепляющие поглощенную клеткой органику.

В отличие от растительной клетки, у животной нет пластид, в том числе хлоропластов. В результате животная клетка не способна к автотрофному питанию, а питается гетеротрофно.

В животной клетке есть центриоли (клеточный центр), обеспечивающие образование веретена деления и расхождение хромосом в процессе деления клетки. Такой клеточной структуры у растительной клетки нет.

biology.su

Строение животной клетки

Клетка – мельчайшая структура всего растительного и животного мира – самое загадочное явление природы. Даже на своем собственном уровне клетка чрезвычайно сложно устроена и содержит множество структур, которые выполняют определенные функции. В организме совокупность определенных клеток образует ткани, ткани – органы, а те – системы органов. Строение животной и растительной клетки во многом сходно, но в то же время и имеет принципиальные различия. Например, похож химический состав клеток, сходны принципы строения и жизнедеятельности, но в растительных клетках нет центриолей (кроме водорослей), а в качестве питательной запасной базы служит крахмал.

 

Строение клетки животного базируется на трех основных составляющих – ядро, цитоплазма и клеточная оболочка. Вместе с ядром цитоплазма образует протоплазму. Клеточная оболочка – это биологическая мембрана (перегородка), которая отделяет клетку от внешней среды, служит оболочкой для клеточных органоидов и ядра, образует цитоплазматические отсеки. Если поместить препарат под микроскоп, то строение животной клетки легко можно увидеть. Клеточная оболочка содержит три слоя. Внешний и внутренний слои белковые, а промежуточный – липидный. При этом липидный слой делится еще на два слоя – слой гидрофобных молекул и слой гидрофильных молекул, которые располагаются в определенном порядке. На поверхности клеточной мембраны располагается особая структура – гликокаликс, которая обеспечивает избирательную способность мембраны. Оболочка пропускает необходимые вещества и задерживает те, которые приносят вред. Строение животной клетки нацелено на обеспечение защитной функции уже на этом уровне. Проникновение веществ через оболочку происходит при непосредственном участии цитоплазматической мембраны. Поверхность этой мембраны достаточно значительна за счет изгибов, выростов, складок и ворсинок. Цитоплазматическая мембрана пропускает как мельчайшие частицы, так и более крупные.

Строение животной клетки характеризуется наличием цитоплазмы, в большинстве своем состоящей из воды. Цитоплазма – это вместилище для органоидов и включений. Кроме этого цитоплазма содержит и цитоскелет – белковые нити, которые участвуют в процессе деления клетки, отграничивают внутриклеточное пространство и поддерживают клеточную форму, способность сокращаться. Важная составляющая цитоплазмы – гиалоплазма, которая определяет вязкость и эластичность клеточной структуры. В зависимости от внешних и внутренних факторов гиалоплазма может менять свою вязкость – становиться жидкой или гелеобразной.

            Изучая строение животной клетки, нельзя не обратить внимание на клеточный аппарат – органоиды, которые находятся в клетке. Все органоиды имеют собственное специфическое строение, которое обусловлено выполняемыми функциями. Ядро – центральная клеточная единица, которая содержит наследственную информацию и участвует в обмене веществ в самой клетке. К клеточным органоидам относятся эндоплазматическая сеть, клеточный центр, митохондрии, рибосомы, комплекс Гольджи, пластиды, лизосомы, вакуоли. Подобные органоиды есть в любой клетке, но, в зависимости от функции, строение животной клетки может отличаться наличием специфических структур.

Функции клеточных органоидов:

— митохондрии окисляют органические соединения и аккумулируют химическую энергию;

— эндоплазматическая сеть благодаря наличию специальных ферментов  синтезирует жиры и углеводы, ее каналы способствуют транспорту веществ внутри клетки;

— рибосомы синтезируют белок;

— комплекс Гольджи концентрирует белок, уплотняет синтезированные жиры, полисахариды, образует лизосомы и готовит вещества к выведению их из клетки или непосредственному использованию внутри нее;

— лизосомы расщепляют углеводы, белки, нуклеиновые кислоты и жиры, по сути, переваривая поступающие в клетку питательные вещества;

— клеточный центр участвует в процессе деления клетки;

— вакуоли, благодаря содержанию клеточного сока, поддерживают тургор клетки (внутреннее давление).

Строение клетки живого чрезвычайно сложно — на клеточном уровне протекает множество биохимических процессов, которые в соввокупности обеспечивают жизнедеятельность организма.

fb.ru

Клеточный центр — строение и функции

Клеточный центр (называемый также центросома) не мембранная органелла расположенная, как правило, в центре клетки недалеко от ядра. Отсюда и происходит его название.

Была обнаружена в конце девятнадцатого века немецким ученым Теодором Бовери. Центросомы имеются в клетках всех видов животных. Отсутствуют у некоторых простейших, а также у высших растений.

Читайте также: Клеточный центр .

Строение.

Состоит клеточный центр из двух центриолей: дочернего и материнского, расположенных перпендикулярно друг к другу и создающими диплосому. Только одна из центриолей, а именно материнская, имеет множество дополнительных образований. Одни из них это сатиллиты, их численность непостоянна, и они располагаются по всей длине центриоля. Материнский участок диплосомы является источником создания микротрубочек. Центриоли имеют форму цилиндра длиной 0,3мкм и диаметром 0,1мкм. Стенки центриолей состоят из девяти групп протеиновых микротрубочек. Окружены центриоли областью, более светлой цитоплазмы, (Эту светлую область и называют клеточным центром) от которой отходят микротрубочки, и образовывают центросферу, состоящую из углеводов, белков, и липидов.

Функции.

Центросома является главным центром создания и управления всеми микротрубочками клетки. Отвечает за следующие функции:
1.Образование внешних структур, так называемых жгутиков, характерных для клеток многих прокариот и эукариот, которые обеспечивают возможность перемещения в жидкой субстанции.
2. Образовывает реснички- волоскоподобные образования, которые покрывают поверхность эукариотических клеток и служат для них рецепторами.
3.Образовывает нити веретена деления в процессе непрямого деления клетки (митоз) и в ходе деления ядра эукариотических клеток с уменьшением численности хромосом наполовину.

Так как клеточный центр в делящихся клетках способствует образованию веретена деления, то и находится он на полюсах. В клетках же, которые не делятся, клеточные центры способны определять полярность эндотелиальных клеток и находятся недалеко от комплекса Гольджи. Эта связь комплекса Гольджи с центросомой является характерной для большинства клеток, в их числе нервные и клетки крови (эритроциты).
У большей части клеток млекопитающих клеточные центры занимаются поляризацией тубулинов структурного элемента микротрубочек.

← Тайны красного жучка Клеточный цикл и деление клетки пополам →

biologylife.ru

Строение клеточного центра. Особенности строения клеточного центра

Доказано, что клетки эукариотических организмов представлены системой мембран, образующих органоиды белково-фосфолипидного состава. Однако из этого правила существует важное исключение. Две органеллы (клеточный центр и рибосома), а также органоиды движения (жгутики и реснички) имеют немембранную структуру. Чем же они образованы? В данной работе мы постараемся найти ответ на этот вопрос, а также изучим строение клеточного центра клетки, часто называемого центросомой.

Все ли клетки содержат клеточный центр

Первый факт, который заинтересовал ученых, – это необязательное наличие данного органоида. Так, у низших грибов – хитридиомицетов – и у высших растений он отсутствует. Как выяснилось, у водорослей, в клетках человека и у большинства животных наличие клеточного центра необходимо для осуществления процессов митоза и мейоза. Первым способом делятся соматические клетки, а другим – половые. Обязательным участником в обоих процессах выступает центросома. Расхождение её центриолей к полюсам делящейся клетки и натягивание между ними нитей веретена деления обеспечивает и дальнейшее расхождение хромосом, прикрепленных к этим нитям и к полюсам материнской клетки.

Микроскопические исследования выявили особенности строения клеточного центра. В него входит от одного до нескольких плотных телец – центриолей, от которых веерообразно расходятся микротрубочки. Изучим более подробно внешний вид, а также строение клеточного центра.

Центросома в интерфазной клетке

В жизненном цикле клетки клеточный центр можно увидеть в период, называемый интерфазой. Рядом с мембраной ядра обычно располагаются два микроцилиндра. Каждый из них состоит из белковых трубочек, собранных по три штуки (триплеты). Девять таких структур образуют поверхность центриоли. Если их две (что бывает чаще всего), то они располагаются друг к другу под прямым углом. В период жизни между двумя делениями строение клеточного центра в клетке практически одинаково у всех эукариот.

Ультраструктура центросомы

Детально изучить строение клеточного центра стало возможным в результате использования электронного микроскопа. Ученые установили, что цилиндры центросом имеют следующие размеры: их длина – 0,3-0,5 мкм, диаметр – 0,2 мкм. Количество центриолей перед началом деления обязательно удваивается. Это необходимо для того, чтобы сама материнская и дочерняя клетки в результате деления получили клеточный центр, состоящий из двух центриолей. Особенности строения клеточного центра заключаются в том, что центриоли, составляющие его, не равнозначны: одна из них – зрелая (материнская) – содержит дополнительные элементы: перицентриолярный сателлит и его придатки. Незрелая центриоль имеет специфический участок, названный тележным колесом.

Поведение центросомы в митозе

Хорошо известно, что рост организма, а также его размножение происходит на уровне элементарной единицы живой природы, которой является клетка. Строение клетки, локализация и функции клетки, а также её органоидов рассматриваются цитологией. Несмотря на то что ученые провели достаточно много исследований, клеточный центр остается до сих пор недостаточно изученным, хотя его роль в клеточном делении выяснена полностью. В профазе митоза и в профазе редукционного деления мейоза центриоли расходятся к полюсам материнской клетки, а далее происходит образование нити веретена деления. Именно они прикрепляются к центромерам первичной перетяжки хромосом. Для чего же это необходимо?

Веретено деления анафазной клетки

Опыты Г. Бовери, А. Нейла и других ученых позволили установить, что строение клеточного центра и его функции взаимосвязаны. Наличие двух центриолей, биполярно расположенных по отношению к полюсам клетки, и нитей веретена деления между ними обеспечивает равномерное распределение хромосом, соединенных с микротрубочками, к каждому из полюсов материнской клетки.

Таким образом, количество хромосом будет одинаковым в дочерних клетках в результате митоза или вдвое меньше (в мейозе), чем у исходной материнской клетки. Особенно интересным представляется тот факт, что строение клеточного центра меняется и коррелятивно связано со стадиями жизненного цикла клетки.

Химический анализ органеллы

Для лучшего понимания функций и роли центросомы изучим, какие же органические соединения входят в её состав. Как и следовало ожидать, ведущими являются белки. Достаточно вспомнить, что строение и функции клеточной оболочки также зависят от присутствия в ней молекул пептидов. Отметим, что в центросоме белки обладают сократительной способностью. Они входят в состав микротрубочек и называются тубулинами. Изучая внешнее и внутреннее строение клеточного центра, мы упоминали вспомогательные элементы: перицентриолярные сателлиты и придатки центриолей. В их состав входят ценексин и мирицитин.

Есть также белки, регулирующие обмен веществ органоида. Это киназа и фосфатаза – специальные пептиды, отвечающие за нуклеацию микротрубочек, то есть за образование активной молекулы-затравки, с которой начинается рост и синтез радиальных микронитей.

Клеточный центр как организатор фибриллярных белков

В цитологии окончательно закрепилось представление о центросоме как о главной органелле, отвечающей за образование микротрубочек. Благодаря обобщающим исследованиям К. Фултонаможно утверждать, что клеточный центр обеспечивает этот процесс четырьмя путями. Например: полимеризацией нитей веретена деления, формированием процентриолей, созданием радиальной системы микротрубочек интерфазной клетки и, наконец, синтезом элементов в первичной ресничке. Это особое образование, характерное для материнской центриоли. Изучая строение и функции клеточной оболочки, ученые обнаруживают её под электронным микроскопом в клеточном центре после митотического деления клетки или же в момент начала митоза. В стадию G2 интерфазы, а также на ранних этапах профазы ресничка исчезает. По химическому составу она состоит их молекул тубулина и является меткой, по которой можно определить зрелую материнскую центриоль. Так как же происходит созревание центросомы? Рассмотрим все нюансы этого процесса.

Этапы образования центриоли

Цитологи установили, что дочерняя и материнская центриоли, образующие диплосому, не одинаковы по своему строению. Так, зрелая структура окаймлена слоем перицентриолярного вещества — митотическим гало. Полное созревание дочерней центриоли происходит дольше, чем длится один жизненный цикл клетки. В конце стадии G1 второго клеточного цикла новая центриоль уже выступает в роли организатора микротрубочек и способна к формированию нитей веретена деления, а также к образованию специальных органелл движения. Ними могут быть реснички и жгутики, встречающиеся у одноклеточных простейших животных (например, эвглены зеленой, инфузории-туфельки), а также у многих водорослей, например хламидомонады. Жгутиками, образованными благодаря микротрубочкам клеточного центра, снабжены многие споры у водорослей, а также половые клетки животных и человека.

Роль центросомы в жизнедеятельности клетки

Итак, мы убедились в том, что одна из самых маленьких клеточных органелл (занимает менее 1 % объема клетки) играет ведущую роль в регуляции метаболизма как растительных, так и животных клеток. Нарушение формирования веретена деления влечет за собой образование генетически дефектных дочерних клеток. Их наборы хромосом отличаются от нормального количества, что приводит к хромосомным аберрациям. Как результат – развитие аномальных особей или же их гибель. В медицине установлен факт взаимосвязи количества центриолей от риска развития онкозаболеваний. Например, если нормальные клетки кожи содержат 2 центриоли, то биопсия тканей при заболевании раком кожи выявляет увеличение их количества до 4-6. Эти результаты служат доказательством ключевой роли центросомы в контроле над клеточным делением. Последние экспериментальные данные указывают на важную роль этой органеллы в процессах внутриклеточного транспорта. Уникальное строение клеточного центра позволяет ему регулировать как форму клетки, так и её изменение. У нормально развивающейся единицы центросома располагается рядом с аппаратом Гольджи, вблизи ядра, и вместе с ними обеспечивает интегративную и сигнальную функции в осуществлении митоза, мейоза, а также запрограммированной клеточной смерти – апуптоза. Именно поэтому современные цитологи считают центросому важным объединяющим органоидом клетки, отвечающим как за её деление, так и за весь метаболизм в целом.

fb.ru

Клеточный центр

Термин «центриоли» был предложен Т. Бовери в 1895 г. для обозначения очень мелких телец, но впервые их обнаружили отдельно друг от друга Флеминг и О. Гартвиг в 1875 г.

Мелкие центриоли обычно расположены попарно и окружены зоной более светлой цитоплазмы, от которой радиально отходят тонкие фибриллы. Эта структура в целом и называется клеточным центром и в делящихся клетках принимает участие в формировании веретена деления. В неделящихся клетках центриоли часто определяют полярность клеток эпителия и их можно найти вблизи комплекса Гольджи. Центриоли характерны и обязательны для животных, но их нет у высших растений, низших грибов и некоторых простейших.

Клеточный центр стремится занять центральное положение в интерфазной клетке, однако это обычно не удается вследствие формы и расположения ядра. Клеточный центр образован двумя перпендикулярно расположенными центриолями и центросферой.

В клеточном центре интерфазной клетки выделяют две центриоли, которые лежат перпендикулярно друг к другу и образуют диплосому (дуплет). Вокруг центриоли формируется центросфера — радиально расходящаяся система микротрубочек, положительный полюс которых направлен на периферию, а отрицательный стыкуется со спутниками — глобулярными частицами вокруг материнской центриоли.

Клеточный центр в интерфазной клетке — это зона, контролирующая полимеризацию и расположение микротрубочек в цитоплазме клетки, которая организует распределение ее компартментов и участвует в циклозе. Эта особенность клеточного центра обусловлена именно интегрирующим влиянием на цитоскелет. При митотическом и мейотическом делении в животной клетке центриоли обеспечивают равномерное расхождение генетического и цитоплазматического материала делящейся клетки, участвуют в формировании веретена деления.

Центриоли представляют собой полые цилиндры диаметром в поперечном срезе около 150 нм и длиной 500 нм. Центриоли состоят из триплетов микротрубочек, из которых одна (а-микротрубочка) полная и состоит на поперечном разрезе из 13 цепочек тубулинов. Две последующие микротрубочки неполные и их обозначают как b — и c-микротрубочки. Они содержат в поперечном разрезе по 11 цепочек тубулинов. b-Микротрубочка частично перекрывается а-микротрубочкой, в результате чего два актина являются общими. с-Микротрубочка, в свою очередь, погружается в структуру b-микротрубочки, формируя единые с нею цепочки. Таким образом, две цепочки тубулинов являются общими для последующих микротрубочек триплета.

Каждый триплет располагается под углом около 40° к радиусу образуемого ими цилиндра.

Соседние триплеты микротрубочек взаимодействуют между собой с помощью ручек, образованных молекулами белка динеина. Ручки не просто сцепляют триплеты между собой, но и способны изменять свою структуру, тем самым обеспечивая подвижность такого соединения. Динеины прикрепляются к a-микротрубочке, а их головки взаимодействуют с c-микротрубочкой соседнего триплета.

Динеин обладает АТФазной активностью. Он способен вызвать смещение (скольжение) одного триплета микротрубочек по отношению к другому, обеспечивая движение. Динеин центриолей встречается в двух вариантах. Один из них содержит две, а другой три головки. Эти головки взаимодействуют с соседними триплетами с разрушением АТФ. Данное явление наблюдают при возбуждении клетки, в том числе на фоне изменения содержания в гиалоплазме ионов кальция. При разрушении АТФ происходит изменение пространственной организации головок (их сокращение) и микротрубочки «скользят» по отношению друг к другу. При этом в одном из направлений процесс обеспечивает быстрое сокращение, а в противоположном направлении оно происходит медленно.

Кроме ручек в центриоли есть спицы, направленные к центру, содержащему центральную втулку.

Нередко материнскую центриоль окружает фибриллярная структура умеренной электронной плотности — перицентриолярный материал. К нему с помощью ножек нередко могут прикрепляться спутники — электронно-плотные частицы белковой природы. Со спутниками соединяются микротрубочки центросферы. Зона перицентриолярного материала контролирует образование микротрубочек.

Кроме спутников можно видеть плотные мелкие частицы размером 20…40 нм, располагающиеся вблизи центриолей, но не связанные с ними, которые иногда служат центрами организации микротрубочек.

В S-период интерфазы ко времени перехода в С2-период около каждой прежней центриоли образуется маленькая дочерняя центриоль. Каждая дочерняя центриоль растет путем непрерывной полимеризации микротрубочек. В результате удвоения перед митозом формируется по две пары центриолей.

Во время деления центриоли расходятся к полюсам, образуя новые клеточные центры клеток, при этом они способны индуцировать синтез новых центриолей, до нескольких десятков или даже сотен на одну клетку. Новые центриоли перемещаются на периферию и служат основой для ресничек, жгутиков и киноцилий, образуя в них базальное тельце.

Центриолярный цикл представляет собой период, в течение которого происходит репродукция органеллы в несколько стадий.

  1. Инициация — образование процентриолей. Это небольшие структуры, из которых затем формируется новая центриоль. Процесс идет в S-период интерфазы.
  2. Элонгация — удлинение дочерней центриоли. Охватывает S — и С2-периоды интерфазы.
  3. Терминация — завершение роста дочерней центриоли (начало митоза).
  4. Разъединение материнской и дочерней центриолей. Охватывает митоз и начало G1-периода.

Центриолярный цикл может повторяться многократно. Тогда центриоли перемещаются на периферию (подмембранное пространство), превращаются в кинетосому (блефаропласт, или базальное тельце), из которой в сторону клеточной мембраны полимеризуются дуплеты микротрубочек. Они формируют аксонему ресничек или жгутиков.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

www.activestudy.info

Клеточный центр | Биология

Клеточный центр, или центросома, обычно состоит из пары центриолей и центросферы, образованной радиально отходящими тонкими фибриллами. Центриоли — немембранные органоиды эукариотических клеток, причем их нет в клетках высших растений, ряда грибов и некоторых животных.

Каждая центриоль состоит из девяти триплетов тубулиновых микротрубочек. Триплеты располагаются по окружности цилиндра длиной около 0,3 мкм и диаметром около 0,1 мкм.

В каждом триплете микротрубочки отличаются. Одна из них состоит из большего числа протофиламентов, а две другие представляют собой как бы полусферы, присоединенные вторая к первой, а третья ко второй.

В паре центриоли располагаются под прямым углом друг к другу. В интерфазе находятся в центре клетки и связаны либо с ядром, либо с комплексом Гольджи.

Клеточный центр является главным центром организации микротрубочек, инициирует их рост. Здесь же образуются жгутики и реснички.

Клеточный центр выполняет функцию организации веретена деления. Центриолей нет у растений, но веретено у них образуется. Поэтому считается, что веретено образует именно клеточный центр, а не входящие в его состав центриоли. Вероятная функция центриолей — ориентация веретена так, чтобы хромосомы расходились именно к полюсам. Перед делением каждая центриоль из пары отходит к своему полюсу.

От центриолей, находящихся на полюсах, вырастают микротрубочки. Они прикрепляются к центромерам хромосом и обеспечивают равноценное распределение наследственного материала между дочерними клетками.

В новых клетках возле каждой центриоли возникает новая – дочерняя. Однако бывают другие варианты: вторая центриоль пары может появляться раньше, или в клетке может быть несколько пар. Кроме того, центриоли образуют базальные тельца, представляющие собой их видоизменения, находящиеся у основания жгутиков и ресничек.

biology.su

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *